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Abstract—Support correlation filter tracking method uses
cyclic sampling to transform the calculation into frequency
domain, which solves the problems of sampling and large
computation of support vector machine. However, the current
method can not exploit the information of backgrounds because
all samples are generated by cyclic sampling around the target in
the tracking process. To solve this problem, this paper proposes a
background awareness support correlation filter tracking method
using mask matrix. In the tracking process, the mask matrix is
used to extract the patchs densely from background as negative
samples, so the background information is used effectively.
Experiments on OTB100 database show that compared with
Scale Kerneling Supported Correlation Filtering (SKSCF), the
proposed algorithm achieves a gain of 4.2% in mean OP and
6.2% AUC score respectively.

Index Terms—SVM; support correlation filter; visual tracking.

I. INTRODUCTION

Target tracking has been widely used in a variety of areas,

such as video surveillance, man-machine interaction and robot

perception, to name a few [1], [2]. Target tracking is defined

as a problem of assessing the state of the target, which

includes two parts: to present the original state of the target

(such as its location and size) and to estimate the target

state in the subsequent frames. Despite its wide applications,

target tracking is still a great challenge in practice, which is

easily affected by a number of factors, including illumination

variation, pose variation, fast motion, occlusion and so on.

In recent years, the target tracking algorithms mainly use

machine learning technology, which is widly used in artificial

intelligence [3]–[8]. The existing tracking algorithms can be

categorized as either generative ones or discriminative ones

[9]–[16]. A generative algorithm first learns a model to repre-

sent the target object. Then it uses the model for calculating the

similarity between the candidate sample and the target object.

And finally it takes the most similar sample as the target object.

Compared with generative algorithms, discriminative methods

have attracted wider attention due to their exploitation of both

the target information and its background information. They

regard target tracking as a problem of binary classification

between target and its background, in which some samples

are collected and labeled in each frame for classifier training.
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Recent years have witnessed an explosive popularity of dis-

criminative correlation filters (DCF) for visual tracking [17]–

[24] because of their high efficiency and accuracy. Most DCF

based trackers use ridge regression or kernel ridge regression

as predictors, their failure to exploit the good discrimination

of the SVM affects the further improvement of tracking per-

formance. The support correlation filtering tracking methods

proposed recently [25], [26] exploit the circulant property of

dense samples to accelerate SVM based trackers, making it

superior to the traditional correlation filter tracking method.

Nevertheless, the support correlation filter tracking methods

also suffer boundary effect when they use cyclic shifts of the

target as the negative samples.

In view of this, this paper uses mask matrix to crop

images, and proposes a background aware support correlation

filtering(BASCF) algorithm. The main contributions are as

follows:

• The proposed BASCF tracker can collect more samples,

and the negative samples came from the backgrounds, so

that learned correlation filters can have more discrimina-

tive power. The correlation filter can be learned on larger

image regions, and the information of backgrounds can

be fully utilized.

• In this paper, the Alternative Direction Multiplier Method

(ADMM) is used to optimize the solution, which can

accelerate the solution to meet the real-time requirements,

and can achieve about 40 frames per second on a general

PC.

II. RELATED WORK

In the following, we briefly introduce some works most

related to this work, and for a detailed survey about visual

tracking, please refer to [1], [27].

As the earliest correlation filter tracking method, the Min-

imum Output Sum of Squared Error (Mosse) algorithm [28]

uses the minimum mean square error to constrain the output

results, and trains the filter. By utilizing the cyclic properties of

the kernel matrix, the Kernel Correlation Filters (KCF) algo-

rithm [17] introduces the kernel technique into the correlation

filtering algorithm and has achieved satisfactory results along

with the consideration of the multi-channel feature. The Multi-

kernel Correlation Filter(MKCF) [29] solves the problem that

the manual-setting is not necessarily optimal by introducing

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Fig. 1. Different principles for choosing samples. Top: our method; bottom: the SCF based trackers in [25], [26].

multi-kernel on the basis of KCF. The part-based correlation

filter [30] is proposed to solve the tracking problem when the

object is occluded and the shape changes dramatically to some

extent.

The trackers mentioned-above undergo the boundary effects

due to periodic repetitions. To address this issue, the Spa-

tial Regularized Correlation Filter (SRDCF) algorithm [31]

constrains the filter coefficients to allocates more energy for

the central region using a Spatial Gaussian function. The

Background Aware Correlation Fiter [32] realized the similar

idea with a predefined mask matrix. Very recently, some track-

ing methods [33]–[35] with deep architectures have achieved

good results. Li et al. [33] employ the discriminative power

in the gradients to dynamically update the template in the

siamese net tracker. Wang et al. [34] proposed a method which

perform both object tracking and semi-supervised video object

segmentation. However, these methods often lead to poor real

time performance because of the deep architectures.

III. SCF TRACKING METHOD

The support correlation filter algorithm [25], [26] introduces

the cyclic sampling into support vector machine (SVM) in

order to solve the tracking problem. In t frame, the basis

sample x ∈ RD is selected around the target, and the training

samples are represented by the full set of circularly shifted

versions xi. Then the filter f is obtained by solving the

following functions

min
f,b,ξ

‖f‖2 + C
∑
i

ξ2i ,

s.t. yi(f
Txi + b) ≥ 1− ξi, ∀i, . . . , D.

(1)

where yi ∈ RD is the classifier label corresponding to xi,

ξ is the slack variables and b represents a bias. Let ei =
yi(f

Txi + b) + ξi − 1, (1) can be reformulated as

min
f,b,e

‖f‖2 + C
∑
i

(yi(f
Txi + b)− 1− ei)

2,

s.t. ei > 0, for ∀i = 1, . . . , D.

(2)

Since xi is a cyclic sample, (2) can be converted to the

Fourier domain to accelerate the calculation:

min
f,b,e

‖f‖2 + C
∥∥∥y ◦ (F−1(x̂ ◦ f̂) + b1)− 1− e

∥∥∥2
2
,

s.t. e ≥ 0

(3)

where 1 denotes an all-ones vector, ◦ denotes Hadamard

product, and ˆ denotes the Discrete Fourier Transform of a

signal. Then the filter f can be computed efficiently in the

Fourier domain:

f̂ = (x̂∗
c ◦ x̂c + 1/C)−1 ◦ x̂c ◦ q̂c (4)

where q = y + y ◦ e, q̄ is the mean of q, and qc=q − q̄.

IV. PROPOSED METHOD

A. Model Establishment

Sample xi is the cyclic shift form of the basis x. Δi is the

cyclic shift operation, then xΔi is the ith cyclic shift of the

basis image x. Consequently, (2) can be expressed as:

min
f,b,e

‖f‖2 + C

D∑
i=1

∥∥yi(fTxΔi + b)− 1− ei
∥∥2
2
,

s.t. ei ≥ 0

(5)



Although the trained filters at present are able to discriminate

the foreground targets from their shift forms, they are unable

to distinguish the real background of the images. Some works

[32], [36] extracts patches densely from background using

cropping matrix can restrain the boundary effect caused by

cyclic sampling. Therefore, this paper introduces mask matrix

P to support correlation filtering method to crop the image

from a larger image block. P is a binary matrix of D ∗ T
dimension, which can crop D dimension pixels (T � D) from

T-dimensional image. Thus the background-aware support

correlation filters can be learned by the following objective:

min
f,b,e

‖f‖2 + C
T∑

i=1

∥∥yi(fTPxΔi + b)− 1− ei
∥∥2
2

s.t. ei ≥ 0

(6)

where xi ∈ RT ,yi ∈ RT , and f ∈ RD. After the mask matrix

P is introduced, the tracking will be sampled in a larger range.

As is shown in figure 1, the blue box is T dimension while the

red box is D dimension. In each frame, the training samples

will be increased from the original D samples to the current T
samples, and the sampling samples will also be changed from

the original ”cyclic shift samples” to samples from the real

scene. Both factors greatly enhance the tracking performance.

B. Optimization algorithm

For efficiency, the filters are generally computed in the

Fourier domain. According to the Parseval’s theorem, (6) can

be represented as

min
f,ĝ,b,e

‖f‖2 + C
∥∥∥x̂ ◦ ĝ + b̂1− q̂

∥∥∥2
2

s.t. ĝ =
√
TFPT f, e ≥ 0

(7)

where, g stands for the T-dimensional auxiliary variable matrix

and F is a T×T orthogonal complex basis vector matrix, which

can transform any T-dimensional signal into Fourier domain (

eg.â =
√
TFa ). The above model in (7) is convex that can be

minimized to yield the globally optimal solution via ADMM,

and its augmented Lagrangian form is

min
f,ĝ,ŝ,b,e

‖f‖2 + C
∥∥∥x̂ ◦ ĝ + b̂1− q̂)

∥∥∥2
2
+ ŝT (ĝ −

√
TFPT f)

+
u

2

∥∥∥ĝ −√
TFPT f

∥∥∥2
2
,

s.t. e ≥ 0
(8)

where, S is the Lagrange multiplier, u is the penalty coeffi-

cient, and (8) can be solved iteratively via the ADMM. The

solution to each subproblem is detailed below:

Step 1: update f . Fixing g, s, b, e, we have

f = min
f

‖f‖2 + ŝT (ĝ −
√
TFPT f) +

u

2

∥∥∥ĝ −√
TFPT f

∥∥∥2
2

= (u+
1

CT
)−1(ug + s)

(9)

where g = 1√
T
PFT ĝ,s = 1√

T
PFT ŝ. Taking the DFT and

inverse DFT into account, the complexity of solving f is

O (NIterKT log T ), where NIter denotes the numbers of

iterations, meanwhile K indicates channel dimension.

Step 2: update ĝ. Fixing f, s, b, e, we have

ĝ = min
ĝ

C
∥∥∥x̂ ◦ ĝ + b̂1− q̂)

∥∥∥2
2
+ ŝT (ĝ −

√
TFPT f)

+
u

2

∥∥∥ĝ −√
TFPT f

∥∥∥2
2

(10)

The calculation of (10) is highly time consuming. But, each

element of ŷ only depends on the element of fiter ĝ and sample

x , and we define Vj(g) as the value of the j-th element of the

fiter g, so (10) can be further divided into D smaller problems,

where each of them is defined as:

Vj(ĝ) = min
Vj(ĝ)

C
∥∥∥Vj(x̂)

TVj(ĝ) + b̂− Vj(q̂))
∥∥∥2
2

+ ŝTj (Vj(ĝ)− Vj(f̂)) +
u

2

∥∥∥Vj(ĝ)− Vj(f̂)
∥∥∥2
2

(11)

where f̂ =
√
DFPT f , set the derivative of (11) be zero, we

have

Vj(ĝ) = (Vj(x̂)Vj(x̂)
T + Tu)−1(Vj(ŷ)Vj(x̂)− TVj(ŝ)

+ TuVj(f̂))
(12)

Since with inverse operation, (12) can be optimized with the

Sherman-Morrsion formula as

Vj(ĝ) =
1

u
(Vj(ŷ)Vj(x̂)/T − Vj(ŝ) + uVj(f̂))

− Vj(x̂)

um
(Vj(ŷ)Vj(R̂X)/T − Vj(R̂V ) + uVj(R̂f ))

(13)

where, Vj(R̂X) = Vj(x̂)
TVj(x̂), Vj(R̂S) = Vj(x̂)

TVj(ŝ),
Vj(R̂f ) = Vj(x̂)

TVj(f̂)m = Vj(R̂X) + Tu. The cost of

computing ĝ using (13) is O (TK).
Step 3: update s. Fixing f , and g, we update s as

ŝi+1 = ŝi + ĝi+1 − f̂ i+1 (14)

Step 4: update b. Fixing f , and g, s, e, the subproblem b
can be represented as

b = min
b

C
∥∥∥x̂ ◦ ĝ + b̂1− q̂)

∥∥∥2
2

= q̄
(15)

Step 5: update e. Fixing f , and g, s, b, the subproblem e
can be represented as

e =

{
min
e

C
∥∥∥x̂ ◦ ĝ + b̂1− q̂)

∥∥∥2
2

s.t. e ≥ 0

= max(y ◦ (F−1(x̂ ◦ ĝ) + b1)− 1, 0)

(16)

C. Model updating

Like many other related filtering algorithms, the filters also

adopt the online adaptive updating system. It is updated as

follows:

x̂t
mod el = (1− η)x̂t−1

mod el + ηx̂∗ (17)

where x̂ is the observation model in the t frame and η
represents the online learning rate. Replacing x̂ by (17), we



Fig. 2. Overall success and precision plots of OPE of the 9 trackers in OTB100.

can learn the filter ĝ through (13). Afterwards, the filter will

be used to detect next frame whose size is the same as the

filter g.

V. EXPERIMENTS

A. Experimental Setup

We extensively evaluate our tracker on Object Tracking

Benchmark (OTB100) [27] , comparing with other eight

algorithms, including CT , SAMF [37] , KCF [17] , srdcf

[31] , MEEM [38] , staple [18] , skscf [25] , kscf [25] . The

benchmark employs one-pass evaluation (OPE) of success plot

and precision plot to measure tracking quality. Our method is

implemented on a personal computer with Intel i7 CPU (3.60

GHz) and 12 G running memory. It adopts the 31-dimensional

HOG characteristics ( cell size being 4*4 pixel), and the value

of the regularization parameter C is 100. We uses 5 scales

whose step length is 1.01, and the learning rate of the model

is 0.013. The target location confidence map is used to define

yi as label value. If it is greater than 0.5, it belongs to the

section of 1, if less than 0.4, then the section of -1, other

cases are 0. The penalty coefficient u of ADMM algorithm is

1, and the iteration step is ×10. We find that the algorithm

is able to converge quickly in most videos, so the iterations

number is set to 2.

B. Quantitative Analysis

1) Overall Analysis: Figure 2 shows the overall success and

precision plots of OPE over all the 100 videos in OTB100,

our tracker(BASCF) achieves the best performance with an

AUC score of 61.1%, outperforming the support correlation

filtering algorithm SKSCF (54.9%) and KSCF(51.2%). The

overall precision of our tracking algorithm is 81.4% which is

4.2% and 5.3% respectively higher than the support correlation

filtering algorithm SKSCF (77.2%) and KSCF(76.1%). To

verify the effectiveness of the BASCF method, we further

employ the deep features for BASCF training, yielding an

AUC score of 65.3% and a precision score of 86.6%.
2) Attribute Based Analysis: The videos in OTB database

are classified into 11 types of attributes according to different

environments including illuminate change, scale change, oc-

clusion, shape change, etc. The success and precision plot of

each attribute is shown in figure 3 and figure 4 respectively.

Our algorithm is superior to the support correlation filtering

algorithms in 10 of 11 attributes. Among the precision plot of

11 attributes, our algorithm ranks the first for five times and

gets the second place for three times. As for the rest of the

attributes, our algorithm presents performance not worse than

other excellent algorithms. According to the success plots, our

algorithm delivers better performance than any other support

correlation filtering algorithms and achieves a satisfactory

result in terms of 11 attributes. Specifically, it took the first

place for 9 times and the second place twice.

C. Qualitative Analysis

Figure 5 records the tracking results of some video se-

quences, including couple, lemming and human4 which faces

such challenges as deformation, fast motion, scale change,

occlusion, out of view and motion blur etc.
1) Couple: The video couple is mainly challenged by

factors such as out-of-plane rotation, scale change, shape

change, fast motion and disordered background, it proves to

be a tracking video with great difficulty. During the process

of tracking, algorithm SAMF and CT lost the target at the #17

frame, algorithm KCF at the #37 frame, algorithm KSCF and

SKSCF at the #48 frame and Staple lost its target at the #91

frame. In the whole tracking process, only our algorithm and

SRDCF algorithm can track the target correctly.
2) Lemming: The video Lemming is mainly challenged by

illumination, out-of-plane rotation, scale change, occlusion,



Fig. 3. Success plots of videos with different attributes.



Fig. 4. Precision plots of videos with different attributes.



Fig. 5. Qualitative comparative results of the 9 trackers over 3 sequences couple,lemming, human4.

motion blur, out of view and so on. Due to the changes like

out-of-plane rotation and motion blur in the early stage, the

algorithm CT began to drift from #230 frame. In the video,

severe occlusion occurred during #333 and #365, and when

the target completely comes out from the occlusion at #375,

algorithms like KSCF, SKSCF, KCF, SRDCF and Staple have

completely drifted to the occlusion. Affected by the factors

like scale change, motion blur and out-of-plane rotation, the

target boxes in algorithms MEEM and SAMF appear to be

continuously small. As a result, only a part of targets can be

tracked.

3) human4: The video human4 is mainly challenged by

such factors as illumination change, occlusion, shape change

and scale change and so on. Since the target is blocked

by the signs, the algorithm CT started to drift from #129.

Subsequently, due to the occlusion from the traffic lights

(#342), trees (#361) and street light poles (#465), algorithm

MEEM, algorithm KCF and algorithm KSCF also lost their

targets successively. By the time of frame #645, our algorithm

and algorithm SRDCF are the only two algorithms that can

track the target correctly.

VI. CONCLUSION

In this work, we presents a support correlation filtering

algorithm with background aware ability. Compared with tra-

ditional support correlation filtering algorithm, our algorithm

is able to collect more training samples, mostly from the

backgrounds of real scenes, and train filters with stronger

discriminant power. As is shown by the experiments on the

OTB100 database,the proposed method achieves a favorable

performance against various state-of-the-art trackers. In the

future we will extend the proposed tracker to a variety of video

analysis tasks, such as person re-ID, activity recognition.

REFERENCES

[1] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. V. D. Hengel,
“A survey of appearance models in visual object tracking,” ACM
transactions on Intelligent Systems and Technology, vol. 4, no. 4, p. 58,
2013.

[2] Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. Lau,
and M.-H. Yang, “VITAL: VIsual Tracking via Adversarial Learning,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8990–8999.

[3] J. Wu, S. Pan, X. Zhu, C. Zhang, and X. Wu, “Multi-instance learning
with discriminative bag mapping,” IEEE Transactions on Knowledge &
Data Engineering, pp. 1065–1080, 2018.

[4] C. Jie, B. Wang, and D. Brown, “Similarity based leaf image retrieval
using multiscale r-angle description,” Information Sciences, vol. 374, pp.
51–64, 2016.

[5] W.-X. Lu, C. Zhou, and J. Wu, “Big social network influence maxi-
mization via recursively estimating influence spread,” Knowledge-Based
Systems, vol. 113, pp. 143 – 154, 2016.

[6] J. Cao, Z. Wu, J. Wu, and W. Liu, “Towards information-theoretic k-
means clustering for image indexing,” Signal Processing, vol. 93, no. 7,
pp. 2026–2037, 2013.

[7] L. Gao, C. Zhou, J. Wu, and Y. Hu, “Collaborative dynamic sparse topic
regression with user profile evolution for item recommendation,” in The
Thirty-First Conference on Artificial Intelligence (AAAI-17), 2017.

[8] Y. Zhang, J. Wu, C. Zhou, and Z. Cai, “Instance cloned extreme learning
machine,” Pattern Recognition, vol. 68, pp. 52–65, 2017.

[9] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time compressive tracking,”
in European Conference on Computer Vision. Springer, 2012, pp. 864–
877.

[10] X. Jia, H. Lu, and M.-H. Yang, “Visual tracking via adaptive structural
local sparse appearance model,” in Proceedings of the IEEE Conference
on Computer vision and pattern recognition. IEEE, 2012, pp. 1822–
1829.

[11] K. Zhang, L. Zhang, and M.-H. Yang, “Fast compressive tracking,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 10, pp. 2002–2015, 2014.



[12] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via sparsity-
based collaborative model,” in Proceedings of the IEEE Conference on
Computer vision and pattern recognition. IEEE, 2012, pp. 1838–1845.

[13] W. Chen, K. Zhang, and Q. Liu, “Robust visual tracking via patch
based kernel correlation filters with adaptive multiple feature ensemble,”
Neurocomputing, vol. 214, pp. 607–617, 2016.

[14] J. Yang, K. Zhang, and Q. Liu, “Robust object tracking by online fisher
discrimination boosting feature selection,” Computer Vision and Image
Understanding, vol. 153, pp. 100–108, 2016.

[15] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time object tracking via
online discriminative feature selection,” IEEE Transactions on Image
Processing, vol. 22, no. 12, pp. 4664–4677, 2013.

[16] K. Zhang, Q. Liu, Y. Wu, and M.-H. Yang, “Robust visual tracking via
convolutional networks without training,” IEEE Transactions on Image
Processing, vol. 25, no. 4, pp. 1779–1792, 2016.

[17] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596,
2015.

[18] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. Torr,
“Staple: Complementary learners for real-time tracking,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 1401–1409.

[19] Y. Qi, L. Qin, J. Zhang, S. Zhang, Q. Huang, and M.-H. Yang,
“Structure-aware local sparse coding for visual tracking,” IEEE Trans-
actions on Image Processing, vol. 27, no. 8, pp. 3857–3869, 2018.

[20] Y. Qi, S. Zhang, L. Qin, Q. Huang, H. Yao, J. Lim, and M.-H. Yang,
“Hedging deep features for visual tracking,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2018.

[21] C. Sun, D. Wang, H. Lu, and M.-H. Yang, “Correlation Tracking via
Joint Discrimination and Reliability Learning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 489–497.

[22] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, “Learning spatial-
temporal regularized correlation filters for visual tracking,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 479–487.

[23] T. Zhang, S. Liu, C. Xu, B. Liu, and M.-H. Yang, “Correlation particle
filter for visual tracking,” IEEE Transactions on Image Processing,
vol. 27, no. 6, pp. 2676–2687, 2018.

[24] T. Zhang, C. Xu, and M.-H. Yang, “Learning Multi-task Correlation
Particle Filters for Visual Tracking,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2018.

[25] W. Zuo, X. Wu, L. Lin, L. Zhang, and M. H. Yang, “Learning support
correlation filters for visual tracking,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1158–1172, 2018.

[26] Z. SU, J. LI, J. CHANG, B. DU, and Y. XIAO, “Real-time visual track-
ing using complementary kernel support correlation filters,” Frontiers of
Computer Science, vol. 14, no. 2, pp. 417–429, 2020.

[27] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 37,
no. 9, pp. 1834–1848, 2015.

[28] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
2010, pp. 2544–2550.

[29] M. Tang, B. Yu, F. Zhang, and J. Wang, “High-speed tracking with
multi-kernel correlation filters,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 4874–4883.

[30] S. Liu, T. Zhang, X. Cao, and C. Xu, “Structural correlation filter
for robust visual tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 4312–4320.

[31] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Learning
spatially regularized correlation filters for visual tracking,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2015,
pp. 4310–4318.

[32] H. Kiani Galoogahi, A. Fagg, and S. Lucey, “Learning background-
aware correlation filters for visual tracking,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
1135–1143.

[33] P. Li, B. Chen, W. Ouyang, D. Wang, X. Yang, and H. Lu, “Gradnet:
Gradient-guided network for visual object tracking,” in ICCV, October
2019.

[34] Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. Torr, “Fast online
object tracking and segmentation: A unifying approach,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2019.

[35] X. Li, C. Ma, B. Wu, Z. He, and M. Yang, “Target-aware deep tracking,”
in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 1369–1378.

[36] H. K. Galoogahi, T. Sim, and S. Lucey, “Correlation filters with limited
boundaries,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[37] Y. Li and J. Zhu, “A scale adaptive kernel correlation filter tracker
with feature integration,” in European Conference on Computer Vision.
Springer, 2014, pp. 254–265.

[38] J. Zhang, S. Ma, and S. Sclaroff, “Meem: robust tracking via multi-
ple experts using entropy minimization,” in European Conference on
Computer Vision. Springer, 2014, pp. 188–203.




