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Abstract—The interest in complex deep neural networks for
computer vision applications is increasing. This leads to the
need for improving the interpretable capabilities of these mod-
els. Recent explanation methods present visualizations of the
relevance of pixels from input images, thus enabling the direct
interpretation of properties of the input that lead to a specific
output. These methods produce maps of pixel importance, which
are commonly evaluated by visual inspection. This means that
the effectiveness of an explanation method is assessed based
on human expectation instead of actual feature importance.
Thus, in this work we propose an objective measure to evaluate
the reliability of explanations of deep models. Specifically, our
approach is based on changes in the network’s outcome resulting
from the perturbation of input images in an adversarial way.
We present a comparison between widely-known explanation
methods using our proposed approach. Finally, we also propose
a straightforward application of our approach to clean relevance
maps, creating more interpretable maps without any loss in
essential explanation (as per our proposed measure).

Index Terms—Deep Networks, Explainability, Interpretability

I. INTRODUCTION

The development of deep neural networks for computer
vision applications is at the crossroad of two major trends.
The first trend is associated with increasingly complex models
leading to state-of-the-art performance in applications that vary
from healthcare [1], [2] to economics [3], to ranking [4].
The second trend is the increasingly perceived importance of
transparency and accountability in a range of applications.

Deep neural networks do not provide insights into their
complex behavior, and thus several methods attempt to un-
veil the factors contributing most to these networks black-
box decisions [5]–[8]. These explanations are important to
identify potential bias/problems in the training data [9], to
ensure compliance to existing regulations, and guarantee the
model performs as expected [10]. This leads to an increase
in interpretability [11], making models more transparent and
their predictions more understandable.

The explanation of deep models for computer vision appli-
cations is usually given in terms of interpretable visualizations
of the relevance of pixels from input images (i.e., pixel
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relevance maps). Currently, the reliability of these explanations
is largely assessed by visual inspection, and thus it is likely
to be the case that existing explanation methods are being
evaluated based purely on human expectation rather than on
actual feature importance [12]. As deep neural networks have
special behaviors [13] and can be easily confused [14]–[16],
intuitive visualizations can be misleading and different from
the real importance given to features in a trained network.

An objective measure from which the quality of model
explanations can be systematically assessed is largely lacking.
In this paper we propose an approach for comparing the
reliability of explanations. Our approach calculates a reliability
measure based on changes in the model outcome resulting
from adversarial perturbations of input images. Our specific
contributions are summarized as follows:

• We introduce Adversarial Perturbation Explanation Mea-
sure (APEM), which evaluates pixel relevance maps by
assuming model decisions must depend on its explanation
[17], [18]. Therefore, the most relevant features in the
input image are the ones that influence the most the output
of the model. To calculate APEM, we probe the model
outcome by perturbing the input image based on a rele-
vance map, multiplied by the sign of the gradient, trying
to maximize the error with minimal input modification.

• We compare a variety of state-of-the-art methods used
for assessing feature importance in a controlled and
standardized setting. We show how common practices in
these explanation methods abdicate important information
impacting models decisions in order to make visualiza-
tions more comprehensible and visually meaningful.

• We show that it is also important to consider the low
scores of relevance in order to avoid privileging ex-
planation methods whose maps are restricted to a few
concentrated high values. Thus, we use irrelevance maps
together with relevance ones, and we show that this
balances the ‘precision’ and ‘recall’ of the resulting maps.

• We present a new approach based on the proposed
measure to clean relevance maps, making them more
intuitive and understandable while keeping explanations
reliable. This results in images with minimum noise while
ensuring that no important explanation is lost.
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II. BACKGROUND AND RELATED WORK

In this section we give an overview of methods focused on
explaining deep network outcomes. Then, we present studies
reporting how visualizations can be unreliable in some cases.
Finally, we also discuss approaches for evaluating the quality
of relevance maps generated by existing explanation methods.

A. Explaining Deep Neural Network Decisions

The large number of layers employed by deep models com-
bined with their non-linearities makes it difficult to identify
what is being considered in each decision. Some works attempt
to understand individual neurons in deep neural networks
by creating visualizations from higher level features in Au-
toencoders [19], [20] and Deep Belief Networks [19]. These
studies show how models can find patterns that are similar to
what humans consider relevant in the domains analyzed.

Understanding what is important to the performance of deep
models is essential to find situations in which they fail and to
improve them. Authors in [21] created a visualization for each
input image, which shows the patterns in the input that resulted
in a specific activation on further layers. Other techniques
tackle this problem by inverting the input images represen-
tations and analyzing their remaining information [22], [23].

Authors in [24] presented a gradient-based approach to
interpret decisions of Convolutional Neural Networks (CNNs).
They proposed saliency maps that are computed using the
gradient of each class’ score. This method generates visually
noisy relevance maps, though. Smooth Grad [25] builds on
their work and tackles the issue with noisy images. In order
to do so, the authors created n noisy copies from each input
image and average the relevance maps calculated for them.
Other works also use the gradient in different ways to achieve
contrasting visualization results [26]–[28]. LIME [6], on the
other hand, explains predictions by learning an interpretable
model locally around the input image.

A distinct group of model explanation techniques calculates
relevance scores for pixels by applying a “backpropagation”
method. It computes the relevance from the output back to the
input image, assuring a layer-wise conservation property [17],
[29]. Consequently, neurons that contribute more to the ones
in the following layers have higher scores. Authors in [30]
extended this method to Fisher Vectors, showing how distinct
models may consider certain regions of images as relevant or
not. In addition, their conclusions shed doubts on the reliability
of model decisions which can be biased by context.

B. Reliability of Visualizations

Deep neural networks are complex systems which are not
fully understood yet [14], [16], [31]. Authors in [31] and [16]
investigated the counter-intuitive property called Adversarial
Examples, which is further explored in this work. They showed
that deep models decisions can be fragile, being susceptible to
directed perturbations that are imperceptible to humans. The
nonlinear nature of neural networks is presented as the main
cause of such vulnerability.

Authors in [14] further analysed this subject, questioning
the differences between patterns considered by humans and
models. They create noisy images which received extremely
high confidence model decisions. In this work, we build on
their line of questions and ask if state-of-the-art explanation
methods capture the actual importance of input features to
a specific model, or if they trade this off for patterns that
are more intuitive to humans. Authors in [12] addressed this
question and presented two tests to evaluate the reliability of
explanation methods:
• Model Parameter Randomization Test: Compares the

explanation maps of a trained model with the ones of
a randomly initialized untrained network of the same
architecture. If the results of the two cases do not differ
significantly, it means that the explanation maps are
insensitive to the parameters of the model.

• Data Randomization Test: Compares the explanation
maps of a model trained on a labeled dataset with the
ones of a model with the same architecture but trained
on a copy of the dataset in which the labels were ran-
domly permuted. If the results do not differ significantly,
the explanation maps are insensitive to the relationship
between the input images and the original labels.

They evaluated widely used explanation methods, and con-
cluded that visual inspection is a poor way of evaluating ex-
planation results. These results imply the need for techniques
which compare methods in a more objective manner, based on
proper estimates of feature importance.

C. Evaluation of Explanation Methods
As stated above, comparisons between explanation methods

of deep networks are commonly qualitative. They usually
compare examples of relevance maps, preferring the ones
more correlated to human expectation. In this sense, we
consider the work in [18] as the closest to ours. The authors
provided a quantitative measure that evaluates how the relevant
areas affect the correct prediction of a given model. While
they consider block regions of relevance and apply random
changes to it, we use small guided perturbations in the whole
input image. We evaluate the magnitude necessary for these
perturbations to make the model change its output, considering
that better relevance maps should require smaller magnitudes.

Other relevant work is [32], in which the authors discussed
the desirable properties of explanations and possible evaluation
metrics, which they defined as follows:
• Explanation Continuity: Ensures that if two inputs are

nearly equivalent, then the explanations of their predic-
tions should also be nearly equivalent.

• Explanation Selectivity: More relevant features should
have stronger impacts on the classification. Thus, if
features are attributed relevance, removing them should
reduce evidence of the output.

Finally, authors in [17], [18] created concepts based on the
quantification of this second property, measuring how fast an
evaluated function starts to decrease when removing features
with the highest relevance scores.



III. APEM: COMPARING VISUAL EXPLANATIONS WITH
ADVERSARIAL PERTURBATIONS

We tackle the quantitative evaluation of explanations by per-
forming guided perturbations to the original images. Typical
explanation methods generate one relevance value for each
pixel, resulting in images with the same dimensions of the
input image, but in which values represent feature relevance
R = [[ri,j |0 ≤ ri,j ≤ 1]]. Thus, higher ri,j values imply those
pixels have higher influence in the model decision.

A. Assessing Reliability by Comparing Relevances

Once a model is trained, the relevance maps can be calcu-
lated for a set of input images based on the model parameters.
Our aim is to produce scores that can be ranked to compare
possible explanations for a given model, giving higher values
to features that impact more the model decision.1

We assume that changes in pixels associated with higher
relevance values should impact the output more. In contrast,
changing the irrelevant pixels should result in smaller impacts
on the model outcome [18]. These perturbations are hardly no-
ticeable and follow the directions of larger impact to the model
decision, i.e. the models’ gradients [16]. We first normalize
relevance values in R by its l1-norm: Rnorm = R/norm(R) so
that explanation methods with different relevance scales could
be directly compared. Then, we create a directed relevance
Rdir as show in Equation 1. Specifically, for a model with
parameters θ, an input image x and model output ŷ = fθ(x)
associated with x, we use the sign of the gradients from the
loss function J(θ, x, ŷ) to direct the relevances:

Rdir = Rnorm � sign(∇xJ(θ, x, ŷ)) (1)

Further, the Rdir which correctly represents the model
relevance would need a minimum perturbation to maximize
the deviation from the model decision, as it is equivalent to
one gradient ascent step in the pixel space. Therefore, there
is a minimum ε− value which makes the model change its
prediction for the perturbed image x′ created from x:

x′ = x+Rdir × ε−

Similarly, we argue that the values of irrelevance can anal-
ogously be extracted from R by making RI = 1−R.
Moreover, the best RIdir calculated from RI should take longer
to change model decisions, as perturbations in irrelevant pixels
should not cause significant changes in the output. This results
in an ε+ value and, consequently, a gap between it and ε−.
APEM is finally given as the average of all the gaps for a set
of n images, as expressed in Equation 2. The entire process
of computing APEM is depicted in Figure 1.

APEM =

n∑
i=1

(ε+i − ε
−
i )

n
(2)

1APEM, however, does not produce results in the same scale for different
models, so it cannot be straightforwardly used to compare explanations for
different models with diverse capacities. Our objective is, thus, to compare
different explanation methods given a fixed model.

Fig. 1: Calculating APEM for an arbitrary input image. The
transitions are enumerated sequentially from the first step to
the last, and the ε values are stored and modified throughout
the process. The diagram shows the relevance and irrelevance
maps for an input image, and the gradient was used to create
relevance and irrelevance images. The final steps consist of
perturbing the original image by using the maps until the
model changes its output.

B. An Algorithm to Make Relevance Interpretable

Since the reliability of a relevance map can now be mea-
sured, we may use APEM to assess if the quality of expla-
nations was reduced when an explanation method simplifies
relevance maps to make them more interpretable. We argue
that a good simplification is one which does not reduce the
APEM value of the original map. As discussed, pixels which
are less relevant to the model decision have smaller values
in the corresponding relevance map. When their relevance
values are zeroed, their irrelevances are consequently set to
1 and APEM can be calculated to the new map. If the APEM
value remains unchanged, the pixels are considered to have no
influence in the prediction and can be safely excluded from the
explanation. This makes explanations more understandable,
while keeping the same reliability levels.

We propose here, thus, a simple algorithm to filter relevance
maps, removing the noise in it so humans can more easily
interpret them. Basically, it zeroes the least relevant non-zero
values in a relevance map iteratively, until any change in the
relevance map causes a reduction in the APEM value. This
algorithm can be applied to any explanation map calculated
for an image and a trained model. While other methods have
to deal with the trade-off of losing information to make
explanations and visualizations more interpretable, the one
presented here works as a way to enhance interpretation while
not reducing explainability. Therefore, we have reliable visual-
izations and explanations which are also easier to understand.

IV. EXPERIMENTS

In this section we report results from the comparison of
different explanation methods using APEM. We also show
how more interpretable visualizations may affect the actual
explanation and how we can effectively tackle this problem,



creating meaningful visualizations while keeping the same
APEM values.

A. Model, Data and Explanation Methods

Our model is a VGG-16 [33] trained on the ILSVRC2012
dataset [34] using PyTorch [35]. We used two sets of 5,000
random images each – one of correctly classified and another
of misclassified images. These were taken from the validation
set and used to create the relevances for each explanation
method to be evaluated. We compare six explanation methods:
• “Pure” gradients: the gradients are simply interpreted

as a relevance map.
• Smooth Grad [25]: it smooths the gradient, by applying

a Gaussian kernel, instead of the raw gradient. This
results in a sensitivity map M . Then, it averages the
sensitivity maps using random samples obtained from the
neighborhood of an input image x, formulated as:

M̂(x) =
1

n

n∑
1

M(x+N (0, σ2))

where n is the number of samples used, and N (0, σ2)
the Gaussian perturbation with standard deviation σ.

• Layer-wise Relevance Propagation (LRP) [29]: it com-
putes the relevance of the pixels of an input image by
considering their impact on the output of the model.
LRP uses a graph structure to redistribute the relevance
value at the output of the network back to the pixels.
The relevance is propagated until it reaches the input,
generating the pixel scores.

• Guided Backpropagation [26]: it corresponds to the
gradient method in which negative gradient entries are
set to zero while backpropagating through a ReLU unit.

• Grad-CAM [27]: it computes the relevance map as the
gradient of the class score with respect to the feature map
of the last convolutional unit of the network.

• Guided Grad-CAM [27]: Grad-CAM combined with
Guided Backpropagation through an element-wise prod-
uct for pixel-level granularity.

For each of the aforementioned explanation methods, we get
relevance values R and clamp them to an upper-bound using
its ninety-ninth percentile (r′i,j = min(ri,j , R99)). Then, we
multiply the new relevance values by their respective original
image pixel values (R′′ = R′�I , where � is the element-wise
product). This results in a cleaner visualization as proposed in
[25]. As we are using RGB images, we reduce the number
of channels in our relevance maps by summing them and
normalizing it to the range [0, 1].2

B. APEM Results

We start our analysis by showing a comparison between
the different explanation methods using APEM values. Hyper-

2Though we present main results for all explanation methods described
here, we will mostly focus on the Gradient, Smooth Grad and LRP methods
throughout this work. We selected these three methods because of their
different approaches and outcomes.

Fig. 2: Examples of visualizations of relevance maps obtained
by different explanation methods. Each row corresponds to an
input image and each column shows a visualization: original
image, and then the maps obtained with Gradient, SmoothGrad
and LRP methods, respectively.

Fig. 3: Boxplots showing APEM values for each explanation
method in the same set of images. They represent the Gradient,
Smooth Grad, LRP, Grad-CAM, Guided Backpropagation and
Guided Grad-CAM from left to right.

parameters used in Smooth Grad were n = 100 and σ = 0.2,
and for LRP we used its ε-variant with ε = 1.

Examples of the final maps are shown in Figure 2, for
the Gradient, Smooth Grad and LRP methods. Although the
relevance maps seem similar and easily interpretable, there are
some particularities that are worth mentioning. In particular,
while all visualizations present higher values in close regions,
each visualization focuses in different parts of a same region.
Figure 3 shows APEM boxplots for each explanation method
when considering all 5,000 images. Higher APEM values
mean better results, and clearly, the distribution of APEM
values differs greatly depending on the explanation method.
This indicates that while visualizations seem similar, they
might not express the actual feature importance.

In order to assess the stability of the APEM values for each
method across different network architectures, Table I presents



TABLE I: Median of the APEM values calculated for each
explanation method for VGG and ResNet models. The rele-
vance maps based on the Gradient result in the best scores.
Implementing LRP on ResNet is not trivial, so we did not
calculate the APEM score for this model.

VGG ResNet

Gradient 81.00 62.00
Smooth Grad 16.00 15.00
LRP 41.00 –
Guided Bp 43.00 28.00
Grad-CAM 20.00 21.00
Guided Grad-CAM 31.00 19.00

Fig. 4: Pairwise comparison between explanation methods. It
shows the fraction of the total number of images in which
one explanation method has a better/equal/worse APEM per-
formance.

the median of the results seen in the boxplots compared to
a ResNet [36] evaluated in the same conditions. We noticed
the ranking of most explanation methods maintains the same
order. The only exception is Grad-CAM and its guided variant,
which show very similar results when evaluated on ResNet.

These results can be extended to a pairwise comparison, as
shown in Figure 4. We counted the number of input images
for which one explanation method beats the other in terms of
APEM performance. Both Figures 3 and 4 show LRP achieves
a better APEM performance than SmoothGrad, but it also
presents a higher standard deviation. This indicates that LRP is
usually better than SmoothGrad, but it presents worse results
for a few input images.

C. Interpretable Visualizations vs. Actual Explanations

In this section we extend our discussion about the trade-off
between a relevance map being interpretable and the actual
importance that features within the relevance map have to
model decisions. We address this problem by presenting the
raw relevance values of a correct prediction and standard
filtering steps that simplify the visualization until it becomes
more comprehensible. First, relevance values are summed in
the channel dimension so it becomes a relevance map. Then,
they are multiplied by the grayscale image, so that it better
fits the shapes in the original image, as proposed in [25].

Fig. 5: Example of the relevance maps while filtering and
simplifying visualizations. Lines correspond to the explanation
method being used, which are the Gradient, SmoothGrad and
LRP methods, from top to bottom. The filtering steps are
presented in each column: (left) relevance in three channels,
(middle) mapping into a single channel, and (right) relevance
map multiplied by the original image.

TABLE II: APEM values calculated after each of the three
simplification steps. APEM performance decreases as the
simplification process proceeds.

Average Median

1 2 3 1 2 3

Gradient 231.76 176.86 127.79 137 105 81
Smooth Grad 93.40 74.61 44.38 41 28 16
LRP 101.65 93.93 66.07 59 51 41
Guided Bp 118.65 103.09 78.07 63 53 43
Grad-CAM 100.86 100.86 42.25 41 41 20
Guided Grad-CAM 83.00 69.95 37.79 51 42 31

Figure 5 shows examples of relevance maps obtained at each
stage for the three explanation methods. Each method behaves
differently – some present great changes after each step, and
for others only minimal changes are observed.

These filtering steps are likely to discard information that
is important to the model. Indeed, APEM values decrease as
filtering proceeds. Thus, we evaluate the loss of information
that is lost during the filtering steps by using the average
and median APEM values. Results are shown in Table II,
and they follow the same trend that was observed in Figure
5: explanation methods that drastically change the relevance
map during the filtering steps also present the greatest APEM
losses, while methods that only produce minimal change are
associated with the smaller APEM reductions.

Therefore, the application of these simplifications should
be used considering the decrease in APEM performance
compared to the amount of visual comprehension that they
bring. Explanations which look more noisy might be harder
for an user to analyze than centered clouds of interpretable
information, even if cleaning the image means a loss in



Fig. 6: Examples of the final images obtained with our
filtering algorithm. The figure presents input images (top),
their relevance maps based on the Gradient method before
(middle) and after (bottom) the filtering process.

explanation. These factors should be weighted when applying
explanation methods to practical applications.

D. Filtering Explanations

Next we expand the use of APEM to filter relevance maps
so that they become more interpretable without any loss of
essential information for the model, as we discussed in Section
III-B. Specifically, our objective is to make the visualization
of relevance maps more interpretable as long as APEM values
do not drop. In this case, the relevance maps are made more
understandable, while still reliable – in the sense that they
comprise the features that actually impact model decision.

Figure 6 shows examples of relevance maps computed for
the images and their last configurations before there is a
drop in their APEM values. Interestingly, as the filtering steps
proceed, regions outside the main object in the image were
mostly erased from the relevance map. This means that the
small relevance values attributed to the image’s context were
not actually relevant. For instance, the grass, stones and water
present in the examples were given relevance values but they
could be removed, leaving only the main objects in the images.

Our filtering algorithm can also be used within other expla-
nation methods, as shown in Figure 7. Each map focuses on
slightly distinct parts of the boat because of the characteristics
of the explanation method, but all of them removed the
relevance that was attributed to the sea, showing that this
context was not considered relevant. Finally, the outcome
of the filtering algorithm seems easier to interpret than the
original noisy maps.

V. FURTHER ANALYSIS

In this section we discuss interesting properties of APEM
that could benefit future applications.

Fig. 7: Filtering algorithm applied to an image’s relevance
map. The rows correspond to the Gradient, SmoothGrad and
LRP methods and the columns are, from left to right: (1) the
relevance maps; (2) its filtered image; (3) the map multiplied
by the original image; (4) its filtered image.
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Fig. 8: Histogram and kernel density estimate of the difference
between ε+ of LRP and SmoothGrad methods. Positive values
are observed when ε+ for LRP is higher than for SmoothGrad.

A. The Importance of Irrelevance Maps

As discussed previously, the inverse of relevance is also
taken into account while calculating APEM. This is important
because it prevents the explanation methods from focusing
on a few relevant pixels, while not giving importance to
others that may be also relevant. In this sense, considering
irrelevance gives the metric a recall-like property. In order to
investigate the importance of also considering ε+ (irrelevance)
when calculating APEM, we compared LRP with SmoothGrad
while only considering irrelevance values. Figure 8 shows the
histogram and the kernel density estimate of the difference
between ε+ values from LRP and SmoothGrad. Although LRP
presents higher APEM values than SmoothGrad, we observed
that LRP produces relevance maps that are often more focused
than those produced by SmoothGrad. LRP is, then, penalized
for this and has lower ε+ values than SmoothGrad on average
– a lower ε+ results in a reduction in its APEM value.



Fig. 9: Example of an instance where the Gradient explanation
results in worse APEM results than both LRP and Smooth-
Grad. Images represent: (top-left) original image, (top-right)
Gradient, (bottom-left) SmoothGrad and (bottom-right) LRP.

B. Single Instance Comparison

We analyze an (outlier) instance where the Gradient results
in negative APEM values, which means its resulting irrele-
vance would be a better predictor of labeling choice than the
relevance itself. For this specific image, shown in Figure 9,
both LRP and SmoothGrad have better APEM values than
the Gradient. In this instance, we can see that the Gradient
focuses on the parachute strings and the clouds. Even though
the gradient might be locally strong in that region, it is not
a good predictor of class change, and, thus, not particularly
relevant as an explanation of the model’s labeling choice. At
the same time, both LRP and SmoothGrad focus on the person
and the parachute themselves, resulting in better APEM values.

C. Misclassified Images

So far our analysis only considered a set of 5,000 correctly
classified images. In order to properly explain and debug a
model, we also have to understand how APEM behaves with
misclassified images. Thus, we performed the same evaluation
process on a set of 5,000 misclassified images. In this case,
the labels we used to create relevance maps were the ones
predicted by the model.

As (hopefully) expected, the model is more uncertain about
a decision when it predicts a wrong label. Then, it is expected
that the model does not need many perturbations to make
it change a prediction, which results in lower ε values. This
leads to lower APEM values. On the other hand, this should
not influence the quality of the explanation, disregarding
the understanding of the generated relevance map. To put it

TABLE III: Average and Median APEM values for cor-
rectly classified and misclassified images. Relevance maps
are calculated considering the prediction as the ground truth.
Misclassification leads to an overall APEM decrease.

Loss Median

Correct Misclassified Correct Misclassified

Gradient 127.79 43.58 81 25
Smooth Grad 44.38 12.65 16 4
LRP 66.07 20.34 41 11

simple, the overall APEM values are decreased but the best
explanation methods should to keep their ranking positions.

Table III shows average and median APEM values, compar-
ing them with the ones obtained with the correctly classified
images. The APEM decrease is clear, but the relative ordering
of the explanation methods remains the same.

D. Correlation between APEM and Loss

The last set of experiments is devoted to investigate the
possible correlation between APEM and loss. For this, we
used the correctly classified images, misclassified images, and
the total set of images. Again, the relevance map calculated for
the misclassified images is based on the model prediction even
though the loss uses the ground truth. The greatest probability
for a label in the prediction is referred to as confidence, and
it is also compared with the loss.

We compute the correlation using the Spearman’s rank
correlation coefficient [37] because of the non-linear rela-
tionships present in the data. This correlation is equal to the
Pearson correlation between the rank values of the variables.
A correlation close to +1 occurs when the observations have a
similar rank between the variables, and it is close to −1 when
they have a dissimilar one.

Table IV shows the correlations and the statistical signifi-
cance. Our analysis indicates that correctly classified images
have higher correlations while the misclassified images have
virtually none. Also, observations have a dissimilar rank
between APEM and loss, resulting in a negative correlation.
Further, the methods that achieve higher APEM values also
are the ones with higher correlation. In summary, the best ex-
planation methods in terms of APEM have a higher correlation
with the loss. Finally, high APEM values mean lower losses.
Therefore, good explanations given by high APEM values may
be used to assess the reliability of the model output.

VI. CONCLUSIONS

In this work, we proposed the Adversarial Perturbation
Explanation Measure (APEM), a robust measure which evalu-
ates the reliability of explanation methods. APEM enables us
to compare explanation methods quantitatively, thus avoiding
visual inspection. Moreover, it considers every relevance value
for an input image to create perturbations and the irrelevance
map to guarantee that no relevant pixel is left out. We present
a comparison of some well-known explanation methods us-
ing our proposed measure. Along with it, we also present



TABLE IV: Spearman correlation between APEM values for
each explanation method and the loss of the evaluated model
(† represents statistical significance with ρ < 0.01). The
correlation of the confidence of the most probable label and
the loss is also presented for comparison.

Loss

Correct Misclassified Full

Gradient -0.827† 0.069† -0.543†

Smooth Grad -0.470† -0.025 -0.349†

LRP -0.602† 0.001 -0.446†

Confidence -1.000† -0.121† -0.697†

some characteristics of the methods and how APEM behaves.
Furthermore, we showed some properties which especially
make APEM robust. First, we showed the importance of
using irrelevance as the result varies if the relevance map
is completely precise but it is omitting other relevant pixels.
Then, we analyzed the responses to misclassified images,
showing that APEM drastically falls when the model is not
able to correctly predict an instance. Finally, we correlated
APEM results to the output of the model in different situations.

We also studied simplifications that aim to improve visu-
alization of relevance maps. We showed the effect of these
simplifications on the reliability of the resulting images, and
a simple algorithm that works around this problem. The
algorithm is one of the applications in which APEM can be
used as a tool to filter the relevance maps into more inter-
pretable images, while all the essential information is kept. The
proposed algorithm can be used within an explanation method
to create less noisy images and to facilitate its understanding.
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