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Abstract—The recently proposed BERT has demonstrated
great power in various natural language processing tasks. How-
ever, the model does not perform effectively on cross-lingual tasks,
especially on machine translation. In this work, we propose three
methods to introduce pre-trained BERT into neural machine
translation without fine-tuning. Our approach consists of a) a
linear-attention aggregation that leverages a parameter matrix
to capture the key knowledge of BERT, b) a self-attention
aggregation which aims to learn what is vital for input and
output, and c) a switch-gate aggregation to dynamically control
the balance of the information flowing from the pre-trained
BERT or the NMT model. We conduct experiments on several
translation benchmarks and substantially improve over 2 BELU
points on the IWSLT’14 English - German task with switch-gate
aggregation method compared to a strong baseline, while our
proposed model also performs remarkably on the other tasks.

I. INTRODUCTION

Pre-training Language Models (LM) like ELMO [1], BERT
[2], GPT-2 [3], [4], cross-lingual language model (XLM) [5]
and MASS [6] have significantly boost the performances of
several natural language processing (NLP) tasks by transfer-
ring prior knowledge learned from large amount of unlabeled
data to downstream tasks [1], such as classification, question
answering, and sequence labeling. Among these different pre-
training mechanisms, BERT [2], which employs Transformer
encoder architecture [7] and trains a bi-directional LM, has
become one of the most successful techniques. Since then,
there are large numbers of variants of BERT, like XLNet [8],
RoBERTa [9], which achieve state-of-the-art benchmarks [10]
for many NLP tasks.

In recent years, Neural Machine Translation (NMT) has
achieved remarkable performance on large-scale parallel cor-
pora [11], [12], [13]. Considering the complexity of existing
NMT models, it is difficult to improve the effectiveness
directly. Naturally, the idea of using pre-trained models to
improve the performance of machine translation has arisen
and is brought up by some researchers [5], [6], [14]. However,
due to the limitation of computing resources, training a pre-
trained model from scratch is difficult [15]. Thus, we consider
using the existing pre-trained BERT model to improve the
effectiveness of machine translation.
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However, incorporating BERT into NMT is quite chal-
lenging and using BERT directly doesn’t always achieve
satisfactory results. Compared with other tasks where direct
BERT fine-tuning works well, NMT has two distinct features,
the availability of large amounts of training corpora and the
high capacity of the baseline NMT models (i.e. Transformer)
[16], which need lots of updating steps to adapt to the high-
capacity model well on large-scale data [17]. However, up-
dating overmuch causes BERT to forget universal knowledge
from pre-training, which is named the catastrophic forgetting
problem [18].

The existing practical accomplishments are integrating
BERT as an additional representation into each layer of the
encoder or decoder [15], or using BERT as a teacher model to
guide the training on Transformer encoder side [17]. However,
in BERT-fused NMT [15], the fusion method of pre-trained
BERT and Transformer encoder or decoder layer representa-
tion is relatively simple (just averaged). Moreover, the settings
of the drop-net trick during the training and inference are not
consistent, and the authors have not explained this. In CTNMT
[17], there is no improvement on the decoder side.

In this work, we propose three new fusion methods of pre-
trained BERT and Transformer encoder or decoder layer repre-
sentation, which follow the previous work (BERT-fused NMT;
CTNMT). Firstly, at each layer of the encoder and decoder, we
introduce a parameter matrix to weigh the representations of
BERT and vanilla NMT. The vanilla NMT model represents
in-domain information of the input, while the BERT model
represents out-of-domain information of the input. Intuitively,
the importance of the two parts can be automatically measured
by a parameter matrix. secondly, we use a self-attention
mechanism to incorporate BERT into vanilla NMT, which can
learn the word dependencies within a sentence and capture the
internal structure of the sentence. Thirdly, We utilize a switch
gate mechanism, inspired by the significant results on gated
recurrent units in RNN [19]. Different from CTNMT , we add
switch gates at each layer of the encoder and decoder. As each
layer of Transformer will learn different features of the input
(for example, shallow layers learn syntactic information and
deep ones learn semantic information) [20], [21], integrating
BERT with each level of the Transformer can better introduce
the knowledge of BERT to the input adequately. Similarly,
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each layer of BERT also represents different syntactic and
semantic information [22], [23]. In this study, we compare the
fusion results of different BERT and Transformer layers.

We conduct experiments on WMT and IWSLT tasks. For
IWSLT tasks, our experiments on English→ German, German
→ English and English→ French datasets show gains of up to
2.13, 1.22 and 1.16 BLEU scores respectively. For WMT tasks,
with Transformer-base architecture, we increase 2.14 BELU
scores compared to a strong baseline on En→ De dataset, and
even surpass some models whose parameters are far more than
our model. Experimental results demonstrate that our model
can significantly outperform the strong standard baseline (i.e.
Transformer).

The main contributions of our works can be summarized as:
• We propose three new attention aggregation methods

to dynamically incorporate BERT into Neural Machine
Translation with a Transformer-based framework.

• We empirically show that fusion different layers of BERT
and vanilla NMT model have an important impact on the
translation effect.

• Our approaches achieve significant improvements over
the strong baseline Transformer model on three common
translation datasets.

The rest parts of this paper are as follows. Related work
is introduced in Section 2. The Approach of our model is
reported in Section 3. Then we show our experiment details
in Section 4. Finally, in Section 5, we conclude our work and
further discuss some future plans.

II. RELATED WORK
With the latest advances and performance improvements

in neural networks, pre-training technology develops rapidly.
After Mikolov et al. [24] and Pennington et al. [25] proposing
word2vec and Glove, we could apply distributional repre-
sentations to individual words, which greatly improved the
capability of NLP models. ELMO [1] proposed to merge the
different network layers to obtain effective word representa-
tions, based on the bi-directional LSTM model [26], which
was widely applied to question answering, textual entailment,
etc. Inspired by ELMO, Radford et al. [3] employed a self-
attention network based language model (GPT) to replace the
BI-LSTM structure, which further improved the performance
of the pre-training model. Then, BERT [2] appeared, which
was one of the widely adopted pre-training approaches for
model initialization. The structure of BERT is evolved from the
encoder of Transformer [7]. Owing to the great achievements
of BERT on various NLP tasks, variants of BERT have been
proposed. Lample et al. [5] adapted the objectives of BERT
to incorporate cross-lingual supervision from parallel data to
learn cross-lingual language models (XLM). Masked Sequence
to Sequence Pre-training (MASS) [6] adopted the encoder-
decoder framework to reconstruct a sentence fragment from
the remaining part of the sentence that had not been masked
[27].

Several approaches had been proposed recently to incorpo-
rate BERT into Neural Machine Translation. Intuitively, the

conventional method was using the BERT model to initialize
the NMT model and then fine-tuning it on downstream tasks,
but it was even worse than the standard Transformer without
using BERT [15]. Another common approach of utilizing
BERT was employing it as inputs to the NMT model [1].
Although it was better than the fine-tuning ones, it did not
make the most use of BERT in NMT, and also had not
improved significantly.

Based on the above two traditional methods, [15] proposed
a new algorithm, BERT-fused NMT, in which they fed BERT
into all Transformer encoder and decoder layers by introducing
attention mechanism rather than just using BERT as input
embeddings only. Almost at the same time, [17] put forward
CTNMT, a model that contained three techniques to integrate
the knowledge of pre-trained BERT and vanilla NMT, namely
asymptotic distillation, dynamic switch for knowledge fusion,
and rate-scheduled updating. Besides, [45] used an APT
framework for acquiring knowledge from pre-trained model
to NMT, which included two modules: a) a dynamic fusion
mechanism; b) a knowledge distillation paradigm.

Our approaches follow the previous BERT attention mech-
anism in BERT-fused NMT and introduce the switch gate
mechanism into the model like CTNMT. Simultaneously, we
also propose two other patterns to improve the model.

III. APPROACH

In this section, we first introduce the background of NMT,
then present our methods in detail.

A. Background

NMT aims to maximize the conditional probability
p (y1, · · · , yT ′ |x1, · · · , xT ), given a source and target sen-
tence pair (x, y), where x = (x1, x2, · · · , xT ) and y =
(y1, y2, · · · , yT ′ ), T and T

′
are the length of x and y,

respectively.
At training time, based on encoder-decoder architec-

ture, NMT first transforms the input sentence with tokens
x1, x2, · · · , xT into a sequence of hidden states H = {ht}Tt=1,
and then uses the hidden states to predict the conditional
distribution of each target token p (yj |H, y<j), given the
previous ground truth target tokens [28]. The training loss on
corpus C is defined as:

L (θmt) =
1

|C|
∑

(x,y)∈C

− logP (y|x; θmt) (1)

where θmt is a set of model parameters. At inference, the
target sentence is generated by left-to-right decoding.

Different neural architectures have been proposed with the
goal of improving effectiveness on NMT, in which Trans-
former [7] has shown strong results and surpassed prior state-
of-the-art architectures based on recurrent networks [12], [29].
Thus, in this work, we choose Transformer as our base model.

Attention mechanism [11] is widely applied to the field
of NMT, which focuses on important points and ignore other
unimportant factors. The attention-based models allow a single
token (e.g., a word or subword) in a sequence to be represented
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Fig. 1. The main architecture of our model

as a combination of all tokens in the sequence [29]. Let
att(q,K, V ) denote the attention model,in which q,K and
V represent query, key and value respectively. q is a d-
dimensional vector, and in this paper, K and V are the same
matrices. Each ki ∈ K is also d-dimension vectors, i ∈ [|K|].
The attention model can be calculated by:

αT
i =

1

Z
· exp

(
(Wqq)

T
(Wkki)√
dk

)
, (2)

Z =

|K|∑
i=1

exp

(
(Wqq)

T
(Wkki)√
dk

)
(3)

att(q,K, V ) =

|V |∑
i=1

αT
i Wvvi, (4)

where Wq , WK and WV are parameters of the NMT model,
and dk is the dimension of each attention head.

B. Algorithm

In this section, we present three methods to incorporate
BERT into NMT, and an illustration of our model is shown
in Fig. 1. The whole training process can be summarized as
follows step by step:
• Feeding the input x into BERT, Transformer encoder and

decoder. Especially, we tokenize the input with BERT
tokenizer and standard tokenizer respectively.

• Sending the output of BERT (usually the last layer) into
the attention model named BERT-attention, then fuse the
BERT-attention into self-attention or encoder-decoder-
attention [7] in each layer of encoder or decoder with
three new methods.

• Training with the pre-trained Transformer model and
frozen BERT model based on [7]. Continue the decoding
process until meeting the end token.

The key difficulty of this training algorithm is to design
the fusion methods of BERT-attention and self-attention or
encoder-decoder attention. In this paper, we propose three dif-
ferent strategies: linear aggregation, self-attention aggregation
and switch-gate aggregation.

1) Linear aggregation: Mikolov et al. [30] and Wu et al.
[31] indicate the representation space of similar languages
can be transmitted through the linear mapping. In our sce-
nario, BERT-attention represents the universal information and
Transformer represents the special downstream task informa-
tion, which is in the same language. Intuitively, we can train
a parameter matrix to balance the two parts.

Assuming x and y are the all source and target sentences
from corpus C. For any sentence pair (x, y), where x ∈ x
and y ∈ y, let nx and ny denote the number of the units
(e.g. wordpiece) in x and y. And we define HBert denoting
the output of BERT. The hBert,i ∈ HBert represents the i-th
token of the input x through BERT encoding.

On Transformer encoder, let H l
E be the hidden represen-

tation of the l-th layer. Specially, H0
E refers to the word

embedding layer. Denote the i-th cell in H l
E as eli for any

i ∈ [nx].

eli =W l
i

(
attS

(
el−1i , H l−1

E , H l−1
E

)
+attB

(
el−1i , HBert, HBert

))
,∀i ∈ [nx]

(5)

Where W l
i ∈ R2d∗d (d means the dimension of word

embedding) is the matrix to weigh the representation of BERT
and vanilla NMT, and attS and attB represent attention
models (4) with distinct parameters. Then each eli is processed



by the non-linear activation unit, the norm layer [32] and the
feed-forward neural network the same as standard Transformer
[7]. The encoder eventually outputs HL

E from the last layer.
During the Transformer decoder preceding time step t, let

Ol
<t =

(
ol1, · · · , olt−1

)
denotes the hidden state of l-th layer.

Similar to vanilla NMT [7], o01 is a special token that indicating
the start of a sentence, and o0t represents the embedding of
predicted word at time-step t− 1. In the l-th layer, olt can be
calculated as:

õlt = attMS

(
ol−1t , Ol−1

<t+1, O
l−1
<t+1

)
olt = Ŵ l

i

(
attE

(
õlt, H

L
E , H

L
E

)
+attB

(
õlt, HBERT , HBERT

)) (6)

Where attMS , attE and attB are masked self-attention
model, encoder-decoder attention model and BERT attention
model respectively. After (6), olt is handled by the non-linear
activation unit, the norm layer and the feed-forward network,
in which we can eventually obtain oLt . Then, put oLt into
a linear transformation and softmax layer to get the t-th
predicted word ŷt. When meeting < EOS > tag, the process
of decoding finishes.

2) self-attention aggregation: In Transformer-based archi-
tectures, a self-attention mechanism is applied to draw global
dependencies between inputs and outputs rather than the use
of recurrence in neural networks [7]. We follow this idea and
use it to find out which words the model should pay more
attention to.

On Transformer encoder, different from the above method
linear aggregation, self-attention aggregation mechanism first
concatenates the self-attention calculated by the previously
hidden representation and BERT-output attention unit as a new
embedding Dl

E at l-th layer, then we send Dl
E to a new self-

attention layer. Specially, we denote the i-th cell in Dl
E as dli

for any i ∈ [nx].

d̃li =
[
aS
(
dl−1i , Dl−1

E , Dl−1
E

)
; aB

(
dl−1i , HBert, HBert

)]
(7)

dli = aS

(
d̃li, D̃

l
E , D̃

l
E

)
(8)

Where aS and aB are shorthands of attS and attB re-
spectively, [; ] is the concatenation operation, which combines
information from BERT and vanilla NMT model. Then each
dli is processed by a norm layer and a feed-forward network
as a descending dimension layer. Finally, the encoder outputs
DL

E from the last layer.
On Transformer decoder, which is similar to the method

on encoder side, we let M l
<t =

(
ml

1, · · · ,ml
t−1
)

represents
the hidden state of l-th layer, during the Transformer decoder
preceding time step t. In the l-th layer, ml

t can be defined as :

m̂l
t = aMS

(
ml−1

t ,M l−1
<t+1,M

l−1
<t+1

)
(9)

m̃l
t =

[
aE
(
m̂l

t, D
L
E , D

L
E

)
; aB

(
m̂l

t, HBert, HBert

)]
(10)

ml
t = aMS

(
m̃l

t, M̃
l
<t+1, M̃

l
<t+1

)
(11)

Then we add a linear descending dimension layer applying
to ml

t. The following steps are the same as the vanilla NMT
model.

3) switch-gate aggregation: The gated recurrent cells have
the ability to learn which data in a sequence should be kept
in or left out [26], [33], inspired by which we propose to
apply the similar idea of gates to the dynamic regulation of
the balance of the information flowing from the pre-trained
BERT or the vanilla NMT model. By doing that, they can
pass relevant information down the long chain of sequences
to make predictions [34].

BERT-attention Self-attention

ℎ1
𝑙−1,ℎ2

𝑙−1,⋯ , ℎ𝑁′
𝑙−1

𝑔1 − 𝑔

Fig. 2. The switch-gate aggregation

This mechanism has the same computation pattern on both
Transformer encoder and decoder. Thus we adopt the encoder
side as an example showed in Fig. 2. Formally, a context
switch gate contains a sigmoid activation layer and an element-
wise multiplication operation which can be defined as:

ATT l
S = ‖nx−1

i=0 attS
(
el−1i , H l−1

E , H l−1
E

)
(12)

ATT l
B = ‖nx−1

i=0 attB
(
el−1i , HBert, HBert

)
(13)

gl = σ
(
Wl ·ATT l

S + Ul ·ATT l
B + bl

)
(14)

ATT l
S and ATT l

B are concat layers that concatenate the
self-attention and BERT output attention information respec-
tively at l-th layer. Where σ(·) is the logistic function, H l

E

represents the hidden state of the vanilla NMT at l-th layer,
HBert is the output of the pre-trained BERT model, and bl is
the bias. Then we integrate the NMT model and pre-trained
BERT as:

H l
E = g �ATT l

S + (1− g)�ATT l
B (15)

Where � refers to element-wise multiplication. If g is set
to 0, which means completely ignoring the information on
Transformer encoder, the network simply acts as the fine-
tuning approach, and if g is set to 1, the network degrades
to the vanilla NMT model. On the NMT decoder side, the
calculation method is similar to the above.



TABLE I
BLEU SCORES ON THREE IWSLT DATASETS

System Architecture En-Fr En-De De-En
Baseline

Vaswani et al. [7] Transformer base 40.86 28.49 34.93
Liu et al. [35] Transformer base + RAdam 41.01 28.52 34.98

Lample et al. [5] XLM + fine-tuning 40.71 29.27 33.15
Zhu et al. [15] BERT-fused NMT 41.59 30.28 35.90

Our NMT systems
Ours Self-attention aggregation 42.03∗ 30.37 35.29
Ours Linear aggregation 41.80 30.29 35.41
Ours Switch-gate aggregation 42.12 30.62 36.15

”∗” indicates that we only fuse the last layer of Transformer and BERT (See subsection ”About NMT layers” for more details)

IV. EXPERIMENTS

We conduct our experiments on English ↔ German and
English → French tasks to verify our approach, the training
details are as follows.

A. Datasets

For the rich-resource scenario, we work on WMT’14 En→
De task 1, whose corpus size is 4.5M. newstest2013 is used
as the validation set and newstest2014 as the test set, which
is the same as [7].

For the low-resource scenario, the English ↔ German
training set is from IWSLT’14 [36] that compromises 160k
sentence pairs. We lowercase all words, split 7k sentence
pairs from the training dataset for validation and concatenate
dev2010, dev2011, tst2010, tst2011, tst2012 as the test set
[37], [38]. For English → French task, we choose IWSLT’17
as our training set, which contains 236k sentence pairs. we use
dev2010 as our validation and the fusion of tst2010, tst2011,
tst2012, tst2013, tst2014 and tst2015 as our test set.

In all translation tasks, we tokenize all data with MOSE
tokenizer [39], and apply byte pair encoding (BPE) [40] to
encode words through sub-word units. We build shared vocab-
ularies of 32K, 10K and 16k sub-words for WMT’14 English
→ German, IWSLT’14 English ↔ German and IWSLT’17
English → French respectively. We measure the translation
quality with BLEU scores [41].

B. Training Details

To make this work easier to reproduce, this paper gives
detailed strategies for training the proposed model. All exper-
iments run on fairseq-py2 [42].

For WMT’14 En → De task, the model configuration is
transformer wmt en de, in which the embedding size is 512,
attention heads are 8 and feed-forward layer dimension is
2048. The hyper-parameters setting resembles [7].

For other low-resource tasks, the model configuration is
transformer iwslt de en, representing a six-layer model with
embedding size 512 and feed-forward neural network dimen-
sion 1024. We employ adam [43] as the optimization of
the network with β1 = 0.9, β2 = 0.98 and weight − decay

1http://www.statmt.org/wmt14/translation-task.html
2https://github.com/pytorch/fairseq

= 0.0001. The learning − rate is 0.0005 with inverse sqrt
scheduler, where warmup−init−lr is 10−7. Label smoothing
εls = 0.1 is used as regularization [44]. We set the batch size to
4000 per batch and limit sentence length to 100 BPE tokens.
Note that the above hyperparameter settings are the same as
those used in the baseline models.

We choose BERT-base-uncased3 model for English → Ger-
man and English→ French tasks and Bert-base-german-cased4

model for German → English. The BERT model is frozen
during training. Besides, on the self-attention aggregation
mechanism, we set attention fusion heads to 4 and 8 for
IWSLT and WMT tasks respectively.

We first train an NMT model until convergence and initialize
our model with the obtained model, and the rest parameters
are initialized with xavier uniform. For English → German
task, we choose the second-to-last hidden states of BERT to
help the training of the vanilla NMT model, while the last
layer of BERT is adopted in other tasks.

C. Main Results on IWSLT Datasets

The BLEU scores of IWSLT translation tasks are reported in
TABLE I. We compare our system with the other four systems
including a) Transformer base [7], b) RAadm which is a theo-
retically sound variant of Adam [35], c) XLM which is a cross-
lingual pre-trained language model, and d) BERT-fused NMT
[15], in which BERT-fused NMT is the strongest baseline that
has significant advantages over other three baselines. On the
above tasks, we reproduce the experiments presented in the
four baseline paper. However, We do not achieve the results
in [15].

In our model, we evaluate the effectiveness of the proposed
three strategies respectively. Obviously, switch-gate performs
best over the other two patterns, and improves the BLEU
scores of the three tasks by 1.26, 2.13, 1.22 points respec-
tively, demonstrating the effectiveness of our method. Linear
aggregation algorithm also has a great improvement on En
→ Fr translation task by 0.94 BLEU. However, the self-
attention mechanism does not achieve our expected results on
IWSLT’14 De → En task, and even performs further worse

3https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-
pytorch model.bin

4https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-
cased-pytorch model.bin



TABLE II
BLEU SCORES ON WMT’14 EN→ DE DATASET

System Architecture BLEU

Baseline
Vaswani et al. [7] Transformer base 27.31
Yang et al. [17] + Dynamic switch 29.40∗
Weng et al. [45] + Dynamic fusion 28.77
Weng et al. [45] + knowledge distillation 29.23
Vaswani et al. [7] Transformer big 28.46
Lample et al. [5] + Fine-tuning 27.70
Lample et al. [5] + Frozen feature 28.70

Our NMT systems
Ours Transformer base 27.37
Ours + Self-attention aggregation 28.87
Ours + Linear aggregation 29.11
Ours + Switch-gate aggregation 29.51
”∗”: beam size is 8 and the dimensions of hidden states are 768

than BERT-fused NMT. We analyze the following two reasons
for this result. Firstly, we consider that some information is
lost when BERT attention unit and vanilla NMT self-attention
unit are merged. In the future work, we will verify this
assumption. Secondly, the self-attention module is updated
through the backpropagation of the loss between the label
and the predicted value. No other supervision information is
introduced. Therefore, the supervision of the model is limited
and it is easy to overfit the label.

D. Main Results on WMT’14 En → De Dataset

The results on WMT’14 En → De dataset are presented
in TABLE II. We compare our model with several strong
baselines including Transformer and some pre-trained methods
in NMT.

Compared with Yang et al (CTNMT) [17], we also apply the
gate mechanism to the decoder side. Experiments show that
although their dimensions of all the hidden states and beam
size values are larger, our switch-gate aggregation method still
performs better. Weng et al. [45] propose an APT framework to
acquire knowledge from the pre-trained model to NMT, which
also has a dynamic fusion mechanism to fuse task-specific
features adapted from general knowledge into NMT network.
The biggest difference between our fusion methods is the
different granularity, in which Weng et al. calculate each token
of each layer in the Transformer and the pre-trained model.
However, it is not that the finer the calculation granularity, the
better the translation effect. According to experiments, except
for the linear aggregation method, our BLEU scores are higher
than them.

Transformer big model with fine-tuning even falls behind
the baseline, and with a frozen feature approach during fine-
tuning, it achieves a few gains over the Transfomer big model.
The experimental results are consistent with our intuition that
fine-tuning will cause catastrophic forgetting problem [18] and
also verify the fine-tuning method does not fit NMT. All our
methods with Transformer base architecture are better than the
Transformer big model whose parameter size is far larger than
ours.

TABLE III
RESULTS OF ABLATION STUDY (%).

Settings BLEU

Transformer base 40.86
Switch-gate aggregation 42.12
- BERT-encoder attention 41.57

- feed BERT to all layers 41.45
- BERT-decoder attention 41.95

- feed BERT to all layers 41.82
- without frozen BERT 41.53
- aggregation-dropout 41.93
- pre-trained NMT model 41.07

Linear aggregation 41.80
- BERT-encoder attention 41.27
- BERT-decoder attention 41.64
- without frozen BERT 41.42
- aggregation-dropout 41.47
- activation-function 41.59

Self-attention aggregation 42.03
- BERT-encoder attention 41.44
- BERT-decoder attention 41.63
- aggregation-dropout 41.86

E. Ablation study

We conduct the following studies and the corresponding
results can be found in TABLE III. The experiments are mainly
conducted on IWSLT’14 En → Fr translation task.

1) For switch-gate strategy: We first verify whether each
component is essential: we remove the BERT-encoder atten-
tion in (12-15) (i.e., attB). The BLEU score drops from 42.12
to 41.57, which shows attention models are important for
better performance. Besides, we feed BERT into the last layer
of the decoder instead of all layers, and it makes BLEU scores
drop by 0.12 points. It suggests that incorporating BERT into
all layers can more fully fuse the two parts of information.
The operation of removing BERT-decoder attention is similar
to the above, which leads to a notable decrease in BLEU.
Obviously, adding BERT into the encoder is more effective
than the decoder. Then we jointly train the vanilla NMT
model with BERT model. Although it can also boost the
baseline from 40.86 to 41.53, it is not as good as freezing
the BERT model. Aggregation-dropout is removed afterward,
which is a dropout net after (15), and BLEU score drops by
0.19 points slightly. Finally, we train the NMT model from
a randomly initialized model instead of using a pre-trained
fairseq Transformer model, BLEU score affects a significant
decline by 1.05 points comparing to 42.12, which nearly
catches up the baseline.

2) For the other two strategies: We conduct similar exper-
iments on linear aggregation and self-attention aggregation.
We also find BERT attention models are important for better
performance, in which BERT-encoder attention is more effec-
tive. Especially on the linear aggregation strategy where we
remove the non-linear activation unit, which is the next step
of (5) and (6). The BLEU score is 41.59, not as good as our
proposed method. On the self-attention aggregation strategy,
we just apply BERT to the last layer of the vanilla NMT, and
there is a significant decline in the results of removing different



TABLE IV
RESULTS ON IWSLT WITH DIFFERENT LAYERS OF VANILLA NMT

Model Layers BLEU
Transformer N/A 40.86
Embedding N/A 41.38

Switch-gate aggregation
1st ∼ 5th 41.54
Last layer 41.93
All layers 42.12

Linear aggregation
1st ∼ 5th 41.59
Last layer 41.71
All layers 41.80

Self-attention aggregation
1st ∼ 5th 41.55
Last layer 42.03
All layers 41.64

modules, which is similar to linear aggregation strategy.
The above experiments and analysis can demonstrate how

our approaches work and point out the effectiveness of each
component in our architecture.

F. About NMT layers

We compare the effectiveness of applying our methods to
different layers of vanilla NMT model on IWSLT’17 En →
Fr dataset. The results are shown in TABLE IV. Embedding
method means using pre-trained BERT as inputs to the NMT
model, leaving the underlying linguistic information ignored,
inspired by [1]. 1st ∼ 5th represents integrating BERT into
the first 5 layers of the Transformer model, while Last layer
only fuses BERT with the last layer of the Transformer, and All
layers are incorporating BERT into all levels of Transfomer.

On the embedding layer, the pre-trained embedding per-
forms better than the embedding from the vanilla NMT, which
can get a considerable improvement. Moreover, all of our
methods are better than using pre-trained models as inputs
to the NMT model.

On the Switch-gate aggregation and Linear aggregation
mechanism, All layers obtain the best performance, while
Last layer performs best on Self-attention aggregation. We
think that the first two methods Switch-gate aggregation and
Linear aggregation are essentially weighted fusion of the
BERT and transformer representations, and adding more layers
is equivalent to adding more additional information to each
layer of the NMT model according to its requirements, thus the
experimental result of All layers displays best. In contrast, Self-
attention aggregation is merging the BERT and transformer
representations into a new vector, and then automatically learn
the information required for the machine translation task.
We think that the shallow layers of Transformer focus on
transforming the input representation to the high layer, and
not directly connected to downstream tasks, so the external
contextual knowledge does not help them much. Besides, High
layers of the Transformer can obtain more gain from BERT
compared with low layers.

G. About BERT layers

BERT captures the structure properties of language and
composes a hierarchy of linguistic signals ranging from sur-
face to semantic features [23].

TABLE V
RESULTS ON IWSLT WITH DIFFERENT LAYERS OF BERT

Model En → De En → Fr
Last Hidden Layer 30.51 42.12
Second-to-Last Hidden Layer 30.62 41.64
Third-to-Last Hidden Layer 30.41 41.32
Fourth-to-Last Hidden Layer 30.40 41.28

In [17], they find that the second-to-last layer of BERT
works significantly better than the last hidden state. How-
ever, they only experimented on WMT14 English → German
corpus, which represents the rich-resource scenario containing
4.5M parallel data.

We experiment on a low-resource scenario with switch-gate
aggregation algorithm, in which we choose IWSLT’14 English
→ German, and IWSLT’17 English → French datasets. The
results are shown in TABLE V.

On IWSLT’14 En → De translation task, we find that the
second-to-last layer of BERT works best comparing with other
hidden states, while on IWSLT’17 En → Fr translation task,
the last layer performs significantly better than the second-
to-last layer. Intuitively, the last layer of BERT focuses more
on downstream tasks and better represents information at the
semantic level. So on English → German, the last layer is
biased to the LM tasks. However, on English → French
translation task, where some words in English and French are
close or even the same, the last layer of the BERT model
works best with relatively similar semantic space.

V. CONCLUSION AND FUTURE WORK

In this work, we propose three simple but effective ap-
proaches for neural machine translation to incorporate BERT
into Transformer, i.e., self-attention aggregation, linear ag-
gregation and switch-gate aggregation, in which the BERT
model is fully utilized by the encoder and decoder. Among
the above methods, switch-gate aggregation performs best on
several translation tasks, which leverages the gate mechanism
to dynamically control the balance of the information flow-
ing from the pre-trained BERT or the Transformer model.
While the empirical results are strong, switch-gate aggregation
surpasses Transformer-base by 2.13 BLEU score on IWSLT
14 English → German translation task. On other tasks, our
approaches also achieve remarkable performance.

For future work, we consider starting from the semantic
level to more refinedly extract the information related to the
machine translation task in the BERT model. Then we want
to compress the model and speed up inference time.
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