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Fig.1. The generated 3D faces with ‘Happy’ and ‘Surprise’ expressions by using our approach.

Abstract—Despite numerous progresses in the past decades, 3D
shape acquisition techniques remain a threshold for various 3D
face based applications. Moreover, advanced 2D data generative
models based on the deep networks may not be directly applicable
for 3D objects. In this work, we propose a geometry sampling
approach to bridge the gap between unstructured 3D face
models and the powerful deep networks towards an unsupervised
3D face generative model. Specifically, we devise a geometry
sampling approach to obtain a structured representation of
3D faces, which enable us to adapt the 3D faces to the Deep
Convolution Generative Adversarial Network (DCGAN) for 3D
face generation. We have demonstrated the effectiveness of our
generative model by producing a large variety of 3D faces with
different facial expressions.

Index Terms—Geometry sampling, 3D face generation, DC-
GAN

I. INTRODUCTION

With the rapid advancements of display equipments and the
growing network bandwidths, 3D data is becoming another
popular media due to its fullness of realistic information. On
the other hand, nowadays 3D shape acquisitions either rely on
expensive equipments or require the expertized knowledge and
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skills. For this reason, 3D data acquisition techniques remain
a threshold for the broaden applications of 3D data.

3D shape synthesis techniques provide an alternative means
for 3D data generation, which can be useful for various
purposes without copyright infringement [1, 2]. Specifically,
the 3D synthetic faces can be broadly used in the video games,
the beauty applications, virtual reality and so on. However,
although various synthetic approaches for 2D images and
video have been intensively studied previously, it remains a
challenging task for 3D shape synthesis because: 1) A 3D
shape is a set of 3D vertices in the space, which is an un-
structured data, compared to 2D images that can be stored in
a structured 2D matrix. 2) 3D shapes are sensitive to noises,
while one or even a few outlier pixels may not be visually
noticeable in a 2D image.

The contributions of this work are two folds:

o First, we propose a new geometry sampling approach,
which enables us to generate 3D shapes with deep
networks. Specifically, with our geometry sampling ap-
proach, we can represent the 3D faces into a structured
matrix-like structure.



o Second, we present a straight-forward unsupervised 3D
face generative model, which does not require any pre-
processing steps such as the extraction of facial feature
points or pre-computing the correspondences.

The remainder of the paper is organized as follows. We
first briefly review the state-of-the-art in Section II. Then, we
present our geometry 3D face generation model in Section III,
followed with the results and the discussions in Section IV.
Finally, we conclude the work in Section V.

II. RELATED WORK

Although the Deep Neural Network (DNN) based data-
driven synthetic methods have been intensively studied in the
computer vision field, it remains a challenging topic for data-
driven 3D shape generation. In this section, we first briefly
review the 3D shape reconstruction techniques in the computer
vision domain. Then, we summarize the recent related works
on the 3D shape representations and data-driven 3D shape
modeling, respectively.

3D shape reconstruction is important to theuser interaction,
auto piloting, etc. Izadi et al. present a GPU-based pipeline to
achieve the 3D pose reconstruction in real-time by using the
low-cost handheld scanning depth camera, which is demon-
strated with the object segmentation and user interaction [3]. In
order to facilitate the learning based algorithm for 3D shape re-
construction, Song et al. present a large-scale benchmark with
3D annotations and 3D evaluation metrics of RGB-D images
for the learning based 3D scene understanding [4]. Similarly,
Handa et al. present a dataset of RGB-D sequences with
perfect ground truth pose and the corresponding ground truth
surface model that enables of quantitatively evaluating the final
map or surface reconstruction accuracy [5]. The work in [6]
take one input image as a guide to "mold” a single reference
model to reach a reconstruction of the sought 3D shape, based
on the assumption of Lambertian reflectance and harmonic
representations of lighting. To improve the efficiency of the
learning methods, Zhu et al. present an actor-critic model for
the fast-converge learning that can be applied to target-driven
visual navigation [7]. In [8], the Recurrent Reconstruction
Neural network based model learns a mapping from images of
objects to their underlying 3D shapes from a large collection
of synthetic data. Furthermore, Fan et al. present a learning
paradigm with a conditional shape sampler that is capable of
predicting multiple plausible 3D point clouds from an input
image [9]. Recently, Garrido et al. present a coarse-to-fine
scheme for 3D face rigging from a monocular video [10]. They
first compute a coarse-scale face reconstruction with a novel
variational fitting approach. Then, the fine-scale skin detail,
such as wrinkles, are obtained from video via shading-based
refinement. By following the similar coarse-to-fine scheme,
Jiang et al. achieve the 3D face reconstruction with a single
image with the fine details obtained by using the photometric
consistency constraints and the shape-from-shading method.

Shape representations are fundamental to 3D models, as
the 3D model’s primitives are un-structured compared to the
pixels of a 2D image in a matrix form. In computer graphics

community, researchers have proposed a variety of classical
feature descriptors for 3D shapes. Recently Soltanpour et
al. summarized various local feature descriptors for 3D face
shape recognition [11], including the Gaussian curvatures [12],
the radial curves [13], and so on. A number of parameter-
ization methods have been proposed to flatten 3D shapes
into 2D, including the Mobiiis method [14], woven mesh
fitting method [15], and the geometry image/video [16, 17].
However, most of the existing 3D shape representations cannot
be directly applicable to data-driven 3D shape synthesis be-
cause they are either un-structured [11], or irreversible of the
geometry properties [14, 15], and the geometry video requires
extra operations on the eyes/mouth removal [17].

Deep learning based 3D shape synthesis is becoming pop-
ular in the computer graphic community in recent years [1, 2].
For example, Li et al. proposed a learning based facial
expression transfer method to drive an example model with
the learned expression [18], and Chen et al. apply the convo-
lutional network for the synthesis of 3D cloth wrinkles [19]. In
the computer vision community, there are two widely studied
DNN models for 2D image and video synthesis: the Variational
Auto-encoder (VAE) [20, 21] and the Generative Adversarial
Network (GAN) [22]. Between them, the GAN model con-
tains a Generative model and a Discriminative model. The
Generative model keeps updating the generated data until the
discriminative model cannot distinguish the difference between
the generated data and the original training data. In [23],
Radford et al. successfully integrate the GAN model with
the convolutional network for a Deep Convolutional GAN
(DCGAN) model, which significantly improves the potential
of GAN for image synthesis. In [24], Jean et al. incorporated
the shape geometry properties to enhance the performance of
DCGAN for 2D object generation. While both of VAE and
GAN techniques apply the learned features to an existing 3D
shape [18, 19], in this work we propose a DCGAN based
approach to directly generate a synthetic 3D face.

III. GEOMETRY SAMPLING AND 3D FACE GENERATION

Figure 2 shows the overview of the proposed 3D face
generation approach. In this section, we first present a ge-
ometry sampling approach for 3D face models, which outputs
a structured representation for an input 3D face. See details
in Section III-A. Based on the structured representation, we
further present the adaption of DCGAN for 3D face generation
in Section III-B.

A. Geometry Sampling of 3D Faces

Given a 3D face .%, the objective of geometry sampling
is to obtain a matrix-like, structured representation for any
input 3D face. Our geometry sampling approach is based on
two 3D face feature curves, i.e., the iso-geodesic curves and
the radial curves [25]. Figure 3 shows the pipeline of our
geometry sampling approach, which can be described in details
as follows:

1) Iso-geodesic curves. Given the detected nose tip O, an
iso-geodesic curve contains a sequence of the vertices on
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Fig. 2. Overview of the proposed 3D face generation approach. First, we adapt the 3D point cloud faces for the deep neural network by using the proposed
geometry sampling approach. With the random input z, the Generative and Discriminative adversarial networks repetitively update the generated 3D face, until
it is recognized as ‘real’. The generated 3D point cloud model is further smoothed for the final 3D face mesh. Note that both the Generative and Discriminative
Networks comprise a fully-connected layer and 3 transpose-convolution layers, but in the reverse order. Detailed specifications are described in Section III-B.
Note that the double-headed arrows denote the facial data flow.
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the face surface that have the same geodesic distance to
the nose-tip. We denote an iso-geodesic curve as follows:

Gi(d) = (v v5,....vi ).d €[0,D], (1)

where n; denotes the total number of the vertices on the
iso-geodesic curve G(d), and D denotes the maximal
geodesic distance from the nose-tip. In our experiments,
we set the same D that is large enough to cover the chin
and the eyebrows for all the faces. See an example of
the iso-geodesic curve in Figure 3(I).

2) Radial curves. We first align the 3D face model to the

XOY plane. Then, given the nose tip O, a radial curve
contains a sequence of the vertices whose projections on
the XOY plane have the same angle to the X axis, i.e.,
/XO0v; = 6. We denote a radial curve as follows:

Rj(9)=(v?,v§,...,v29),9€[0,360), )

(1)

3)

(III')

Fig. 3. The pipeline of our geometry sampling approach. (I) The original 3D face, with the detected nose-tip, the iso-geodesic curve, the radial curves, and
the sampled vertices. (II) The sampled vertices are stored in a structured matrix. (IIT) The sampled face.

where ng denotes the total number of the vertices on the
radial curve R(6). See the examples of the radial curves
in Figure 3(I).
Geometry sampling based on the intersections. Our
objective of the geometry sampling step is to sample
the vertices on a 3D face and save them into a squared
matrix of the size 2R + 1, where R denotes the total
number of the iso-geodesic curves. In order to obtain the
averaged sampling, we compute the iso-geodesic curves
G(d) with the linearly increased d, i.e.,
d=k-(D/K),k=1,...,K, 3)
where K denotes the total number of the iso-geodesic
curves. Figure 3 depicts the geometry sampling based
on the intersections between the iso-geodesic curves and
the radial curves, which can be described as follows:



a) First, starting from the detected nose tip O, we
assign it to the center of the sampling matrix, i.e.,
M(K+1,K+1)=0.

b) Then, we compute the r-th iso-geodesic curve, and
8K radial curves R(6),0 =1-3% t=1,... 8K.

c) After that, by computing the intersections between
the k-th iso-geodesic curve and the newly com-
puted 8K radial curves, we obtain 8k intersected
vertices in order, which can be stored into the k-th
ring within the sampling matrix M.

d) By repeating the steps (b)-(c) until £k = K, we can
obtain the full sampling matrix M.

Figure 3(III) shows the sampled face from the original face
shown in Figure 3(I). Note that we extract more samples from
the larger iso-geodesic curves, which is important to keep the
visual facial features in the regions far away from the nose
tip. Additionally, the sampled vertices can be represented by
a structured matrix.

Fig. 4. Surface fitting of the generated 3D face as the point cloud.

B. 3D Face Generation via DCGAN

Now that we have obtained the geometry sampling for
all the 3D faces in the training set, we proceed to train a
3D face generative model using the deep networks. In [22],
Geoodfellow et al. proposed a GAN model, which contains
two deep networks, i.e., a Generator (G) and a Discriminator
(D). The GAN model works in the way that the G model
keeps updating the output until the D model cannot distinguish
the generated output from the training data. Recently in [23],
Radford et al. proposed a DCGAN model to improve the
performance of the GAN model with the following network
settings:

« Apply the transposed convolutions for G and the stride
convolutions instead of the pooling layers.

o Apply the fully Convolutional Networks instead of the
fully connected hidden layers.

o Apply the ReLU activation [26] for all the convolution
layers and the tanh activation for the output layer in G,
and apply the LeakyReLU activation [27, 28] in D.

o Apply the batch normalization [29] in both G and D.

Figure 1 shows the generated ‘Happy’ and ‘Surprise’ faces
using the proposed 3D face generative model. Our experiments
on the training and the generated results are presented in
details in Section IV.

Unlike 2D images, the smoothness of a 3D shape surface
can be easily tainted by noise while often a noisy pixel in a
2D image is hardly noticeable. For this reason, we can easily
foresee that the generated 3D face of point clouds require
a post-processing step (e.g., smoothing). A large number of
previous efforts have been focused on the 3D shape reconstruc-
tion from dense point clouds [30, 31, 32]. Unlike them, our
generated models are sparse that contain (2K + 1)? points. In
our implementation, we apply the linear interpolation method
to fit a smooth surface to the obtained 3D points. An example
of the generated 3D face of point clouds and its smoothed
surface is shown in Figure 4.

IV. RESULTS AND DISCUSSION

In our experiments, the geometry sampling approach and the
DCGAN model were implemented with Matlab and Python,
respectively. All the experiments were conducted on an off-
the-shelf desktop with an Intel Core with 3.4GHz CPU and
16GB memory.

In order to evaluate the proposed 3D face generative model,
we have experimented with the ‘BU-3DFE’ dataset from the
Binghamton University [33]. This face dataset contains 100
subjects (56 females and 44 males with various ethnicities),
each of which performs 7 different expressions, shown in
Table 1.

TABLE I
THE TIMING STATISTICS (IN SECONDS) OF THE GEOMETRY SAMPLING
AND TRAINING FOR EACH SET OF THE FACIAL EXPRESSIONS FROM THE
‘BU-3DFE’ DATASET.

Facial Geometry 1 5 10
Expressions Sampling  epoch  epochs  epochs
Angry 73.2 35.4 164.2 348.2
Disgust 69.9 352 163.0 345.8
Fear 70.5 39.3 163.5 356.5
Happy 74.7 40.4 163.5 355.0
Neutral 71.0 38.1 164.0 353.1
Sad 73.8 353 166.6 333.8
Surprise 79.9 35.7 167.6 323.8

Given the computational cost can increase exponentially
with the number of the iso-geodesic curves K, we set K =29
by balancing between the quality of the 3D face model and
the computational costs. This results in the dimension of M as
59. That is, each sampled face contains 597 = 3481 vertices.
Table I shows the averaged per-mesh timings of the geometry
sampling of the training faces with different expressions. On
average, it took about 74.2 seconds to sample a face with
around 8,000 vertices. Furthermore, several sampled faces are



shown in the top row of Figure 6. As can be seen, although the
smoothness of the sampled faces have been broken, they are
sufficient to observe visual facial features. More importantly,
the sampled faces can be represented with a structured matrix.

T

5 epochs

1 epoch

2 epochs 10 epochs

Fig. 5. The generated 3D faces with different training epochs.

Table I shows the training timings of the DCGAN model
with different numbers of training epochs for different ex-
pressions, which is increased linearly and the timing of each
epoch ranges in [35.2 40.4]. As an example for the ‘Happy’
face, Figure 5 shows the intermediate progress of the proposed
generative model. Starting with a matrix of random noises, the
generative model gradually improves the quality of the output,
until we obtain a 3D face reasonably close to the faces in the
training dataset. As can be seen in Figure 5, we can obtain an
easily recognizable ‘Happy’ face using the generative model
based on 10 epochs of training. More results are also shown
in Figure 1.

The bottom row of Figure 6 shows the generated 3D faces
using our approach. From this figure, we can easily observe
the facial components including the nose, mouth, cheek, etc.
In some of the generated faces, although the details of the
eyes may be not clear, we still can easily recognize the facial
expressions. Additionally, it is interesting to mention that
different subjects may show different facial movements for
the same expression, due to the difference of culture, race, or
character. Using our approach, we can generate faces with the
same expression, but having local surface variances (refer to
the mouth and cheek regions of the generated ‘Fear’ faces).

V. CONCLUSION

We have presented an unsupervised data-driven model for
the generation of 3D faces. Specifically, we first propose a ge-
ometry sampling approach to adapt an un-structured 3D mod-
els for the classical DCGAN model, which is a competitive
data generation model. Our method requires neither explicit
face feature extraction nor pre-computed face alignments. Our
current method is effective for 3D faces, because the geometry
affinities of 3D faces are high, especially the geodesic distance.
However, our method can be easily extended for more complex
shapes using reversible parameterization. As the future works,
we will further investigate the potentials of our new 3D face
sampling approach for generation by adapting to the recent
advanced deep network techniques. Moreover, we are also
interested in exploring the direction of automated data-driven
generation of 3D faces with textures.
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