Scaled-up Neuromorphic Array
Communications Controller (SNACC)
for Large-scale Neural Networks

Aaron R. Young, Adam Z. Foshie,

Mark E. Dean, James S. Plank, Garrett S. Rose
Department of Electrical Engineering and Computer Science

University of Tennessee
Knoxville, Tennessee, USA, 37996
Email: [ayoung48, afoshie]@vols.utk.edu
[markdean, jplank, garose] @utk.edu

Abstract—Neuromorphic computing is one promising post-
Moore’s law era technology, which takes inspiration from bio-
logical brains to perform computing tasks. The human brain
contains billions of neurons with trillions of synapses and as
neuromorphic hardware systems scale to larger and larger
sizes, the communication system used to transfer information
between neuromorphic elements and traditional computers must
scale to keep up. In prior work, we describe the use of
a separate neuromorphic array communications controller to
support low-latency, high-throughput communication between
our neuromorphic systems and a traditional computer. In this
work, the neuromorphic array communications controller is used
to support the scaling of a neuromorphic development system
which uses multiple neuromorphic processors arranged in a
two-dimensional array. The neuromorphic array communications
controller, along with scalable local connections, is used to create
a scalable neuromorphic platform to enable the development and
testing of large neuromorphic network arrays.

I. INTRODUCTION

As the limits of semiconductor physics and Moore’s law are
reached, new architectures that break away from the traditional
von Neumann architecture and traditional circuit design will
have to be researched and developed to continue to push
the frontier of computing [1]. There are many fundamental

Notice: This material is based in-part on research sponsored by The
University of Tennessee (UT) Science Alliance Joint Directed Research and
Development Program; Air Force Research Laboratory under agreement number
FA8750-19-1-0025; and by the U.S. Department of Energy, Office of Science,
and Office of Advanced Scientific Computing Research, under contract number
DE-AC05-000R22725. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government. This manuscript has been authored in
part by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the US
Department of Energy (DOE). The US government retains and the publisher,
by accepting the article for publication, acknowledges that the US government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

J. Parker Mitchell, Catherine D. Schuman
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6085
Email: [mitchelljpl, schumancd]@ornl.gov

limitations to the potential scaling of traditional computing,
including the physics of increasingly smaller circuitry, the
increasing heat generated by these systems, and the von
Neumann bottleneck found in the separation of data storage and
computation [1], [2]. One promising class of post-von Neumann
architectures are brain-inspired, neuromorphic architectures,
such as Spiking Neural Networks (SNN)s. SNNs rely on event-
based, time-dependent, binary spikes to transmit information.
These neural networks form a complex graph where the neurons
are the nodes of the graph, and the synapses are the edges. There
are many different neuron types, but they typically accumulate
charge received from their synapses and decide when to fire
based on the accumulated charge compared to a threshold
value. When the neuron fires a binary pulse is sent to the
output synapses. The synapses transmit the binary signal from
the pre-synaptic neuron to the post-synaptic neuron and apply
a weight value that represents the strength of the connection.
These weight values are then accumulated by the post-synaptic
neuron when a fire event occurs.

Spikes, neurons, and synapses are all modeled after the
electrical pulses transmitted amongst neurons in biological
brains. Many models exist; some try to be biologically realistic
by modeling the behavior of the brain exactly and are used
to further our understanding of the brain’s operation, while
others seek to build biologically inspired computers where
the focus is less on building an accurate biological brain
simulator but instead on using insights from the brain to
build powerful computing devices in various technologies. The
latter approach acknowledges that the brain has evolved to
be a very efficient biological computer and insights from its
organization can be used to build powerful computing systems
without modeling all of the biological systems found therein.
There is still disagreement among researchers on the level
of detail required in the models to successfully emulate the
workings of the brain [3]. Neuromorphic systems avoid the von
Neumann bottleneck by colocating computational elements with
memory. Furthermore, they avoid the heat issue caused by the

http://energy.gov/downloads/doe-public-access-plan

end of Dennard scaling by using small distributed processors
spread across the chip. Additionally, novel technologies provide
alternative design options beyond CMOS [1], [4]-[6].

The human brain is made up of approximately 86 billion
neurons, each with 1,000 to 10,000 synaptic connections to
other neurons resulting in trillions of synapses [7]. The brain
is clever because of the massive connectivity between its many
neurons [8]. One major design challenge is how to build
a neuromorphic communication system which can scale to
support the massive number of connections found in biology.

Many SNNs are implemented as separate neuromorphic
processors, either within a Field-Programmable Gate Array
(FPGA) [9], as a custom Very Large-Scale Integration (VLSI)
chip [10], or through the use of an emerging technology [6].
In order to scale these processors, a method to connect them
together and to a traditional von Neumann based computer is
necessary. This connection must be reliable and fast in order
to support deterministic operation and to operate at the max
performance of the neuromorphic processors. The connection
between the neuromorphic processors must support the transfer
of time-dependent spiking information. The connection to the
traditional computer must support real-time operations to enable
the neuromorphic system to be used as a coprocessor able to
run real-time data processing and control tasks.

We propose a solution to the scaling communication chal-
lenge with a globally asynchronous, locally synchronous
(GALS) approach [11]. The neuromorphic processors employed
are synchronous and deterministic. The communication system
is designed to asynchronously transfer information between the
devices while maintaining the high performance, deterministic
operation of the neuromorphic processors. The processors work-
ing together are built into a large neuromorphic array. The sub-
array communication system uses a series of high-performance,
point-to-point connections in the cardinal directions to build
up a two-dimensional communication mesh. Communication
between the neuromorphic array and a traditional von Neumann
machine, known as the host system, is established through
the use of a neuromorphic array communications controller
(NACC) to build a hierarchical communication tree that allows
the host to interface with the neuromorphic processors making
up the array.

This paper discusses the considerations and design of the
Scaled-up Neuromorphic Array Communications Controller
(SNACC) built to support scalable neuromorphic arrays using
a multitude of individual neuromorphic processors operating
asynchronously from one another. Scaling up neuromorphic
hardware in this way is tremendously important for the
development and testing of large neuromorphic systems and
can be used as a step toward developing larger custom VLSI
designs. The design decisions and accompanying details are
intended to be useful for those who want to develop a
communications system to support the parallel operation of
multiple neuromorphic processors. This system is the first of
its kind to support the scaling-up of multiple neuromorphic
processors to construct large neural networks while maintaining
deterministic, MHz range operation, with an accompanying

network-cycle-accurate simulator. The performance evaluation
of the scaled-up neuromorphic hardware systems and the
software simulator is measured and compared in order to
provide insight into the advantages and drawbacks of each
approach.

II. RELATED WORK

Various research groups are tackling the challenge of
designing neuromorphic systems. The vast majority of the
groups have considered how the system can scale and have
worked to build large scale systems. Each of these groups
have had to tackle the issue of how to transfer a large amount
of spiking information generated by the neuromorphic cores.
Although the characteristics of each neuromorphic design vary,
they each had to solve the issue of routing packets at increasing
larger scales.

Researchers at Stanford University have developed two
separate neuromorphic systems. The first is Neurogrid, a
mixed-signal system with millions of neurons and billions
of synapses, able to perform biological real-time simulations
for computational neuroscientists [12]. A full Neurogrid system
consists of 16 Neurocores connected in a tree structure. Each
Neurocore contains a 256 x 256 array of analog neurons
fabricated in 180-nm CMOS. The second system is Braindrop
[13]. Like Neurogrid, Braindrop uses mixed-signal neurons.
However, Braindrop is designed to be programmed at a higher
level of abstraction through the use of the Neural Engineering
Framework. The Braindrop chip uses fractal H-trees for routing
to be integrated into a larger chip called Brainstorm [14].

The Human Brain Project (HBP) in Europe has the goal of
“building a research infrastructure to help advance neuroscience,
medicine, and computing” [15]. Research by a collaboration
of groups including the University of Heidelberg and the
Technische Universitidt Dresden have developed BrainScaleS,
a mixed-signal waferscale neuromorphic hardware system
[16], [17]. BrainScaleS is built up from Analog Network
Cores (ANC) combined together to create a High Input Count
Analog Neural Network (HICANN). 352 of these HICANN
chips are fabricated onto a 20 cm wafer using 180-nm CMOS.
An intra-wafer mesh router is used for local communication
while a hierarchical routing tree is used for inter-wafer
communication with the help of digital network chips (DNC)
[16], [18]. The same group is working on BrainScaleS-2 which
supports many additional features including a more complex
neuron model, nonlinear dendrites, and structured neurons
[19]. Researchers at the University of Manchester have built
a large digital neuromorphic system called SpiNNaker [20].
SpiNNaker simulates the brain using over one million parallel
ARM processors simulating neurons and synapses in real-
time. Eighteen ARM processors, fabricated in 130-nm CMOS,
are organized into chip multiprocessors (CMPs). 216 CMPs
are then networked together in a two-dimensional toroidal
mesh structure. The same group is now working on a second
version of SpiNNaker called SpiNNaker2 with improved ARM
processors [21].

Researchers at IBM have developed TrueNorth as part of
the DARPA SyNAPSE program [22]. TrueNorth consists of
digital integrate-and-fire neurons arranged in cores with 256
neurons and 1,024 axonal circuits. 4,096 of these cores are
implemented on a single chip. TrueNorth packets are routed
to neighboring cores connected in a two-dimensional mesh
network.

Loihi is a digital neuromorphic research chip recently
developed by Intel [23], [24]. Each Loihi chip has 128-
neuromorphic cores, as well as three Lakemont cores. Loihi’s
design allows for on-chip SNN learning rules to be implemented
with a unique programmable microcode running in the cores
and with the help of the Lakemont cores for advanced learning
rules. Loihi is fabricated with Intel’s 14-nm process, and each
chip implements 130,000 artificial CUBA leaky-integrate-and-
fire neurons and 130 million synapses. The cores communicate
using a two-dimensional grid, which is extended to neighboring
chips.

Research groups at Zhejiang University and Hangzhou
Dianzi University, both in China, have built the small scale
Darwin Neural Processing Unit (NPU), which is targeted for
resource constrained embedded systems [25], [26]. Darwin’s
eight physical neurons, which simulate 2048 logical neurons,
use an off-chip memory to route packets to the different
physical neurons.

Dynap-SEL is a mixed-signal multi-core architecture of neu-
romorphic processors created by researchers at the University
of Zurich in Switzerland, in the lab of Giacomo Indiveri [27],
[28]. This architecture has a novel routing scheme which allows
memory requirements to scale with the number of neurons
in a way much lower than other standard routing schemes.
This is accomplished through the use of a mixed tag-based
shared-addressing routing scheme which combines the use of
point-to-point and broadcast routing, as well as hierarchical
and grid routing.

In [4], Young et al. explore the design of the large-scale
spiking communication networks used in these seven well-
known neuromorphic systems, as well as, the the considerations
unique to spiking packet communication. Three broad cate-
gories of routing schemes are used to route packets between
neuromorphic elements: Mesh, hierarchical tree, and memory
routing. Two main routing methods are employed: source-based
routing and destination based routing. Figure 1 summarizes
how these various systems designed their routing methods.

This work also builds upon prior work conducted by
TENNLab at the University of Tennessee. Most significantly,
prior work on host co-processor communication to the Dynamic
Adaptive Neural Network Array (DANNA) digital neuromor-
phic processor [29], [30] and work for Tiled DANNA, a project
used to tile multiple DANNA processors in an array with
shared global clocks [31]. Both influenced the decisions made
in the development of SNACC. The DANNA?2 neuromorphic
architecture is also central to this work as it serves as the
neuromorphic processor used within the array [32], [33].

Routing Schemes

5

Hierarchical Tree

Grid/2D Mesh Neurogrid
SpiNNaker BrainScaleS L2
BrainScaleS L1 p Dynap-SEL R2
TrueNorth i
Loihi Memory Routing
Dynap-SEL R3 Darwin

Routing Methods
-0
Element Packet Packet Element
Source-Based Routing Destination-Based Routing

Neurogrid TrueNorth
SpiNNaker Loihi

BrainScaleS Dynap-SEL 1* Stage
Darwin

Dynap-SEL 2™ Stage

Fig. 1. Graphical summary of neuromorphic hardware communication systems.
The top half of this figure summarizes the routing schemes used by the
neuromorphic systems, and the bottom half summarizes the routing methods

(41.

ITIT. DANNA2

DANNA2? is the second iteration of the DANNA digital
neuromorphic processor designed by TENNLab and is used
to implement the neural network arrays within SNACC [32],
[33]. DANNAZ2 is specifically designed to map well to FPGA
and VLSI designs with the logic written as generic VHDL.
Many design decisions of DANNA2 help drive the SNACC
design. DANNAZ? is made up of a two-dimensional grid of
elements. Each element implements a single leaky-integrate
and fire neuron with 24 synapses. These synapses are connected
to the 24 nearest neighboring elements. The DANNA2 FPGA
implementation operates with a very fast network update which
occurs every ten MHz, much faster than other neuromorphic
systems that have network cycles in the kilohertz range [34].
This implementation is provided with a single 100 MHz global
clock, and the element calculations are completed every ten of
these global cycles. The elements are programmable, allowing
for different neural network configurations to be loaded. Each
element outputs a binary signal from the neuron which is
transferred to the connected element’s synapses. Input to the
array is provided to elements on the left side of the array and
output fires are read from the right side of the array.

IV. SNACC DESIGN

The main SNACC design objective is to create a development
platform for neuromorphic hardware which allows larger
neuromorphic systems to be developed and tested by combining
multiple neuromorphic processors together to extend their
capacity and functionality. Additionally, SNACC should place

NACC NACC
NN NN NN NN
Array | | Array Array | | Array
NN NN NN NN
Array | | Array Array | | Array

Fig. 2. SNACC Overview

minimal restrictions on the neuromorphic systems and behave
as though it was a single neuromorphic array with a much
greater capacity. Although SNACC was built with the DANNA?2
neuromorphic core, this core can be replaced with other
neuromorphic processors.

The SNACC design comprises three major components,
shown in Figure 2. The first component is the neuromorphic
arrays which are tiled together to form a large array. Between
the neuromorphic sub-arrays are point-to-point sub-array com-
munication channels which allow local fire information to be
shared among the sub-arrays. The second is the Neuromorphic
Array Communications Controller (NACC) which is used to
send packets between the neuromorphic array and the host.
Multiple NACCs can be used in a hierarchical tree to continue
scaling the size of the neuromorphic array. Communication
controller packets are sent between the NACC and the array.
The last component is the host machine, which is a traditional
computer used to control the operations of, provide input to,
and interpret the output from the network. Host packets are
sent between the host and NACC.

SNACC is designed with a GALS design pattern. The host,
NACC, and neuromorphic sub-arrays are all synchronous,
however, each of these systems is asynchronous to one
another, i.e., each driven with an independent clock. Each
communication channel is likewise clocked independently.
Clock converters are used to transfer packets between clock
domains. The GALS pattern allows for larger scaling than
would be possible within a single clock domain and for the
communication channels to run at different clock speeds than
the neuromorphic core. Martin et al. have noted that future
SoCs and large scale designs will no longer be able to operate
under a single clock because the variations across a large chip
or multiple large chips will make it prohibitively expensive
to attempt to manage the delays in a clock and other global
signals [11].

With a globally asynchronous approach, timing of events
is no longer guaranteed. In order to maintain deterministic
behaviour, a synchronization mechanism must be included.
The synchronization system used by SNACC comes from the
observation that the evaluation of the current cycle only depends
on information from prior cycles. Each element progresses to
the next cycle once all the cycle information upon which it is

Chip Boundary

Delay FIFO | || Slynaé’“;f
. elay Buffer
DANNA2 | y
Element ! e) DANNA2
| Packets Element

Fig. 3. Delay FIFO is used to move the Synaptic Delay from inside the
element to make it part of the communications channel.

dependent has been received. This decouples wall-time from
simulation time and makes the hardware operate similar to a
distributed event processor. Now that wall-time and simulation
time are decoupled, the time needed to evaluate a given number
of cycles is no longer guaranteed. This prevents the ability to
make hard real-time guarantees. However, since the system
operates much faster than real-time, soft real-time guarantees
can be made based on the statistical likeliness of meeting the
timing requirement.

Another important consideration is the performance of the
system. After each neuromorphic processor finishes a cycle,
it sends its output to its neighboring processors. When a
neuromorphic processor has received input from each of its
neighbors, it has the required information to start evaluating the
next cycle. Ideally, the neuromorphic processors will constantly
be evaluating the next timestep and will not need to wait
around for input from previous cycles. This will allow SNACC
to run at the same speed as the individual neuromorphic
processors. Although the sub-array communication channels
support enough throughput to send a new packet each cycle,
the latency of the packet being sent requires multiple cycles
before arrival. This issue can be alleviated by enforcing
a minimum synaptic delay and by using a FIFO to make
the communications channel add this delay instead of the
neuromorphic element’s synaptic delay buffer. Figure 3 shows
how a FIFO external to the synaptic delay buffer allows the
sub-array communication latency to be hidden by increasing
the minimum synaptic delay. To initialize the FIFO with the
correct delay value, the number of starting packets in the FIFO
is equal to the minimum synaptic delay plus one. The max size
of the FIFO is twice the number of starting packets. This design
allows the neuromorphic processors to continue operating at
peak performance since the latency of the communication
channel is hidden by the minimum synaptic delay. Furthermore,
this design is easy to implement since it only requires injecting
blank packets into the FIFO when the system is reset, and
removing the minimal delay from the configuration of the
synaptic delay buffer when the elements are configured.

In order to verify the logical design of SNACC, a simulator
was designed to simulate the asynchronous communication
patterns of the SNACC system using software. The simulator is
event-based with a 1 nanosecond time resolution and simulates
the communication patterns of each communication channel.
This simulator demonstrated that the SNACC system is able
to run at effectively peak performance by using a minimum
synaptic delay to hide the sub-array performance latency.

& £
g B
—>| HostIn 2 z Host Out [——>
-0
—>| WestIn East Out [—>
Neuromorphic
- Sub-array L
~— West Out | [] [] | Eastln |=—
Delay FIFO
Sub-array
Clock

——>{ South In
<——— South Out

Fig. 4. Logical view of the neuromorphic sub-array.

Figure 4 shows the logical view of each sub-array component
used by the simulator. Each component has connections to its
neighbors and the host, a local clock to consume and generate
packets, and delay FIFOs.

V. SNACC IMPLEMENTATION

The Aurora 64B/66B protocol from Xilinx is used to build
the communication channels between the FPGAs used to imple-
ment NACC and the neuromorphic sub-arrays. The Aurora core
“is a scalable, lightweight, high-data rate, link-layer protocol
for high-speed serial communication” [35]. Aurora uses the
high-speed transceivers available on the FPGAs to transmit and
receive data. Since Aurora is only a link level protocol, it does
not have any provision for guaranteeing in-order, error-free
transmission of packets. Therefore, a custom version of the Go-
Back-N retransmission protocol was implemented. This custom
design is crafted to work well with both Aurora and AXI4-
Stream. AXI4-Stream is the streaming handshake bus protocol
used throughout SNACC within the FPGAs. AXI4-Stream
is one of the protocols defined by the Advanced eXtensible
Interface 4 (AXI4) protocols which are part of the ARM
Advanced Microcontroller Bus Architecture 4 (AMBA4).

The sub-array components are designed such that each
sub-array can use the same design. Switches on the FPGA
board are used to direct packets to the appropriate sub-array
communication channel based on where the board is located in
the array. The sub-arrays are designed with five bidirectional
Aurora channels. One channel is used to connect to the NACC
and the other four channels are used to connect to neighboring
boards to the north, south, east, and west. The design also
includes retransmission logic and packet FIFOs. The FIFOs
are used to buffer incoming and outgoing packets as well as to
convert between the communication channel’s clock domain
and the neuromorphic processor’s clock domain. The FIFO
and clock domain crossing is implemented with custom logic
to reduce the latency added to the sub-array communication’s
critical path. The channels for sub-array communication also

have logic to initialize the FIFOs with an initial number of
packets to implement the channel delay. DANNA2 neuro-
morphic processors were adjusted to receive and send fire
packets to neighboring DANNA?2 processors. These changes
were made so that minimal connectivity constraints were placed
on the system. The only additional constraint added is that
diagonal connections at the corners of the sub-arrays are not
allowed. In order to allow these connections the number of
sub-array connections or the sub-array latency would have
to be doubled. The sub-array communication was the most
challenging component to design for SNACC. It was validated
and tuned with test benches and debug probes to achieve peak
sub-array communication performance.

The NACC component is implemented to allow the host to
communicate via PCle to each of the neuromorphic sub-arrays.
Xillybus is used to transfer packets from the host to the FPGA
using the Xillybus Linux driver and hardware design [36].
NACC then sends the packets to the correct sub-array based
on the Xillybus stream. More complex routing methods can
be added to NACC as the number of sub-arrays is increased.
NACC connects to the sub-arrays using Aurora with the custom
retransmission logic. Large FIFOs on NACC allow the PCle
to send large bursts of data at a time.

The host system must have an updated Xillybus driver
to communicate with the NACC over PCle. The TENNLab
software framework was also extended with libraries to include
SNACC as one of the supported neuromorphic devices [37].

VI. RESULTS

As SNACC was developed, each component was verified,
both individually and as part of the system. Once the individual
communication components were all verified, the entire SNACC
system was built and tested. SNACC was first implemented
with a false neuromorphic core which behaved like the logical
view of the core used by the simulator. The false core would
keep track of its current time step, send and receive full-sized
packets, and would generate and accept packets at the correct
rate. This implementation was used to verify that the behavior
of SNACC matched the expected behavior from the simulator.

The effect that varying the number of added delay cycles
had on the average element clock cycle frequency was both
modeled using the SNACC simulator and measured on the
hardware. The results are shown in Figure 5. As expected from
the simulator and from hand calculations, five added delay
cycles are required to hide the array-to-array communication
latency and to allow a multi-board DANNA?2 array to operate
with the same performance as a single-board DANNA?2 array.

Once the communication systems were verified, the entire
system’s operation was verified. SNACC performed as expected
with the DANNA2 cores, and deterministic operation was
achieved with the SNACC output matching the DANNA2
simulator’s output for the same network and input pattern. The
SNACC hardware system is shown in Figure 6. Currently, the
SNACC system is built with a two-by-two board array; however,
this size was chosen to be a proof of concept and larger arrays
can be built. The logical design of the system is such that any

Average Neuromorphic Array Frequency

-
o

o

IS

—— Communication Simulator
Hardware

Cycle Frequency (MHz)
(o)}

N

0 2 4 6 8 10 12 14
Delay Cycles Added

Fig. 5. Added delay verses average element clock cycle frequency.

SMA Cables FMC to SMA Reset Lines

L DANNA2
Sub-arrays
690Ts

Clock Generator

LMKO03328EVM FMC to SMA

Reset Line

Fig. 6. SNACC Hardware Setup

arbitrary number of sub-arrays can be supported. The system
was built using a computer running Ubuntu 16.04, powered by
an AMD Threadripper 1950X, ASUS ROG Zenith Extreme
EATX motherboard, and 32 GB of DDR4-3600 memory. NACC
was implemented on a Xilinx Virtex-7 FPGA VC707 evaluation
kit (VC707). Each sub-array was implemented on a HiTech
Global HTG-777 Stackable Development Platform with a
Xilinx Virtex-7 X690T FPGA (690T). The sub-arrays were
connected together via SMA cables using HiTech Global’s
8-port SMA-FMC modules. NACC is connected to the host
via a PCle port.

In order to determine the performance characteristics of the
DANNA?2 simulator versus the DANNA?2 hardware, a series
of test networks of various sizes were evaluated and timed.
Figure 7 shows these graphs. In each graph, the elapsed real-
world time in seconds is shown on the vertical axis. The
horizontal axes show the height of the neural network. The
width of the network was increased as well, to be roughly
half of the height. Each network was filled with elements in a
passthrough or snake pattern.

With the passthrough pattern, every element in the first
column is an input neuron and receives fire information;
likewise, every element in the last column generates output.
The tests were conducted on three systems: the DANNA2

Legend
—— Simulator Single FPGA —— NACC Delay 0 —— NACC Delay 6
Passthrough Low Activity: Simulation Time Passthrough Low Activity: Total Run Time
> B 1o Internal
E 06 2 oo Input
o4 ; 06
Q
® S 04
= 02 =
g T o2 /
@ 00 2 00
20 40 60 80 100 KEU 20 40 60 80 100
Height of Grid Height of Grid
Passthrough: Model Simulation Time Passthrough: Total Run Time
= 2.5 @
20 © 3
g E
g1 g >
@
5 g X
E 0.5 ° ! <
8 2
@ o0 20
20 40 60 80 100 ‘;‘J’ 20 40 60 80 100
Height of Grid Height of Grid
Snake: Model Simulation Time Snake: Total Run Time
—_ ’;)‘ 20
@)
g 15 E1s
E g
Q!0 g 10
2 3
= €
el 5 Y
E 3
@ o 2 o Increases
20 40 60 80 100 E 20 40 60 80 100
Height of Grid = Height of Grid

Fig. 7. Network evaluation time comparison between hardware and software

simulator, DANNA2 on a single FPGA, and DANNA2 on a
2-by-2 SNACC system. The SNACC system was tested both
with no added synaptic delay and with an added synaptic delay
of six. The graphs on the top row show the elapsed wall-clock
time for running a passthrough network with low activity. A
passthrough network connects each element to the one on its
right, such that the input is received from the left side and is
passed through the network to outputs on the right side. The
graphs in the first column focus only on the time required for
the network evaluation portion of the run. The graphs in the
second column show the total time for the entire run, which
includes the time required to generate input packets for the
hardware test points.

As seen in these graphs, the time required to evaluate the
array in hardware did not change, since each network was run
for the same total amount of network cycles in each case. In
the case of the total runtime, the time required for the hardware
changed linearly with the number of input elements due to
the additional input packets required by them. The software
simulator increased at a rate linearly correlated with the total
number of elements in the array. This is expected since the
software simulator is an event simulator, and increasing the
number of elements would lead to an increase in the number
of events to process. The width of the array is the closest
multiple of five which is half of the height; this explains the
wavy increases in the simulation evaluation time. Going down
the rows of the graph, the relative amount of internal activity
over input activity increases. Passthrough low activity received
an input fire every 4 cycles. The passthrough run in the middle
row receives an input fire every cycle. This causes the simulator
to outperform the hardware with smaller network sizes. (Lower

elapsed time is better.)

The use of a snake network in the final row results in the
best relative performance of hardware. The snake network only
has one input, but every element in the array is used. Since
only one input is used for all the sizes, the total simulation
time is roughly linear. The snake network is close to the ideal
network to run on hardware in terms of hardware outperforming
software. This is in contrast to sparse networks with few fires
performing best on the software simulator, where fewer events
need to be simulated.

VII. SIMULATOR VERSUS HARDWARE DISCUSSION

The DANNA?2 simulator and the hardware evaluate the
neuromorphic networks differently. The simulator uses an event
queue and processes events as they happen. This has the side
effect of allowing the simulator to run incredibly fast when
there are few events. The time required to evaluate a given
timestep depends on the number of events that occur at that
timestep. This means the simulator is particularly suited for
evaluating large, sparse networks with relatively few fires. The
simulator treats input fires the same way as internal fires, so
there is no additional penalty for an event being an input or
an internal fire.

The hardware simulator, on the other hand, evaluates each
timestep at a fixed frequency. Since the array is implemented in
hardware, the events of each element are evaluated in parallel,
resulting in a fixed timestep evaluation time. Array input is
not the same as internal fires; internal fires are generated and
consumed with the hardware elements, whereas input fires
originate from the host, and the host must convert each of the
fire events into a fire packet to be sent to the hardware. This
extra processing results in the number of input fires having a
larger impact on the total running time of the system. Therefore,
the hardware is best suited for running jobs which utilize dense
arrays with a large amount of internal activity compared to the
amount of input activity.

VIII. FUTURE WORK

The SNACC system has demonstrated that high-performing
neuromorphic processors operating with a ten MHz network
clock can be built into a large, multi-board, neuromorphic
system with local sub-array communication and hierarchical
connection back to a host system with the use of a separate
communications controller. The next steps are to demonstrate
further scaling by using one NACC to communicate with
a larger number of sub-arrays. After the capabilities of a
single NACC board are exhausted, the system can be further
extended with multiple NACCs organized in a hierarchy to
support more sub-array boards. Another direction would be
to explore replacing the DANNA2 cores with more advanced
neuromorphic cores. Further work is also being conducted
using SNACC to evaluate the benefits of running larger than
previously possible DANNA2 networks in hardware.

IX. CONCLUSION

A new communications system for neuromorphic network
arrays, which tiles together multiple neuromorphic processors,
was designed, verified, and evaluated. The Scaled-up Neuro-
morphic Array Communications Controller is able to support
large-scale neural networks through the use of multiple point-
to-point connections used to combine individual neuromorphic
processors together, with each one implementing a piece of the
large neural network. Each of these neural sub-arrays are then
connected, via point-to-point streaming connections, back to the
host through a neuromorphic communications controller. This
system is the first of its kind to link together independently
clocked neuromorphic processors running with a ten MHz
network cycle using high-speed, point-to-point connections,
all while guaranteeing error-free deterministic operation of the
resulting scaled-up network.

REFERENCES

[1] M. M. Waldrop, “The chips are down for moore’s law,” Nature,
vol. 530, no. 7589, pp. 144-147, Feb. 2016. por: 10.1038/
530144a.

[2] J. Backus, “Can programming be liberated from the von
neumann style?: A functional style and its algebra of programs,”
Commun. ACM, vol. 21, no. 8, pp. 613-641, Aug. 1978, ISSN:
0001-0782. DOI: 10.1145/359576.359579. [Online]. Available:
http://doi.acm.org/10.1145/359576.359579.

[3] H. Markram, “The blue brain project,” Nature Reviews Neuro-
science, vol. 7, no. 2, p. 153, 2006.

[4] A.R. Young, M. E. Dean, J. S. Plank, and G. S. Rose, “A review
of spiking neuromorphic hardware communication systems,”
IEEE Access, vol. 7, pp. 135606-135 620, 2019. por: 10.1109/
ACCESS.2019.2941772.

[5] M. S. Hasan, C. D. Schuman, J. S. Najem, R. Weiss, N. D.
Skuda, A. Belianinov, ef al., “Biomimetic, soft-material synapse
for neuromorphic computing: From device to network,” in /[EEE
13th Dallas Circuits and Systems Conference (DCAS), Nov.
2018. por: 10.1109/DCAS.2018.8620187. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8620187.

[6] S. Buckley, A. N. McCaughan, J. Chiles, R. P. Mirin, S. W.
Nam, J. M. Shainline, et al., “Design of superconducting
optoelectronic networks for neuromorphic computing,” in /EEE
International Conference on Rebooting Computing, Tysons, VA,
Nov. 2018, pp. 36-42.

[7] F. A. C. Azevedo, L. R. B. Carvalho, L. T. Grinberg, J. M.
Farfel, R. E. L. Ferretti, R. E. P. Leite, et al., “Equal numbers
of neuronal and nonneuronal cells make the human brain an
isometrically scaled-up primate brain,” Journal of Comparative
Neurology, vol. 513, no. 5, pp. 532-541, 2009.

[8] J. Wu, S. Furber, and J. Garside, “A programmable adaptive
router for a gals parallel system,” in 2009 15th IEEE Symposium
on Asynchronous Circuits and Systems, May 2009, pp. 23-31.
DOI: 10.1109/ASYNC.2009.17.

[91 M. E. Dean, J. Chan, C. Daffron, A. Disney, J. Reynolds,
G. S. Rose, et al., “An application development platform for
neuromorphic computing,” in International Joint Conference
on Neural Networks, Vancouver, Jul. 2016.

M. E. Dean and C. Daffron, “A VLSI design for neuromorphic
computing,” in IEEE Annual Symposium on VLSI (ISVLSI),
IEEE, Jul. 2016. por: 10.1109/ISVLS1.2016.81.

[10]

https://doi.org/10.1038/530144a
https://doi.org/10.1038/530144a
https://doi.org/10.1145/359576.359579
http://doi.acm.org/10.1145/359576.359579
https://doi.org/10.1109/ACCESS.2019.2941772
https://doi.org/10.1109/ACCESS.2019.2941772
https://doi.org/10.1109/DCAS.2018.8620187
https://ieeexplore.ieee.org/abstract/document/8620187
https://doi.org/10.1109/ASYNC.2009.17
https://doi.org/10.1109/ISVLSI.2016.81

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

A. J. Martin and M. Nystrom, “Asynchronous techniques for
system-on-chip design,” Proceedings of the IEEE, vol. 94, no. 6,
pp- 1089-1120, Jun. 2006, 1SSN: 0018-9219. por: 10.1109/
JPROC.2006.875789.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J.-M. Bussat, et al., “Neurogrid: A mixed-analog-
digital multichip system for large-scale neural simulations,”
Proceedings of the IEEE, vol. 102, no. 5, pp. 699-716, 2014.

A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza,
A. R. Voelker, et al., “Braindrop: A mixed-signal neuromorphic
architecture with a dynamical systems-based programming
model,” Proceedings of the IEEE, vol. 107, no. 1, pp. 144-164,
Jan. 2019, 1SSN: 0018-9219. por: 10.1109/JPROC.2018.
2881432.

S. Fok and K. Boahen, “A serial h-tree router for two-
dimensional arrays,” in 2018 24th IEEE International Sym-
posium on Asynchronous Circuits and Systems (ASYNC), May
2018, pp. 78-85. DOI: 10.1109/ASYNC.2018.00026.

Human Brain Project. (Apr. 10, 2019). Short overview of
the human brain project, [Online]. Available: https://www.
humanbrainproject.eu/en/about/overview/.

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and
S. Millner, “A wafer-scale neuromorphic hardware system for
large-scale neural modeling,” in Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, May 2010,
pp. 1947-1950. por: 10.1109/ISCAS.2010.5536970.

S. Scholze, S. Schiefer, J. Partzsch, S. Hartmann, C. Mayr, S.
Hoppner, et al., “Vlsi implementation of a 2.8 gevent/s packet-
based aer interface with routing and event sorting functionality,”
Frontiers in Neuroscience, vol. 5, p. 117, 2011, 1SSN: 1662-
453X. pot1: 10.3389/fnins.2011.00117. [Online]. Available:
http://journal frontiersin.org/article/10.3389/fnins.2011.00117.

S. Scholze, H. Eisenreich, S. Hoppner, G. Ellguth, S. Henker, M.
Ander, et al., “A 32gbit/s communication soc for a waferscale
neuromorphic system,” Integration, the VLSI Journal, vol. 45,
no. 1, pp. 61-75, 2012.

J. Schemmel, “Towards the second generation brainscales
system,” in NICE Workshop, 2018.

S. Furber and A. Brown, “Biologically-inspired massively-
parallel architectures-computing beyond a million processors,”
in Ninth International Conference On Application of Concur-
rency to System Design, 2009. ACSD’09., IEEE, Jul. 2009,
pp. 3-12. poI: 10.1109/ACSD.2009.17. [Online]. Available:
https://eprints.soton.ac.uk/270985/1/PID871138.pdf.

S. Hoppner, “Spinnaker2, Towards extremely efficient digital
neuromorphics and multi-scale brain emulation,” in Nice
Workshop, 2018.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, et al., “Truenorth: Design and tool flow of a 65
mw 1 million neuron programmable neurosynaptic chip,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 10, pp. 1537-1557, Oct. 2015, ISSN:
0278-0070. por: 10.1109/TCAD.2015.2474396.

M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H.
Choday, et al., “Loihi: A neuromorphic manycore processor
with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82—
99, Jan. 2018, 1SSN: 0272-1732. por: 10.1109/MM.2018.
112130359.

Wikichip. (Aug. 8, 2019). Loihi - intel, [Online]. Available:
https://en.wikichip.org/wiki/intel/loihi.

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

J. Shen, D. Ma, Z. Gu, M. Zhang, X. Zhu, X. Xu, et al.,
“Darwin: A neuromorphic hardware co-processor based on
spiking neural networks,” Science China Information Sciences,
vol. 59, no. 2, pp. 1-5, Feb. 2016, 1SSN: 1869-1919. DpoTI:
10.1007/s11432-015-5511-7. [Online]. Available: https:
//doi.org/10.1007/s11432-015-5511-7.

D. Ma, J. Shen, Z. Gu, M. Zhang, X. Zhu, X. Xu, et al.,
“Darwin: A neuromorphic hardware co-processor based on
spiking neural networks,” Journal of Systems Architecture,
vol. 77, pp. 43-51, 2017, 1SSN: 1383-7621. DOTI: https://doi.org/
10.1016/j.sysarc.2017.01.003. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1383762117300231.

S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable
multicore architecture with heterogeneous memory structures
for dynamic neuromorphic asynchronous processors (dynaps),”
IEEE Transactions on Biomedical Circuits and Systems, vol. 12,
no. 1, pp. 106-122, Feb. 2018, 1SSN: 1932-4545. por: 10.1109/

TBCAS.2017.2759700.

C. S. Thakur, J. L. Molin, G. Cauwenberghs, G. Indiveri,
K. Kumar, N. Qiao, et al., “Large-scale neuromorphic spiking
array processors: A quest to mimic the brain,” Frontiers in
Neuroscience, vol. 12, p. 891, 2018, 1SSN: 1662-453X. DOI:
10.3389/fnins.2018.00891. [Online]. Available: https://www.
frontiersin.org/article/10.3389/fnins.2018.00891.

A. R. Young, “Scalable high-speed communications for neu-
romorphic systems,” Master’s thesis, University of Tennessee,
2017.

A. R. Young, M. E. Dean, J. S. Plank, G. S. Rose, and
C. D. Schuman, “Neuromorphic array communications con-
troller to support large-scale neural networks,” in I/JCNN: The
International Joint Conference on Neural Networks, Rio de
Janeiro, Brazil, Jul. 2018.

P. J. Eckhart, “Tiled DANNA: Dynamic adaptive neural network
array scaled across multiple chips,” Master’s thesis, University
of Tennessee, 2017.

J. P. Mitchell, M. E. Dean, G. Bruer, J. S. Plank, and G. S.
Rose, “DANNA 2: Dynamic adaptive neural network arrays,” in
International Conference on Neuromorphic Computing Systems,
Knoxville, TN: ACM, Jul. 2018. por: 10.1145/3229884 .
3229894.

J. P. Mitchell, “Danna2: Dynamic adaptive neural network
arrays,” Master’s thesis, University of Tennessee, Aug. 2018.

P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and
D. S. Modha, “A digital neurosynaptic core using embedded
crossbar memory with 45pj per spike in 45nm,” in 2011 IEEE
Custom Integrated Circuits Conference (CICC), Sep. 2011,
pp. 1-4. por: 10.1109/CICC.2011.6055294.

Xilinx, Aurora 64b/66b v12.0, Logicore ip product guide,
PG046, version 11.0, Xilinx, May 22, 2019. [Online]. Available:
https : // www . xilinx . com / support / documentation / ip _
documentation/aurora_8b10b/v11_0/pg046-aurora-8b10b.pdf
(visited on 06/14/2017).

Xillybus Ltd., Ip core product brief, Feb. 16, 2017. [Online].
Available: http://xillybus.com/downloads/xillybus_product_
brief.pdf (visited on 06/12/2017).

J. S. Plank, C. D. Schuman, G. Bruer, M. E. Dean, and G. S.
Rose, “The TENNLab exploratory neuromorphic computing
framework,” IEEE Letters of the Computer Society, vol. 1,
no. 2, pp. 17-20, Jul. 2018. por: 10.1109/LOCS.2018.2885976.
[Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/LOCS.2018.2885976.

https://doi.org/10.1109/JPROC.2006.875789
https://doi.org/10.1109/JPROC.2006.875789
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/ASYNC.2018.00026
https://www.humanbrainproject.eu/en/about/overview/
https://www.humanbrainproject.eu/en/about/overview/
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.3389/fnins.2011.00117
http://journal.frontiersin.org/article/10.3389/fnins.2011.00117
https://doi.org/10.1109/ACSD.2009.17
https://eprints.soton.ac.uk/270985/1/PID871138.pdf
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
https://en.wikichip.org/wiki/intel/loihi
https://doi.org/10.1007/s11432-015-5511-7
https://doi.org/10.1007/s11432-015-5511-7
https://doi.org/10.1007/s11432-015-5511-7
https://doi.org/https://doi.org/10.1016/j.sysarc.2017.01.003
https://doi.org/https://doi.org/10.1016/j.sysarc.2017.01.003
http://www.sciencedirect.com/science/article/pii/S1383762117300231
http://www.sciencedirect.com/science/article/pii/S1383762117300231
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.3389/fnins.2018.00891
https://www.frontiersin.org/article/10.3389/fnins.2018.00891
https://www.frontiersin.org/article/10.3389/fnins.2018.00891
https://doi.org/10.1145/3229884.3229894
https://doi.org/10.1145/3229884.3229894
https://doi.org/10.1109/CICC.2011.6055294
https://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b/v11_0/pg046-aurora-8b10b.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b/v11_0/pg046-aurora-8b10b.pdf
http://xillybus.com/downloads/xillybus_product_brief.pdf
http://xillybus.com/downloads/xillybus_product_brief.pdf
https://doi.org/10.1109/LOCS.2018.2885976
https://doi.ieeecomputersociety.org/10.1109/LOCS.2018.2885976
https://doi.ieeecomputersociety.org/10.1109/LOCS.2018.2885976

