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Abstract—Nowadays it is prevalent to take features extracted
from pre-trained deep learning models as image representations
which have achieved promising classification performance. Ex-
isting methods usually consider either object-based features or
scene-based features only. However, both types of features are
important for complex images like scene images, as they can
complement each other. In this paper, we propose a novel type
of features – hybrid deep features, for scene images. Specifically,
we exploit both object-based and scene-based features at two
levels: part image level (i.e., parts of an image) and whole image
level (i.e., a whole image), which produces a total number of
four types of deep features. Regarding the part image level,
we also propose two new slicing techniques to extract part
based features. Finally, we aggregate these four types of deep
features via the concatenation operator. We demonstrate the
effectiveness of our hybrid deep features on three commonly used
scene datasets (MIT-67, Scene-15, and Event-8), in terms of the
scene image classification task. Extensive comparisons show that
our introduced features can produce state-of-the-art classification
accuracies which are more consistent and stable than the results
of existing features across all datasets.

Index Terms—Deep learning, Feature extraction, Hybrid deep
features, Image classification, Image representation, Machine
learning.

I. INTRODUCTION

With the fast development of camera technologies, image
classification has been a fundamental problem in image pro-
cessing. Solving it can benefit a variety of areas relying on
images and videos, such as robotics, surveillance, forecasting,
and so on. Image features are the mathematical representation
of images. In general, there are three types of scene images
features based on the sources of feature extraction. They are
conventional computer vision based features [1]–[7], tag-based
features [8]–[10], and deep learning based features [8], [11]–
[18]. Conventional computer vision based methods [1]–[7]
extract features based on the basic components of images such
as texture, color, intensity, gradient, etc. They mainly focus
on low-level features and lack details about the context in

the images (e.g., objects and their spatial relationships). They
are not suitable for complex images such as scene images
that have intra-class dissimilarities and inter-class similarities.
They work well with texture images.

Recent works [8]–[10] have used annotations of similar
images available on the internet to extract tag-based features.
Given an image, they first search similar images in the web
and extract tag-based features from the descriptions of those
similar images. These features are based on the contextual
information of images. They did not use the content of images
directly.

More recently, deep features [8], [11]–[18] extracted using
pre-trained deep learning models have been widely used. They
have been shown to work well in various image processing
tasks including scene image classification, as they capture
high-level semantic information of images. They used deep
learning models such as VGG [19] pre-trained on datasets such
as ImageNet [20] or Places [16] to extract features of objects
or their background scenes. These techniques employed ei-
ther object-based (foreground) features or scene-based (back-
ground) features. Still, these methods suffer from two prob-
lems on scene images. Firstly, existing approaches used either
object-based or scene-based features only. For scene images,
both object-based and scene-based features should be equally
important. Secondly, most of these models are pre-trained on
images having single objects such as ImageNet [20]. But many
scene images contain multiples objects and discriminating
regions. They may not be able to identify some interesting
semantic regions in scene images. Some researchers adopted
slicing techniques to partition images into smaller parts, and
thus part image level features are extracted from image slices
[21]. Whole image level features are also necessary for those
scene images containing single objects or other discriminating
information like background. Thus, both levels of images are
important in extracting the scene features.

In this paper, we assume that features from whole image
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Fig. 1. Slices (or sub-images) achieved by using rectangular, triangular, circular, left diagonal cropping and right diagonal cropping techniques, respectively.
(columns from left to right order.) We aggregate features of those slices to extract part image level features. Note that the two diagonal slicing techniques are
introduced in this work.

level and part image level are both useful to identify different
interesting regions in scene images, and propose to fuse four
types of features – object-based and scene-based features
from both whole images and part images, to construct our
hybrid deep features (abbreviated as HDF ). To get sub-
images from an image, triangular, circular and rectangular
slicing techniques have been presented in the literature [21].
To capture more interesting features from part images, we
introduce two additional slicing techniques - left and right
diagonal slicing (20 sub-images in total). We visually observe
and speculate that such 20 sub-images for each scene image
can provide decent semantic information. For example, in Fig.
1, the image slice at the bottom right corner can identify
the object more easily compared to slices in the first three
slices of the same row. The aggregation of deep features
extracted from sub-images produced by five slicing techniques
will construct deep features at part image level, which will
complement features from the whole images level. We present
some common aggregation operators and empirically select
the concatenation operator due to its outstanding aggregation
ability.

Extensive experiments in scene image classification on three
commonly used benchmark datasets (MIT-67 [22], Scene-15
[23] and Event-8 [24]) validate the proposed hybrid deep
features (HDF ), and reveal that our HDF generate state-
of-the-art classification accuracies which are more consistent
and stable than the results of existing features across different
datasets.

The remainder of this paper is organized as follows. Section
II reviews related works in scene image representation using
content and context features. Section III explains our proposed
method to extract hybrid deep features (HDF ). Experimental
results and their analysis are discussed in Section IV, which
follows Section V for the conclusion of our method with future
works.

II. RELATED WORKS

In this section, we review the state-of-the-art image feature
extraction methods. Depending on the source where the fea-
tures are extracted from, we generally categorize them into
three groups: conventional computer vision methods [1]–[7],



[22], [25]–[31], tag-based methods [8]–[10], and deep learning
based methods [8], [11]–[18].

A. Conventional computer vision based methods

Conventional vision based methods basically rely on the
hand-crafted feature extraction techniques such as Generalized
Search Trees (GIST) [2], GIST-color [3], Scale-invariant Fea-
ture Transform (SIFT) [1], Histogram of Gradient (HOG) [4],
Spatial Pyramid Matching (SPM) [32], CENsus TRansform
hISTogram (CENTRIST) [5], Oriented Texture Curves (OTC)
[7], multi-channel CENTRIST (mCENTRIST) [6], RoI (re-
gions of interest) with GIST [22], MM (Max-Margin)-Scene
[25], Object bank [26], Reconfigurable Bag of Words (RBoW)
[27], Bag of Parts (BoP) [28], Important Spatial Pooling
Region (ISPR) [29], Laplacian Sparse coding SPM (LscSPM)
[30], Improved Fisher Vector (IFV) [31] , and so on. All of
these features are extracted using the fundamental information
of the images such as intensity, colors, orientations, etc.
Furthermore, these features are basically relied on the local
details, and therefore suitable for certain images such as
texture images. They are usually poor for complex images
such as scenes. Also, the size of these types of features are
often higher than other high-level semantic features.

B. Tag-based methods

These features are extracted based on the contextual infor-
mation of images. They represent scene images by tags ex-
tracted from annotations/descriptions of similar images avail-
able on the web [8]–[10]. Zhang et al. [8] used descriptions of
similar images to design bag-of-words (BoW) features directly.
In this approach, there is not only the chance of having outlier
tags but also high-dimensional features. To overcome this
limitation, Wang et al. [9] proposed the concept of filter bank
using pre-defined categories obtained from ImageNet [20] and
Places [16] to filter out the outliers to some extent. Because the
filter bank is solely dependent on pre-defined category names,
it is more likely to miss other important tags related to images.
Recently, Sitaula et al. [10] designed a novel filter bank
to extract the tag-based features by exploiting the semantic
similarity of tags with image category labels. It provides rich
tag-based features and produces better classification accuracies
compared to other tag-based features.

C. Deep learning based methods

In most cases, features extracted from deep learning models
[8], [11]–[18], [33], [34] are found to have more promising
classification accuracies for scene images than other methods.
The popular deep learning based feature extraction methods
for scene images are: CNN-MOP [11], CNN-sNBNL [15],
VGG [16], ResNet152 [17] EISR [8], G-MS2F [14], SBoSP-
fusion [12], BoSP-Pre gp [13], CNN-LSTM [18], and so on.

Gong et al. [11] and Kuzborskij et al. [15] used the Caffe
model [35] to extract the multi-scale deep features. Zhou et
al. [16] launched a new scene related dataset and trained deep
learning architectures such as VGG model [19]. The features
extracted by their method produced promising classification

accuracies on scene images. He et al. [17] proposed a novel
deep learning architecture based on residual concepts and
outperforms the previous state-of-the-art deep architectures
such as the VGG model [19], GoogleNet model [36], etc.
Zhang et al. [8] extracted deep features of an image using
its multiple sub-images through random slicing. They concate-
nated deep features of each slice as a set of deep features of the
image. Finally, they combined the deep features with tag-based
features to produce a final set of features for the classification
purpose. Tang et al. [14] employed a score-fusion approach to
extract deep features. They chose the GoogleNet model [36]
and extracted score features from three classification layers for
the fusion. Guo et al. [12], [13] utilized the VGG16 model [19]
to extract unsupervised features by introducing the concept
of the bag of surrogate parts (BoSP). It not only reduced the
size of features but also improved the classification accuracies.
Furthermore, while comparing different pooling layers of the
VGG16 model [19], they unveiled that the 5th pooling is
the best among others in terms of classification accuracy,
owing to its better representation capability of objects in the
image. Recently, Bai et al. [18] designed a new deep model by
combining Convolutional Neural Networks (CNNs) with Long
Short Term Memory networks (LSTMs). They cast the issue
of ordered sliced images as a sequence problem and designed
a network to extract scene image features.

To sum up, the limitations of the existing deep learning
based methods are twofold. Firstly, the existing methods
extract features at one level only, and ignore a hybrid of
features in part image level and whole image level. Aggre-
gating features extracted from both part image level and the
whole image can be useful to identify interesting semantic
regions in the image. Secondly, the existing methods rely
on either scene-based features or object-based features only.
Both types of features are equally important for scene images
representation. The objects may not be the sole discriminators
of the scene images since the contextual information in the
image background can change their semantic meanings.

III. THE PROPOSED METHOD

We propose to extract hybrid deep features (HDF ) by
fusing scene-based and object-based deep features at both the
whole image and part image levels. Our method consists of
five steps: object-based features extraction at the part image
level, object-based features extraction at the whole image
level, scene-based features extraction at the part image level,
scene-based features extraction at the whole image level, and
aggregation/fusion of the four types of features.

We employ the VGG16 models [19] and exploit the 5th

pooling layer, as suggested by [12], [13]. To extract scene-
based and object-based deep features, we use the VGG16
models [19] pre-trained on ImageNet [20] and Places [16]
datasets. The VGG16 model [19] pre-trained on ImageNet
[20] provides features related to objects (foreground) in an
image, whereas the VGG16 model [19] pre-trained on Places
[16] provides features related to the scene (background) in
the image. We resize all the images into 224 × 224 before



Fig. 2. Overview of our approach. The notations OP , OW , SP , and SW represent object-based features at part image level, object-based features at whole
image level, scene-based features at part image level, and scene-based features at whole image level, respectively.

inputting to the VGG16 model. To extract part level features
of an image, we aggregate features extracted from multiple
sub-images of the image produced by five different slicing
techniques (three existing techniques and two introduced in
this work). We perform the Global Average Pooling (GAP)
operation on the deep features extracted by the deep learning
model to extract the 512-D features. The GAP operation
captures both lower and higher activation values in each
feature map of the deep learning model, which is suitable
for scene images to grab the discriminant features. Similarly,
motivated by the ability of GAP operation, we apply mean
pooling to leverage both higher and lower activation values
on the feature vectors extracted by GAP operation. The five
steps in the proposed method is discussed successively in the
next five subsections.

A. Object-based features extraction at the part image level

To extract object-based parts level (OP ) features, we slice
an image (I) into 20 slices (each of the five slicing techniques
yields four image parts, shown in Fig. 1) {I1, I2, I3, · · · , I20}.
For each image slice Ii, deep features are extracted from
the VGG16 model pre-trained on ImageNet using the GAP
operation. To obtain OP features of I , we then aggregate
deep features of the 20 slices by performing the mean pooling
operation as:

OP (I) = Mean{OF (I1), OF (I2), · · · , OF (I20)}, (1)

where OF (Ii) = GAP{V GG16ImageNet(Ii)} indicates the
GAP operation based deep features of image slice Ii from the
5th pooling layer of VGG16 model pre-trained on ImageNet.

B. Object-based features extraction at the whole image level

To extract the object-based whole image level (OW ) fea-
tures, we again adopt the VGG16 model [19] pre-trained on

ImageNet (V GG16ImageNet). We extract deep features of the
whole image I via the GAP operation from the 5th pooling
layer of such VGG16 model.

OW (I) = GAP{V GG16ImageNet(I)} (2)

C. Scene-based features extraction at the part image level

To extract scene-based parts level (SP ) features of the
image I , the deep features of the 20 slices {I1, I2, I3, · · · , I20}
extracted from the the 5th pooling layer of the VGG16 model
pre-trained on Places (V GG16Places) are combined through
the mean pooling.

SP (I) = Mean{SF (I1), SF (I2), · · · , SF (I20)}, (3)

where SF (Ii) = GAP{V GG16Places(Ii)} denotes the GAP
based deep features of the image slice Ii from the 5th pooling
layer of the VGG16 model pre-trained on Places.

D. Scene-based features extraction at the whole image level

Similarly, V GG16Places is used to extract scene-based
whole image level (SW ) features of image I as:

SW (I) = GAP{V GG16Places(I)} (4)

E. Features aggregation

After computing the above four types of deep features,
we need to aggregate them to form the hybrid deep features
(HDF ) for the representation of the scene image I . Such
features is achieved by using a pooling operator:

HDF (I) = Pool{OP (I), OW (I), SP (I), SW (I)} (5)

Note that the size of each type of deep features is 512.
The size of the final hybrid features depends on the pooling
operation. It remains 512 if Min, Max or Mean pooling is



Fig. 3. Images sampled from MIT-67 [22].

Fig. 4. Images sampled from Scene-15 [23].

used, but it increases to 2048 for the concatenation operation.
We empirically found that the concatenation produces better
results than others. Therefore, all experiments conducted in
this work are based on the concatenation operation which leads
to 2048-D features. We present the comparison results of all
four pooing operations in Section IV-E.

Finally, we utilize such hybrid features (HDF ) obtained
from Eq. (5) for the task of scene image classification. The
overview of the proposed method is shown in Fig. 2.

IV. EXPERIMENTS AND ANALYSIS

In this section, we will explain the used datasets, imple-
mentation and experimental results (comparisons and ablation
studies) in scene classification.

A. Datasets

We employ three commonly used scene image datasets:
MIT-67 [22] (Fig. 3), Scene-15 [23] (Fig. 4), and Event-8 [24]
(Fig. 5).

MIT-67 [22] is the largest indoor scene dataset employed
in the experiment, and has been used by previous studies [7]–
[14], [17], [18], [22], [25]–[29], [31], [37]. It contains 15, 620
images belonging to 67 indoor categories. We use the same
train/test split as suggested by [22]. For train/test split, 80

images per category are used for training and the remaining
20 images are used for testing.

Scene-15 [23] dataset comprises images of 15 categories.
There are 4, 485 images, where each category contains 200
to 400 images. We create 10 train/test sets and present the
average accuracy, as done by previous studies [3], [5], [7]–
[10], [14], [17], [29], [31], [32], [37]. For each train/test set,
100 images per category are selected for the training set and
the rest for the test set.

Event-8 [24] dataset includes images of 8 different sports
categories. There are 1, 579 images in this dataset, where
each category comprises 137 to 250 images. We also use 10
different train/test sets, as in previous studies [8]–[10], [15]–
[17], [26], [29]–[31], [37], and present the average accuracy.
For each train/test set, 70 images per category are involved in
the train set and 60 images are involved in the test set.

B. Implementation

To implement our approach, we use the Keras python pack-
age [38] for the deep learning models pre-trained on the Places
[16], [39] and ImageNet [20] datasets. The proposed hybrid
features (HDF ) are encoded and normalized as suggested by
Guo et al. [12], [13]. We use the L2-Regularized Logistic
Regression classifier (LR) implemented using LibLinear [40]
as the classifier to classify scene images. We use this classifier



Fig. 5. Images sampled from Event-8 [24].

in our experiments for two reasons: (1) it is fast owing
to its simple operations; (2) it produces better classification
performance on deep features as suggested by [12], [13]. In
each experiment, the cost parameter (C) is automatically tuned
in the range {1, 2, 3, · · · , 100} using a grid search technique,
and the default settings of other parameters are used. All
experiments are conducted on a laptop with an NVIDIA
GeForce GTX 1050 GPU.

C. Comparison with the state-of-the-art methods

We evaluate the classification performance of the proposed
hybrid deep features (HDF ) against the features by 27 state-
of-the-art image features extraction methods (12 conventional
computer vision based features, 6 tag-based features and 9
deep learning based features). The classification accuracies of
the proposed features and other contenders are provided in
Table I. Notice that results of the contenders are taken from
the corresponding published papers.

The results presented in the first column of Table I show
that the proposed hybrid deep features (HDF ) produce the
best result with an accuracy of 82.0% on the MIT-67 dataset.
CNN-LSTM [18] (80.5%) ranks the second best, followed by
G-MS2F [14] (79.6%) in the third place. Results of tag-based
features are at least 5.5% worse than HDF , and conventional
computer vision based methods generate worse results by at
least 21.2% than our HDF .

On Scene-15 (results in the second column of Table I),
the proposed hybrid deep features produce the second best
accuracy (93.9%) which is behind 94.5% of EISR [8]. G-
MS2F [14] ranks the third place with an accuracy of 92.9%.
Similar to MIT-67, conventional computer vision based fea-
tures and tag-based features induce worse results than deep
learning based features on Scene-15.

The results in the third column of Table I show that the pro-
posed hybrid deep features generate the second best accuracy
of 96.2% which is slightly behind 96.9% of ResNet152 [17].
VGG [16] achieved the third best result with an accuracy of
95.6%.

Classification results in three datasets show that the pro-
posed hybrid deep features (HDF ) can produce the best or

second best results in all cases. It demonstrates the consistent
and stable performance of our hybrid deep features across
different datasets. Results of other features vary significantly
across different datasets (MIT-67, Scene-15, and Event-8) .
EISR [8] has the best result in Scene-15 but ranks the eighth
and fifth in the MIT-67 and Event-8 datasets, respectively.
Similarly, ResNet152 [17] produces the best result in Event-8,
but it ranks the sixth in MIT-67 and the fourth in Scene-15,
respectively. Taking a closer look at EISR [8], its features size
is extremely higher than ours. They also use random cropping
of the image regions which ranges from 50 to 400 and
concatenate the deep features of all the regions sequentially,
and then they concatenate the features with tag-based features.
As a result, they have far more than 50 × 2, 048-D features,
with considering the concatenation with the tag-based features.
This is probably why it generates the best accuracy on Scene-
15. Similarly, ResNet152 [17] provides 2, 048-D features, the
size of which is equal to ours. However, it induces the highest
accuracy in only one dataset and much worse accuracies in
the other two datasets, while our features are more stable and
perform the best or the second best across all three datasets.
We suspect that the consistent and stable performance of the
proposed hybrid deep features across three datasets is mainly
due to the fusion of object-based and scene-based features at
both whole image and parts levels. The four types of features
enable the capture of different and complementary information
on one image.

D. Ablative study of individual features

We also evaluate the performances of each of the four
types of features. The classification accuracies using object-
based features on part images (OP ), object-based features on
the whole image (OW ), scene-based features on part images
(SP ), and scene-based features on the whole image (SW ) are
provided in Table II.

By observing results in Table II, we notice that the SW
features resulted in the best accuracy on the MIT-67 and
Scene-15 datasets (79.7% and 92.8%, respectively), whereas
the OW features induce the best result on the Event-8 dataset
(95.7%). The images on Event-8 often contain single objects



TABLE I
CLASSIFICATION ACCURACY (%) OF THE STATE-OF-THE-ART METHODS

AND OUR PROPOSED METHOD ON THE TEST SET OF THREE DATASETS.
BEST ACCURACY IS IN BOLD AND THE SECOND BEST ACCURACY IS

UNDERLINED. THE ASTERISK (*) SYMBOL REPRESENTS NO PUBLISHED
RESULTS ON THE CORRESPONDING DATASET.

Method MIT-67 Scene-15 Event-8

Conventional computer vision based methods

GIST-color [3] * 69.5 *
ROI with GIST [22] 26.1 * *
SPM [32] * 81.4 *
MM-Scene [25] 28.3 * *
CENTRIST [5] * 83.9 *
Object Bank [26] 37.6 * 76.3
RBoW [27] 37.9 * *
BOP [28] 46.1 * *
OTC [7] 47.3 84.4 *
ISPR [29] 50.1 85.1 74.9
LscSPM [30] * * 85.3
IFV [31] 60.8 89.2 90.3

Tag-based methods

BoW [9] 52.5 70.1 83.5
CNN [37] 52.0 72.2 85.9
s-CNN(max) [9] 54.6 76.2 90.9
s-CNN(avg) [9] 55.1 76.7 91.2
s-CNNC(max) [9] 55.9 77.2 91.5
TSF [10] 76.5 81.3 94.4

Deep learning-based methods

EISR [8] 66.2 94.5 92.7
CNN-MOP [11] 68.0 * *
SBoSP-fusion [12] 77.9 * *
BoSP-Pre gp [13] 78.2 * *
G-MS2F [14] 79.6 92.9 *
CNN-sNBNL [15] * * 95.3
VGG [16] * * 95.6
ResNet152 [17] 77.4 92.4 96.9
CNN-LSTM [18] 80.5 * *

Ours HDF 82.0 93.9 96.2

TABLE II
CLASSIFICATION ACCURACY (%) OF EACH INDIVIDUAL TYPE OF

FEATURES (OP , OW , SP , AND SW ) ON TEST SET OF THREE DATASETS.

Dataset OP OW SP SW

MIT-67 68.2 70.7 76.5 79.7
Scene-15 88.8 90.3 92.1 92.8
Event-8 93.7 95.7 93.0 94.9

which can be easily captured by the object-based features at
the whole image level (OW ). However, images on MIT-67
and Scene-15 are more dependent on scenes, and thus scene-
based features SW bring about the best accuracy. These three
best accuracies are obviously lower than the accuracies led by
the hybrid features of all four types of features, which further
demonstrates the necessity of the aggregation of the four types
of features.

TABLE III
CLASSIFICATION ACCURACY (%) OF OUR HYBRID DEEP FEATURES

(HDF ) ACHIEVED BY FOUR DIFFERENT AGGREGATION METHODS (MAX,
MEAN, MIN, AND CONCATENATE) ON THE TEST SET OF THREE DATASETS.

Dataset Max Mean Min Concat

MIT-67 79.9 80.3 67.9 82.0
Scene-15 93.3 93.4 87.4 93.9
Event-8 96.0 95.8 90.9 96.2

TABLE IV
COMPUTATIONAL TIME (SECONDS) TAKEN BY THE FEATURES

EXTRACTION, TRAINING AND TESTING FOR THE PROPOSED METHOD ON
THREE DATASETS.

Dataset Feat. extraction Training Testing
step step step

MIT-67 42813.4 8.2 1.0
Scene-15 5659.9 0.7 2.1
Event-8 1348.8 0.1 0.4

E. Ablative study of aggregation methods

To study the efficacy of the four aggregation methods (Max
pooling, Mean pooling, Min pooling, and Concat pooling in
Eq. (5), we perform experiments on all three datasets, and the
results are summarized in Table III. The results manifests that
our proposed features (HDF ) by the Concat aggregation yield
higher accuracies than other methods on all three datasets. This
is because all these features are different types of features
capturing different information about images.

F. Computational time

We study the computational time (seconds) taken by our
proposed method for three different steps including features
extraction step, training step and testing step, and list the
results in Table IV. For the Scene-15 and Event-8 datasets,
we provide the average computational time of 10 runs used
in the experiments. We observe that the the average features
extraction time per image including training and testing images
on the MIT-67 (6,700 images) is 6.3 seconds, whereas it is
1.2 seconds for both Scene-15 (4,485 images) and Event-8
(1,040 images) datasets. It unveils that the average features
extraction time per image on MIT-67 is higher than other
datasets because it contains images with multiple objects
and regions due to which pre-trained models yield multiple
activation values, and results in higher computation burden
during pooling and aggregation operations in our method.
Similarly, we observe that the classification time per image
of testing images on MIT-67 (1,340 images), Scene-15 (2,985
images), and Event-8 (480 images) is 0.0007 seconds, 0.0007
seconds, and 0.0008 seconds, respectively. This reveals a
similar classification time of a testing image on all of the
datasets.

V. CONCLUSION

In this paper, we have introduced hybrid deep features
to represent images by aggregating four types of features



(scene-based and object-based features at the whole image
and part image levels). Since the four types of deep features
capture different types of information about images, fusing
them together can provide richer discriminant information of
images. Experimental results in scene image classification
on three widely used scene image datasets unveil that the
proposed hybrid deep features are capable of producing more
consistent and stable results (the best or second best) than the
state-of-the-art techniques. We also notice that the proposed
features are more prominent and suitable for indoor scene
images because such images contain both objects and scenes
as the discriminator information.

Compared to indoor scene images, the proposed features
may be less powerful in representing other types of images
like outdoor images. Furthermore, we only used the 5th

pooling layer in our method, which may not be sufficient to
extract features. In the future, we would like to analyze the
characteristics of different types of images and exploit other
layers of the pre-trained models for the classification task.
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