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Abstract—A deep convolutional neural network (CNN) has
been widely used in image classification and gives better clas-
sification accuracy than the other techniques. The softmax
cross-entropy loss function is often used for classification tasks.
There are some works to introduce the additional terms in
the objective function for training to make the features of the
output layer more discriminative. The neuron-wise discriminant
criterion makes the input feature of each neuron in the output
layer discriminative by introducing the discriminant criterion to
each of the features. Similarly, the center loss was introduced
to the features before the softmax activation function for face
recognition to make the deep features discriminative. The ReLU
function is often used for the network as an active function
in the hidden layers of the CNN. However, it is observed that
the deep features trained by using the ReLU function are not
discriminative enough and show elongated shapes. In this paper,
we propose to use the neuron-wise discriminant criterion at the
output layer and the center-loss at the hidden layer. Also, we
introduce the online computation of the means of each class
with the exponential forgetting. We named them adaptive neuron-
wise discriminant criterion and adaptive center loss, respectively.
The effectiveness of the integration of the adaptive neuron-wise
discriminant criterion and the adaptive center loss is shown
by the experiments with MNSIT, FashionMNIST, CIFAR10,
CIFAR100, and STL10.

Index Terms—Convolutional neural network, discriminative
feature, center loss, adaptive center loss, neuron-wise neuron-
wise discriminant criterion, adaptive neuron-wise neuron-wise
discriminant criterion

I. INTRODUCTION

Deep convolutional neural network (CNN) have achieved
great success for classification problems to improve the state
of the art such as object detection and classification [1]–[5],
scene recognition [6], [7], action recognition [8]–[10] and so
on. Usually, the features are extracted by several layers with
the convolution filters, and they are used for classification at
the output layer.

In the last layer of the network, the softmax function is
frequently used for classification tasks because the output of
the softmax function can be considered as an approximation of
the posterior probability of each class and the decision based
on the maximum posterior probability gives the best classifica-

tion performance in terms of the smallest classification errors
from Bayesian decision theory. Usually, the softmax cross-
entropy loss is used as the loss function for the training of
the parameters in the deep neural network. This is equivalent
to maximize the likelihood of the estimation of the posterior
probabilities for the training samples.

For recognition or classification tasks, the features extracted
by the trained CNN need to be not only separable but also dis-
criminative. Several loss functions have been introduced such
as [11]–[15] and so on to make the features discriminative.

Each neuron in the final layer of the CNN with softmax
activation function can be thought of as classifying between
the class in charge of that neuron and the other classes. If we
consider the role of each neuron to be two-class classification,
the neuron is estimating the posterior probability of that class
by using a logistic function. Since the logistic function is
obtained as the posterior probability for the case where the
probability density functions of two classes are Gaussian
with the same variance, it is expected that the probability
distributions of the input of the neuron for both the class
in charge of that neuron and the other classes become close
to the Gaussian distribution. As pointed out in our previous
work [11], we can confirm that this phenomenon from the
histograms in [11]. Ide et al. [11] proposed to use the neuron-
wise discriminant criterion to make these distributions are
more separable by using the neuron-wise discriminant criterion
for the input of each neuron in the output layer.

Similarly, the center loss [12] is introduced to the features
before the softmax function in the output layer. This loss is
defined by using the distance between the feature vectors and
the mean vector of each class. The minimization of the center
loss makes the variances of the feature vectors within each
class a minimum. It is expected that this loss can make the
features more discriminative.

Several nonlinear activation functions are introduced at each
neuron in the hidden layers or the final output layer of the
deep neural network to make the mapping realized by the
trained network nonlinear. There are many activation functions
such as binary step function, sigmoid function, ReLU function
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[16], softmax function, and so on. In the 1990s, the sigmoid
function had been frequently used as an activation function
at the neurons in the hidden layers of the neural network.
The gradients for the loss function decrease exponentially with
the number of layers in gradient-based learning algorithms,
such as error-backpropagation, which is known as a gradient
vanishing problem. For deep neural networks, this problem
becomes more crucial because the update of the weights at
the front layers in the network becomes very slow. To prevent
the gradient vanishing problem, ReLU function [16] has been
often used as the activation function at the neurons in the
hidden layers of the deep neural networks. But as the side
effect of this merit, the output values of the neuron becomes
unbounded and may have large values. It is observed that the
input features before the ReLU function in the hidden layers
have elongated shapes as shown in Fig. 3 (a).

In this paper, we propose to use the neuron-wise discrim-
inant criterion at each neuron of the output layer. Also, we
introduce the center loss at the input features of the ReLU
function in the hidden layer to prevent the elongated shapes
of the hidden features. Since the neuron-wise discriminant
criterion and the center loss work at different locations in the
network, it is expected that this combination of two criteria
can accelerate and improve the classification accuracy.

Moreover, we introduce the online computation of statistics
of the learned features by using the exponential forgetting as
the weights of the past samples. The exponential forgetting
makes the weights for past samples smaller with a single
parameter for a forgetting factor. By this online computation,
it is possible to efficiently estimate the mean values of two
classes for the inputs of each neuron in the outputs layer and
the mean feature vectors of each class at the input features
of the ReLU function in the hidden layer. We call each of
them the adaptive neuron-wise discriminant criterion and the
adaptive center loss, respectively.

The effectiveness of the adaptive neuron-wise discriminant
criterion and the adaptive center loss is confirmed by the
experiments with FashionMNIST, CIFAR10, CIFAR100, and
STL10.

II. RELATED WORKS

A. Convolutional Neural Networks (CNN)

Deep convolutional neural networks (CNN) have achieved
great success in image classification problems. CNN consists
of several convolution layers and fully-connected layers. The
computation in the convolution layer is the filtering with the
trainable weights. The fully-connected layers integrate the
features extracted by the convolution layers for classification.
Usually nonlinear activation function is introduced at each
neuron in the hidden layers.

In the deep neural networks, it is known that the gradients
of the loss function exponentially decrease with the number
of layers. This phenomenon is known as a gradient vanishing
problem and is troublesome for the gradient-based learning
algorithm, such as the error backpropagation. To prevent the
gradient vanishing problem in the deep neural networks, ReLU

function has been frequently used as the standard activation
function of the neurons in the hidden layers. The ReLU
function φ(η) is defined by

φ(η) = max(0, η), (1)

where η denotes the input of the ReLU function.
The softmax function is often used at the output layer for

classification and the softmax cross-entropy loss has been
widely used as the objective function for training the param-
eters of the network.

Let {(Ii, ti)|i = 1 . . . N} be a set of training samples, where
Ii is the i-th image and ti is the class label vector of the
i-th image Ii. We assume that the class label vector ti =[
ti1 ti2 · · · tiK

]T
is represented as one hot vector. Then

the output of the k-th neurons in the output layer is defined
by using softmax function as

yik =
exp(zik)∑K
j=1 exp(zij)

, (2)

where zi =
[
zi1 zi2 · · · ziK

]T ∈ RK and the k-th
element of the vector zi, namely zik = zk(Ii) ∈ R, denotes
the input of k-th neuron at the output layer for the input image
Ii.

The softmax cross-entropy loss for the training samples
{(Ii, ti)|i = 1 . . . N} is defined as

LS = −
N∑
i=1

K∑
k=1

tik log yik, (3)

where K, and N are the number of classes, and the number
of training samples.

B. Neuron-wise Discriminant Criterion

We can observe that probability distributions for each class
of the input of the neuron at the output layer become close
to the Gaussian distribution. Since we can consider that the
neurons of the output layer is doing the binary classifica-
tion between the target class and the other classes, we can
accelerate the discrimination by introducing the neuron-wise
discriminant criterion for this binary classification [11].

The neuron-wise discriminant criterion is a measure of
discrimination between the distributions of each class and is
defined as

LD =

K∑
k=1

σ2
Wk

σ2
Tk

, (4)

where

σ2
Wk

=
1

N

N∑
i

{tik(zik − µk)2 + (1− tik)(zik − µ̂k)2} (5)

σ2
Tk

=
1

N

N∑
i

(zik − µTk)2. (6)

The means of the target class and the non-target class of the
inputs of k-th neuron are denoted by µk and µ̂k respectively.



The total mean of the inputs of the k-th neuron is denoted
as µTk. Similarly the number of samples of the k-th class is
denoted as Nk =

∑N
i tik. Then the number of samples of the

non-traget class is given by N̂k =
∑N

i (1 − tik) = 1 − Nk.
Then the means are given as

µk =
1

Nk

N∑
i

tikzik, µ̂k =
1

N̂k

N∑
i

(1− tik)zik, (7)

µTk =
1

N

N∑
i

zik. (8)

The objective function for training the parameters of the
network is defined by combining the softmax cross-entropy
loss and the neuron-wise discriminant criterion as

L = LS + λLD (9)

where λ is a hyper parameter to balance the softmax cross-
entropy loss and the neuron-wise discriminant criterion.

The neuron-wise discriminant criterion can accelerate dis-
crimination between two classes, but it is necessary to keep all
the input values of each neuron to calculate the discriminant
criterion. In this paper, we apply online computation with
the exponential forgetting to compute the statistics such as
σWk

and σTk
. We call this method the adaptive neuron-wise

discriminant criterion, and the details are explained in the next
section.

C. Center Loss at Output Layer

It is known that trained CNN with the softmax cross-entropy
loss and the ReLU function leads to better accuracy for image
classification and the other classification tasks. The center loss
[12] was introduced to improve the recognition accuracy for
the face recognition tasks further at the output layer similar to
the neuron-wise discriminant criterion.

The center loss minimizes the distance between the ex-
tracted feature vectors and the mean vector of each class and
is defined as

LC =
1

N

N∑
i=1

||zi − ck||22, (10)

where zi is the feature vector for the i-th training image Ii at
the output layer, and ck denotes the mean vector of the feature
vectors for k-th class.

The authors proposed the method to update the mean vector
using the samples in the mini-batch. Let B be a set of indexes
of the samples in the mini-batch. Then the update rule of the
mean vector ck of the k-the class is defined as

ck ← ck − β∆ck, (11)

where β ∈ [0, 1] is a hyper parameter and

∆ck =

∑
i∈B

tik(ck − zi)

1 +
∑
i∈B

tik
. (12)

Fig. 1. This figure shows the locations of the features of the neuron-wise
discriminant criterion and the center loss at the hidden layer on CNN. In this
figure, Conv+R+P denotes several convolution layers with ReLU activation
function and pooling. R, P, and FC denote a layer of neurons with the ReLU
activation function, a pooling layer, and a fully connected layer. Center and
NWD denote the center loss and the neuron-wise discriminant criterion.

The objective function for training is defined by the com-
bination of the standard softmax cross-entropy loss and the
center loss as

L = LS + λLC , (13)

where λ is a hyper parameter to balance the softmax cross-
entropy loss and the center loss.

The center loss can make the feature vectors at the output
layer more discriminative. In this paper, we apply the center
loss at a hidden layer instead of the output layer. Also, we
introduce online computation with the exponential forgetting
to compute the mean vectors of each class. We call this method
the adaptive center loss, and the details are explained in the
next section.

III. ADAPTIVE NEURON-WISE DISCRIMINANT CRITERION
AND ADAPTIVE CENTER LOSS

A. Basic Idea

Fig. 3 (a) shows the 2-dimensional extracted features before
the ReLU function of the hidden layer. We can observe the
elongated shapes of the clusters of each class. It is expected
that this phenomenon can be reduced by introducing the center
loss at the hidden layer. Thus, we proposed to use the center
loss at the hidden layer instead of the output layer and to
combine it with the neuron-wise discriminant criterion at the
output layer. The locations of the center loss and the neuron-
wise discriminant criteria on CNN are shown in Fig. 1.

Also, we introduce the online computation of the means
and the variances with the exponential forgetting to calculate
the neuron-wise discriminant criterion and the center loss. We
named them the adaptive neuron-wise discriminant criterion
and the adaptive center loss, respectively. The adaptive neuron-
wise discriminant criterion can make the input features of the
neurons at the output layer discriminative. The adaptive center
loss can also make the extracted feature vectors before the
ReLU function at the hidden layer compact and discriminative.

Thus the objective function for the training of the proposed
method is defined as

L = LS + λ1LAD + λ2LAC , (14)



where λ1, and λ2 are the hyper parameters to balance the
softmax cross-entropy loss LS , the adaptive neuron-wise dis-
criminant criterion LAD, and the adaptive center loss LAC ,
respectively.

B. Adaptive Neuron-wise Discriminant Criterion

In the neuron-wise discriminant criterion, we have to keep
all the features to calculate the within-class variance shown
in Eq. (5) and the between-class variance shown in Eq.
(6). In the proposed method, they are calculated by using
online computation with the exponential forgetting weights.
The exponential weight is defined as

w(s) = αs (0 < α < 1). (15)

The weight w(s) becomes smaller when s becomes the bigger.
Then the total mean of the features {zik|i = 1, . . . , n} of the
k-th neuron is defined by using the forgetting weights as

µ
(n)
Tk =

1∑n
i=1 α

n−i

n∑
i=1

αn−izik

= αµ
(n−1)
Tk + (1− α)znk, (16)

where n and α ∈ (0, 1) are the number of samples, and the
hyper parameter to define the forgetting rate, respectively. The
last equation gives the update rule of the online computation.
By this online computation, we can compute the total mean for
n samples µ(n)

Tk from the total mean of n− 1 samples µ(n−1)
Tk

and the n-th sample znk.
Similar with the total mean shown in Eq. (16), we can derive

the update rules of online computation for the mean of the
target class and the non-target classes of the inputs of k-th
neuron as

µ
(n)
k =

1∑n
i=1 tikα

n−i

n∑
i=1

tikα
n−izik

= αµ
(n−1)
k + (1− α)tnkznk, (17)

µ̂
(n)
k =

1∑n
i=1(1− tik)αn−i

n∑
i=1

(1− tik)αn−izik

= αµ̂
(n−1)
k + (1− α)(1− tnk)znk. (18)

The details of the derivations are shown in Appendix.
Similarly we can derive the update rules of online computa-

tion for the within-class and the total variances with forgetting
weights as

σ
(n)2
Wk

=
1∑n

i α
n−i

n∑
i

αn−i{tik(zik − µ(n)
k )2

+ (1− tik)(zik − µ̂(n)
k )2}

= ασ
(n−1)2
Wk

+ α(1− α){tnk(znk − µ(n−1)
k )2

+ (1− tnk)(znk − µ̂(n−1)
k )2}, (19)

σ
(n)2
Tk

=
1∑n

i α
n−i

n∑
i

αn−i(zik − µ(n)
Tk )2

= ασ
(n−1)2
Tk

+ α(1− α)(znk − µ(n−1)
Tk )2. (20)

The details of the derivations are also shown in Appendix.
Then the adaptive neuron-wise discriminant criterion is

defined by using Eq.(19) and Eq.(20) as

LAD =

K∑
k=1

σ
(N)2
Wk

σ
(N)2
Tk

. (21)

C. Adaptive Center Loss at Hidden Layer

The original center loss was introduced at the output layer
to make the feature more discriminative [12], but it is possible
to apply it at a hidden layer. We can observe that the feature
vectors extracted before the ReLU function at a hidden layer
give the elongated shapes for each class, as shown in Fig. 3 (a).
In this paper, we introduce the center loss at the hidden layer
instead of the output layer to make the features of each class
more circular. Since the neuron-wise discriminant criterion
makes the features at the output layer more discriminative, it
expected that the recognition accuracy could be improved by
combining the center loss at the hidden layer with the neuron-
wise discriminant criterion at the output layer.

Also, we propose to use the online computation of the
mean vectors of each class with exponential forgetting weights
instead of the update computation expressed as Eq.(12) within
mini-batch which is proposed in the original center loss [12].

Let {xi ∈ RD|i = 1, . . . , n} be a set of feature vectors
extracted before ReLU function at a hidden layer shown in
Fig.1, where D is the dimension of an extracted feature
vectors. Then the total mean vector of these vectors is defined
by using the exponential forgetting weights as

c
(n)
k =

1∑n
i α

n−i

n∑
i

xiα
n−i

= αc
(n−1)
k − (1− α)xn. (22)

The details of the derivation are shown in Appendix.
The adaptive center loss is defined by using Eq. (22) as

LAC =
1

N

N∑
i=1

||xi − c
(N)
k ||22. (23)

IV. EXPERIMENTS

A. Preliminary Experiments using MNIST dataset

To confirm the effectiveness of the proposed approach,
we have performed experiments using MNIST dataset. The
activation function in this network is ReLU function in the
hidden layers, and the softmax function is used in the output
layer. Two fully-connected layers are used for classification.
The details of the network architecture are shown in Table
I. In this table, Conv3x3+1 denotes a convolution layer with
3 × 3 convolution filters, and the stride of the convolution
computation is set to 1, and the padding size is 1. Maxpool2x2
denotes a max-pooling with the size 2× 2, and FC denotes a
fully-connected layer.

The parameters of this network are trained by minimizing
the proposed objective function shown in Eq. (14). Stochastic
Gradient Descent (SGD) is used with a momentum of 0.9 as



TABLE I
THE NETWORK ARCHITECTURE USED IN THE PRELIMINARY EXPERIMENTS

FOR MNIST DATASET.

Layer Operator Resolution Channels
0 - 28x28 1
1 Conv3x3+1 28x28 32
1 RelU 28x28 32
1 Maxpool2x2 14x14 32
2 Conv3x3+1 14x14 64
2 RelU 14x14 64
2 Maxpool2x2 7x7 64
3 FC 256 -
3 ReLU 256 -
4 FC 100 -
4 ReLU 100 -
5 FC 10 -

TABLE II
THE RESULTS OF THE PRELIMINARY EXPERIMENT.

train loss test loss
train

accuracy
test

accuracy
baseline 0.0751 0.0720 0.9808 0.9808

discriminant 0.0849 0.0826 0.9825 0.9817
adaptive

discriminant 0.1185 0.1216 0.9905 0.9878
center 0.2082 0.2605 0.9972 0.9930

adaptive
center 0.2021 0.2489 0.9971 0.9935

adaptive
discriminant+center 0.2012 0.2477 0.9972 0.9937

the optimizer. Both the number of epochs and the number of
samples in mini-batch are set to 100. The initial learning rate
is set to 0.01 and is divided by 10 at every 50 epochs. The
weight decay parameter is set to 0.01 to prevent overfitting.

We have performed preliminary experiments to investigate
the effectiveness of the proposed approach. We compared the
adaptive neuron-wise discriminant criterion in Eq. (21) with
the original neuron-wise discriminant criterion [11] in Eq.
(4) and the standard CNN without acceleration for feature
discrimination (baseline CNN). Also, the adaptive center loss
in Eq. (23) at the hidden layer is compared with the original
center loss [12] in Eq.(10) at the hidden layer and the standard
CNN without acceleration for feature discrimination.

For the neuron-wise discriminant criterion, 10-dimensional
features of the output layer are used, and 100-dimensional
features before the ReLU activation function at the last fully-
connected layer are used to compute the center loss. For the
neuron-wise discriminant criterion, we set λ to 0.01. For the
center loss, we set β and λ to 1.0 and 1.0, respectively. For
the adaptive neuron-wise discriminant criterion, we set α and
λ to 0.99 and 0.01, respectively. For the adaptive center loss,
we set α and λ to 0.99 and 1.0, respectively.

Table II shows the results of these experiments. It is noticed
that the adaptive neuron-wise discriminant criterion gives
better accuracy than the original neuron-wise discriminant
criterion and the baseline CNN, and the adaptive center loss
also at a hidden layer gives better test accuracy than the

(a) The standard CNN

(b) With the adaptive neuron-wise discriminant criterion

(c) With the adaptive neuron-wise discriminant criterion and
the adaptive center loss

Fig. 2. The histograms of the inputs of a neuron at the output layer of the
trained CNN. Blue shows the histogram of the target class and orange shows
the histogram of the non-target class.

center loss and the baseline CNN. These results show that the
adaptive neuron-wise discriminant criterion and the adaptive
center loss at the hidden layer can improve the recognition
accuracy.

The recognition accuracy obtained by the integration of the
adaptive neuron-wise discriminant criterion and the adaptive
center loss at the hidden layer is also included in Table II.
The parameters λ1, λ2, and α are set to 0.001, 1.0, and 0.99,
respectively. From this table, we can confirm that the proposed
integration of the adaptive neuron-wise discriminant criterion
and the adaptive center loss at the hidden layer can give the
best test accuracy.

The effectiveness of the proposed approach is confirmed by
drawing histograms of the input features of a neuron in the
output layer of the CNN which are trained using a training
set (60000) of MNIST. In this case, the dimension of the
feature vector before the ReLU activation function at the last



fully-connected layer is changed from 100 to 2 in the network
architecture shown in Table I. Fig. 2 (a), (b), and (c) show
the histograms obtained by the standard softmax cross-entropy
loss, the adaptive neuron-wise discriminant criterion, and the
integration of the adaptive neuron-wise discriminant criterion
and the adaptive center loss at the hidden layer, respectively.

From this figure, it is noticed that the separations in the
histograms (b) and (c) are better than the baseline (a). This
result shows the effectiveness of the adaptive neuron-wise
discriminant criterion. Also, it is noticed that there are multiple
distributions in the non-target class (orange). We think that this
phenomenon is caused by the adaptive center loss at the hidden
layer.

Fig. 3 shows the scatter plots of the 2-dimensional feature
vectors extracted from the hidden layer learned by CNN with
ReLU function using training data (60000) on MNIST. In this
figure, colors indicate the classes, and black points are the
means of each class. Fig. 3 (a), (b), and (c) are the scatter
plots of the feature vectors obtained by using the standard
softmax cross-entropy loss, the adaptive center loss, and the
integration of the adaptive neuron-wise discriminant criterion
and adaptive center loss, respectively.

It is noticed that the distributions of each class are more
compact in Fig. 3 (b) and (c) than the plot shown in Fig. 3
(a). This means that the adaptive center loss at the hidden
layer is useful to make the feature vectors discriminative. It is
also noticed that the integration of the adaptive neuron-wise
discriminant criterion and adaptive center loss can make the
feature vectors more discriminative.

B. Comparison Experiments

The proposed integration of the adaptive neuron-wise dis-
criminant criterion and adaptive center loss is compared with
the original neuron-wise discriminant criterion and the center
loss at the hidden layer with several datasets such as Fash-
ionMNSIT, CIFAR10, CIFAR100, and STL10. For the Fash-
ionMNIST data set, the same network with the preliminary
experiment shown in Table I. The more complex network
architecture shown in Table III is used for the data sets
CIFAR10, CIFAR100, and STL10.

In Table III, h and w denote the height and the width of
input images. Conv3x3+1 denotes the convolution layer with
the size 3 × 3, and the stride and the padding are 1. Batch-
norm denots batch normalize [17]. Maxpool2x2 denotes max-
pooling with the size 2× 2. Conv3x3 denotes the convolution
layer with the size 3×3, where the stride is 1, but the padding
is 0. FC denotes the fully-connected layer, and ReLU is the
activation function. Dropout denotes drop out [18].

These networks are trained by using the training samples
of each data set. For the training, the number of epochs and
the number of samples in the mini-batch are set to 500 and
100, respectively. As the optimizer, we use Stochastic Gradient
Decent (SGD) with a momentum of 0.9. The learning rate is
set to 0.01 and is divided by 10 at every 100 epochs. The
weight decay parameter is set to 0.01 for FashionMNIST, 0.01
for CIFAR10, 0.001 for CIFAR100, and 0.01 for STL10. As

(a) The standard CNN

(b) With the adaptive center loss

(c) With the adaptive neuron-wise discriminant criterion and
the adaptive center loss

Fig. 3. This is the 2-dimensional extracted feature mapping before the ReLU
function at the hidden layer learned by CNN with ReLU function using
training data (60000) on MNIST. Colors indicate the classes and black points
are the means of each class.

the preprocessing, we apply the affine transformation to the
inputs for CIFAR10, CIFAR100, and STL10 to prevent the
overfitting.

Similar to the preliminary experiments, each feature of the
output layer is used to compute the neuron-wise discriminant
criterion, and the 100-dimensional feature vectors before the
ReLU function at the hidden layer are used to compute the
center loss.

For the neuron-wise discriminant criterion, the hyper param-



TABLE III
THE NETWORK ARCHITECTURE USED FOR COMPARISON EXPERIMENTS.

Layer Operator Resolution Channels
0 - hxw 3
1 Conv3x3+1 hxw 128
1 Batchnorm hxw 128
1 RelU hxw 128
2 Conv3x3+1 hxw 128
2 Batchnorm hxw 128
2 RelU hxw 128
3 Conv3x3+1 hxw 128
3 Batchnorm hxw 128
3 RelU hxw 128
3 Maxpool2x2 h/2xw/2 128
4 Conv3x3+1 h/2xw/2 256
4 Batchnorm h/2xw/2 256
4 RelU h/2xw/2 256
5 Conv3x3+1 h/2xw/2 256
5 Batchnorm h/2xw/2 256
5 RelU h/2xw/2 256
6 Conv3x3+1 h/2xw/2 256
6 Batchnorm h/2xw/2 256
6 RelU h/2xw/2 256
6 Maxpool2x2 h/4xw/4 256
7 Conv3x3 (h/4-2)x(w/4-2) 512
7 Batchnorm (h/4-2)x(w/4-2) 512
7 RelU (h/4-2)x(w/4-2) 512
8 Conv3x3 (h/4-4)x(w/4-4) 256
8 Batchnorm (h/4-4)x(w/4-4) 256
8 RelU (h/4-4)x(w/4-4) 256
9 Conv3x3 (h/4-6)x(w/4-6) 128
9 Batchnorm (h/4-6)x(w/4-6) 128
9 RelU (h/4-6)x(w/4-6) 128
9 Maxpool2x2 (h/4-6)/2x(w/4-6)/2 128
10 FC (h/4-6)/2x(w/4-6)/2x128 -
10 ReLU (h/4-6)/2x(w/4-6)/2x128 -
10 Dropout (h/4-6)/2x(w/4-6)/2x128 -
11 FC 100 -
11 RelU 100 -
11 Dropout 100 -
12 FC class -

eter λ is set to 0.001 for FashionMNIST, 0.001 for CIfAR10,
0.01 for CIFAR100, and 0.01 for STL10. For the center loss,
the parameter β is set to 1.0, and the parameter λ is set to 1.0
for FashionMNIST, 0.08 for CIFAR10, 0.01 for CIFAR100,
and 0.01 for STL10, respectively. For the adaptive neuron-
wise discriminant criterion and the adaptive center loss, the
parameter α is set to 0.99, and λ1 and λ2 to 0.0001 and 1.0
for FashionMNIST, 0.0001 and 0.08 for CIFAR10, 0.01 and
0.001 for CIFAR100, and 0.01 and 0.001 for STL10.

The results are shown in Table IV. It is obvious from this
Table that the proposed integration of the adaptive neuron-wise
discriminant criterion and adaptive center loss at the hidden
layer give the best test accuracy for all data sets. Thus we can
say that the proposed approach can improve the classification
accuracy of the trained CNN.

V. CONCLUSIONS

In this paper, we propose to use the neuron-wise discrim-
inant criterion at the output layer and the center loss at the
hidden layer. Also, we introduce the online computation of the

TABLE IV
THE RESULTS OF COMPARISON EXPERIMENTS.

FashionMNIST CIFAR10
train test train test

baseline 0.9223 0.9028 1.0 0.8975
discriminant 0.9238 0.9041 1.0 0.9008
center 0.9547 0.9244 1.0 0.9089

adaptive
discriminant+center 0.9634 0.9273 1.0 0.9148

CIFAR100 STL10
train test train test

baseline 0.9334 0.6136 0.9812 0.7463
discriminant 0.9347 0.6178 0.9986 0.7723
center 0.9387 0.6162 0.9998 0.7690

adaptive
discriminant+center 0.9407 0.6208 0.9986 0.7740

means of each class with the exponential forgetting. We named
them the adaptive neuron-wise discriminant criterion and the
adaptive center loss, respectively. According to Fig.2, the
histogram of each class is more separated by using both. Ac-
cording to Fig.3, the 2-dimensional extracted feature mapping
is more sepatrated by using both. Through the experiments, we
got the effectiveness of the integration of the adaptive neuron-
wise discriminant criterion and the adaptive center loss by
using the MNIST, FashionMNIST, CIFAR10, CIFAR100, and
STL10.
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APPENDIX

In this section, we show some formulations proof to prove
our proposal Eq. (22), Eq. (19) and Eq. (20). We show the
proof of updating formulation for general weighted mean and
weighted variance. Let {ri|i = 1 . . . N}, and alpha be a
set of data, and the parameter to define the forgetting power
restricted in (0, 1), respectively. And we suppose that we have
infinite 0 data before coming first data. Then, There are infinite
data and weights from α0 to α∞. The summation of geometric
sequence is defined as

S = lim
N→∞

N∑
i

αN−i

= lim
N→∞

1− αN+1

1− α
=

1

1− α
, (24)

where limN→∞ αN+1 = 0 if 0 < α < 1.
By using Eq. (24), the fundamental weighted mean and the

fundamental weighted variance are defined as

E[r](N) =
1∑N

i αN−i

N∑
i

riα
N−i

= (1− α)

N∑
i

riα
N−i

= (1− α)α

N−1∑
i

riα
N−1−i + (1− α)rN

= αE[r](N−1) − (1− α)rN , (25)

V [r](N) =
1∑N

i αN−i

N∑
i

αN−i(ri − E[r](N))2

= E[r2](N) − E[r](N)2

= (1− α)

N∑
i

r2i α
N−i − E[r](N)2

= (1− α)α

N−1∑
i

r2i α
N−1−i + (1− α)r2N − E[r](N)2

= (1− α)α

N−1∑
i

r2i α
N−1−i + (1− α)r2N

− (αE[r](N−1) − (1− α)rN )2

= αV [r](N−1) + αE[r](N−1)2 + (1− α)r2N

− α2E[r](N−1)2 − 2α(1− α)rNE[r](N−1)

− (1− α)2r2N

= αV [r](N−1) + α(1− α)(rN − E[r](N−1))2,
(26)

where E[r](N) denotes the weighted mean of N times, and
V [r](N) denotes the weighted variance of N times.

The derivation of the update rule Eq.(16), Eq.(17), Eq.(18),
and Eq.(22) are leaded by using Eq.(25). The derivation of the
update rule Eq.(19) and Eq.(20) are leaded by using Eq.(26).




