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Abstract—Fully Convolutional Neural Networks (FCNs) great-
ly promote the development of saliency detection. However, most
of the FCN-based models have suffered from the structure of
salient objects challenges. The extracted multi-scale features
by previous models could help locate the objects with various
scales, but they cannot contribute to effectively locating the
objects with complex shapes, especially the salient regions that
might intertwine with non-salient regions. Moreover, the style
of decoder in previous models cannot adequately filter out the
disturbance in low-level features, which is sub-optimal to sharpen
the boundary of salient objects. In this paper, we propose
DAGNet that explores the structure of salient objects from multi-
level features to precisely detect salient objects. Firstly, the new
dense multi-scale context extraction modules (DMCEMs) are
implemented to transmit the rich structural information flow
of salient objects from shallower layers to deeper layers, by
which our model can locate the objects with complex shapes.
Secondly, attention-based deeply refining modules (ADRMs) are
designed in an effective attention-based style to effectively restore
the boundary of objects stage-by-stage. In the style, the semantic
information of high-level features is utilized to guide the shallow
layer to filter out disturbance and refine the high-level features.
Considering the salient objects surrounded by a cluttered scene,
we propose a global context extraction module (GCEM) that can
sufficiently understand the cluttered scene of an image from a
global view. Comprehensive experiments indicate that our model
is superior to 13 state-of-the-art models on 5 benchmark datasets
under different evaluation metrics.

Index Terms—Fully convolutional neural network, Saliency
detection, Structure of salient objects, Deep learning

I. INTRODUCTION

Salient object detection aims to locate and segment the most
visually distinctive regions in an image. It is widely served as
the first step for many computer vision tasks, such as in [1],
discriminant track is framed as a saliency problem, and solved
based on discriminant center-surround saliency. Moreover,
saliency detection is also applied to image editing [2], image
captioning [3], [4], question answering [5].

Recently, convolutional neural networks (CNNs) have a
strong ability to extract multi-level features from the initial
image, which greatly facilitate the development of saliency
detection. Due to rich high-level semantic information can be
obtained by CNN, Some CNN-based models [6]–[8] achieve
more remarkable performance than the traditional models.
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Fig. 1. Visual examples of our method and other state-of-the-art models.
From left to right: (a) input image, (b) ground truth, (c) our method, (d)
BMPM [14] (e) Amulet [15]

However, these CNN-based models extract features by s-
tacking a series of stride convolutional and pooling layers,
resulting in a significant decrease in the resolution of the
initial image. Besides, each super-pixel is fed into the deep
network, which is time-consuming. To address the problem,
several effective saliency models [9]–[11] have been proposed
based on the success of fully convolutional neural networks
(FCNs) in other dense prediction tasks [12], [13]. Although
these FCN-based models achieve excellent performance, there
is still exist two challenges to tackle:

a) Due to salient objects have large variations in scale,
shape, and location, it brings a challenge to precisely locate
and highlight the entire salient objects. Subjected to the limi-
tation of the receptive fields, the models of saliency detection
are unable to learn rich contextual features [14], [15]. Hence,
implementing modules to extract multi-scale features is an
effective way to gain different receptive fields [14]–[16]. The
captured different receptive fields information enables models
to sense the salient objects with various scales. However, as
the model deepens, the deeper layers encode a large amount of
semantic information while the detailed structural information
of the salient objects is lost. These models may fail to locate
those salient objects with irregular and complex shapes. For
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Fig. 2. Simply description of different styles for refining high-level features
by low-level features. The style (c) is the simple description of the red box in
Fig. 5. Oi is the low-level features that are fine but contain a large amount of
disturbance. Di+1 is the high-level features that are rough-edged and almost
noiseless. A1, A2, A3 represent the attention modules in the corresponding
paper. ”UP” is an up-sampling layer and its factor is set to 2.

example, the salient regions might intertwine with non-salient
regions (like row 1-2 in Fig. 1). The empirical receptive fields
are much smaller than the theoretical receptive fields [17], by
which the extracted features are short of the global receptive
fields, and the models are unable to sufficiently understand the
cluttered scene (like row 3-4 in Fig. 1).

In this paper, we solve the problems mentioned above from
two aspects: i) we design the dense multi-scale context extrac-
tion modules (DMCEMs) to capture more effective multi-scale
features. Different from the above model, DMCEMs pass the
messages from shallow layers to deep layers, of which the low-
level features can enhance the capability of high-level features
to precisely locate salient with irregular and complex shapes.
ii) we propose a global context extraction module (GCEM).
GCEM further captures global receptive fields and makes each
pixel can sense the salient objects from a global view, which
effectively releases the disturbance from backgrounds.

b) The saliency map generated by the deepest layer is
a low-resolution map with blurry boundaries of the salient
object. How to restore it to a high-resolution map with sharp
boundaries is another challenge. Previous methods [14], [18]
use the low-level features of the shallower layer to refine high-
level features of the deeper layer by direct concatenation [18]
or element-wise addition [14] operations. Moreover, consid-
ering the different contributions of the features of each level
for saliency detection, other works [19], [20] utilize attention
mechanisms to alleviate it. As shown in Fig. 2, their attention
modules are used to filter out the distractions from high-
level features (style (a)) or the combinative features of low-
level features and high-level features (style (b)). The high-
level features are coarse and noiseless (high-level features
aim to locate the salient objects). If the location information
is inaccurate, it will be hardly rectified in the next stages.
Correspondingly, the low-level features are fine-grained but
contain a large amount of disturbance (redundant background
regions information that is bad for the process of restoring
sharp boundaries). The two styles of (a) and (b) in Fig. 2 are
unable to specifically filter out the disturbance in low-level
features. Hence, the residual disturbance obstructs the refining

process of high-level features, causing the final prediction map
cannot obtain sharp boundaries.

Based on the above analysis, we propose the attention-based
deeply refining modules (ADRMs) to specifically suppress
the disturbance of low-level features for restoring a high-
resolution saliency map with sharp boundaries. ADRMs u-
tilize semantic information of high-level features to guide the
selection of low-level to obtain the fine-grained and noiseless
features (the blue dotted box of style (c) in Fig. 2), then the
features can effectively refine high-level features (the green
dotted box of style (c) in Fig. 2). Besides, we embed an
effective channel-wise and spatial attention module (the green
and blue solid boxes in Fig. 5) into the guidance process
to distinguish the contribution of each spatial position and
different feature channels.

Our main contributions are summarized as three folds:
• We design the new dense multi-scale context extraction

modules to make the model more robust for the salient
objects which have large variations in scale and shape.
Moreover, the global context extraction modules are
proposed to gain global receptive fields so that the model
can precisely locate the salient objects from a cluttered
backgrounds.

• We propose the effective attention-based deeply refin-
ing modules to specifically suppress the disturbance of
low-level features, which is used to restore the low-
resolution saliency map with blurry boundaries to the
high-resolution map with sharp boundaries.

• We compare our model with 13 state-of-the-art methods
on five datasets. Comprehensive experiment results indi-
cate that our proposed model performs favorably against
state-of-the-art models under different evaluation metrics.

II. RELATED WORK

Over the past two decades, a large number of salient
object detection methods have been proposed. Traditional
models extract low-level hand-crafted features using heuristic
saliency priors [21]–[23]. These models simply utilize low-
level features without the assistance of high-level semantic
information, which make the model cannot precisely highlight
the entire salient objects.

Due to the superior feature extraction ability of CNN,
several early deep algorithms [6]–[8] predict the salient score
of super-pixel. Despite the excellent performance achieved
by these approaches, each super-pixel is fed into the deep
network, which is time-consuming. Besides, these CNN-based
models also decrease the resolution of the original image.
Therefore, many effective FCN-based models [11], [24] are
developed.

Recently, based on the following observations: High-level
features aim to provide the location information, and low-
level features containing rich spatial details that can refine the
boundaries of salient objects. Many works [14]–[16], [18], [25]
integrate multi-level features to enhance the performance of
saliency detection. Li et al. [25] directly aggregate the features
of each level of the backbone to obtain an effective feature



presentation. Hou et al. [16] embed the short connection
into the skip-layer structure within the HED [13]. Luo et
al. [18] design a multi-resolution 4 × 5 grid network to
extract global information and local contrast feature. Zhang
et al. [15] aggregate multi-level features into five different
resolutions, then the model predicts the saliency maps in each
resolution and fuses them to produce a more fine saliency
map. Although the above works obtain remarkable results, they
integrate multi-level features without distinction. Therefore,
several models [14], [19], [20] utilize attention mechanisms
to alleviate the problem. Such as Lu et al. [14] design gate
function to selectively pass the message between the shallow
layer and deep layer. Zhang et al. [19] employ channel-
wise and spatial attention modules to filter out disturbance of
the high-level features of deeper layers recursively, then the
low-level features are utilized to refine the coarse high-level
features. Liu et al. [20] generate global and local attention
maps to select effective features for refining coarse high-level
features.

In this paper, their models may not be robust to the salient
objects with various shapes or the salient objects surrounded
by a cluttered background. And their attention-based style
cannot specifically suppress the distractions in low-level fea-
tures, obstructing the process of sharpening the boundaries of
saliency objects. Different from the models above, our model
passes low-level features containing rich structural information
of salient objects to deeper layers, instead of transmitting
high-level features containing rich semantic information to
shallower layers. we also design a module to extract global
context for precisely locating the entire salient objects sur-
rounded by a cluttered background. Besides, we propose a new
deeply refining style to effectively refine the coarse high-level
features from deeper layer, and an effective attention module
is embedded into the style to weigh each spatial position and
different feature channels.

III. PROPOSED METHOD

In this paper, the DAGNet is proposed to explore the
structure of salient objects for accurate saliency detection. In
Sec. III-A, the overall architecture of the proposed network
will be described. Then Sec. III-B provides the detailed prin-
ciple of dense multi-scale context extraction modules (DM-
CEMs). Next, the global context extraction module (GCEM)
will be given in Sec. III-C. At last, We introduce the attention-
based deeply refining modules (ADRMs).

A. Overall Architecture

Fig. 3 shows the details of the overall architecture. The
proposed model is an encoder-decoder fashion with VGG-
16 [26] network as the pre-trained model. The VGG-16
network is modified to fit the saliency detection. All the fully
connected layers and the last pooling layer of the VGG-16
network are removed to focus on pixel-wise prediction and
maintain more details of the deepest layer, respectively. For
the input image with size H×W , the revised VGG-16 network
extracts multi-level features at five stages, which denoted as

Fi, i = 1, 2, 3, 4, 5 with resolution [ H
2i−1 , W

2i−1 ]. Then these
multi-resolution features are fed into the DMCEMs to capture
more effective multi-scale features representation. Besides,
GCEM is added on the deepest layer of the VGG-16 network
to further gain global receptive fields so that the model can
precisely locate the salient objects in a cluttered background.
Finally, ADRMs are designed to deeply refine coarse high-
level features by fine-grained low-level features, and generate
a series of prediction maps Si, i = 1, 2, 3, 4, 5. S1 is the final
saliency map with sharp boundaries.

B. Dense multi-scale context extraction module

The salient objects have large variations in scale and shape.
Previous methods [14]–[16] extract multi-scale features from
each side output of the backbone. These multi-scale features
are robust to the salient objects with various scales, but not to
the objects with various shapes. In this paper, we propose the
novel dense multi-scale context extraction modules (DMCEM-
s) to capture more effective multi-scale features representation.

Fig. 3 shows the details of the DMCEM-i. To handle various
scales of objects, we make DMCEM-i to capture different
receptive fields by stacking a series of pooling layers and
up-sampling layers in parallel. After pooling and up-sampling
layers, DMCEM-i generates the original multi-scale features
Mi = {mk

i , k = 1, 2, 3, 4, 5}.
The original multi-scale features Mi is robust to the salient

objects with various scales, but it may not effectively deal with
those salient objects with complex shapes. Low-level features
of shallow layers contain rich structural information of salient
objects, which can be utilized to improve the capability of
locating those salient objects with complex shapes. Hence,
DMCEM-i utilizes dense connection to deliver the low-level
features Hj = {hkj , j = 1, · · · , i− 1} to the current level who
are at the deeper layer. Then, high-level features Mi can con-
catenate resolution-matching features of Hj across channels to
enhance original multi-scale Mi. Finally, DMCEM-i generates
the more effective multi-scale features Oi. The Oi not only
adapts to the objects with various scales but also can locate
those objects with complex shapes. The whole process can be
formulated as follows:

hki = ψ(φ(Cat(mk
i ,h

k
1 , · · · ,hki−1), θk)) (1)

Oi = ψ(φ(Cat(Down(h1∼(i−1)
i ),hii,Up(h(i+1)∼5

i )), ω) (2)

Where i ∈ {1, 2, 3, 4, 5}, k ∈ {1, 2, 3, 4, 5}. φ(·, θ) is a
1 × 1 convolutional layer with parameter θ, Cat(·) is the
cross-channel concatenation operation. ψ(·) is ReLU activate
function. Down(·) and Up(·) represents pooling layers and up-
sampling layers, respectively. Down(h1∼(i−1)

i ) denotes the set
of Down(h1

i ), · · ·Down(hi−1
i ), Up(h(i+1∼5

i ) denotes the set of
Up(hi+1

i ), · · ·Up(h5
i ).

DMCEMs passe the low-level features to deeper layers
by dense connection, which has two advantages: i) high-
level features fuse the rich structural information from low-
level features, which makes the model can precisely locate
the salient objects with complex shapes. ii) Because of the



Fig. 3. The overall network architecture is on the left. The input image is fed to encoder to extract multi-level features Fi. Then a series of GCEM are
built on the deepest layer F5 to further capture global contextual information P. We pass Fi into the DMCEM-i (the illustration is on the right). DMCEM-i
generates the Hi and the more effective multi-scale features Oi. Low-level features Hi is passed to other high-level by dense connection. Oi is fed into the
ADRM-i to refine the coarse features of the deeper layer.

gradient backpropagation, the low-level can learn richer spatial
details, especially the structural information of salient objects.
After the DMCEMs, model gains a series of more effective
multi-scale features, which can effectively locate the salient
objects with various scales and shapes.

C. Global context extraction module

To obtaining global receptive fields, Wang et al. [27] apply
a PPM to extract global contextual information. However,
PPM utilizes multiple pooling layers with different kernel
sizes, which loses abundant spatial details. Other works u-
tilize convolutional layer with larger kernel size, which is
time-consuming and increases the amount of memory and
calculation. In this subsection, we propose the global context
extraction module (GCEM) which combines different convo-
lutional layers without pooling layers for retaining the rich
spatial details in the deepest layer.

Fig. 4 shows the details of GCEM. GCEM separates the F5

into four equal parts {X1,X2,X3,X4} along the channels by a
1×1 convolutional layer, which can reduce the computational
overhead and the number of parameters of the module. GCEM
employs the combined convolutional layers (1 × k + k × 1,
k × 1 + 1 × k and 3 × 3) on every Xi without pooling
layers. Cascading the output of combined convolutional layers
from C1 to C4 makes GCEM to obtain global receptive fields
without any pooling layers. For Xi, GCEM concatenates Xi
and Ci−1 across channels to generate the Ki and utilizes
the combined convolutional layers to further enlarge receptive
fields. Furthermore, we cascade a series of GCEM to make
sure that each pixel can sense the whole image from a global
view. The whole process is performed as follows.

Ki = φ((Cat(Xi,Ci−1), κi) i = 2, 3, 4 (3)

Ci =

{
ψ1(Xi, ωi) + ψ2(Xi, µi) + ψ3×3(Xi, θi) i = 1 (4)

ψ1(Ki, ωi) + ψ2(Ki, µi) + ψ3×3(Ki, θi) i = 2, 3, 4

P = φ(Cat(C1,C2,C3,C4), ν) + F5 (5)

Where φ(·, κi) is a 1×1 convolutional layer with the parameter
κi, and ψ1(·, ωi) represents the combination of 1× k+ k× 1
convolutional layer with parameter ωi. ψ2(·, µi) represents the
combination of k×1+1×k convolutional layer with parameter
µi. ψ3×3(·, θi) is a 3 × 3 convolutional layer with parameter
θi. P is the final output of the GCEM. φ(·, ν) is a 1 × 1
convolutional layer with the parameter ν.

D. Attention-based deeply refining module

The saliency map generated by the deepest layer is low-
resolution with fuzzy boundaries. Recent works [19], [20]
utilize attention mechanism (the style (a) and (b) in Fig. 2)
to integrate multi-level features to restore a high-resolution
saliency map with sharp boundaries. However, the two styles
are unable to specifically filter out the distractions in low-
level features, which is sub-optimal to fully refine high-
level features. Different from them, the attention-based deeply
refining modules (ADRMs) is designed in a new attention-
based style to effectively restore the boundary of objects
stage-by-stage. Moreover, motivated by [28], ADRMs embed
channel-wise and spatial attention modules into the style to
weigh the contribution of each spatial position and different
feature channels.



Fig. 4. The details of GCEM. The orange box represents the convolutional
layer and the ”1×k×C” denotes the convolution kernel and channel number
of the convolutional layer is 1× k and C. In this paper, we set the k equal
to 7. ”sum” denotes the element-wise addition operation.

Fig. 5 shows the details of the proposed ADRM-i. A
new deeply refining style (the red dotted box) is designed
in the ADRM-i. Each channel of low-level features encodes
different features about the image. Some channels encode
effective features about salient objects while others have a
strong response to the background regions. Instead of directly
adding channel-wise attention module on low-level features,
ADRM-i utilizes the strong semantic information of high-level
features Di+1 to guide low-level features Oi by a channel-wise
attention module. After the channel-wise guiding process, the
disturbance of the Oi can be filtered out along the channel
axis and the output feature D1

i more focus on the channels
that have a high response to the foreground. Similarly, not
each spatial pixel contributes to saliency detection. Some
background pixels may cause serious distractions. Therefore,
ADRM-i also utilizes Di+1 to guide D1

i by a spatial attention
module. After the spatial guiding process, D1

i can further
highlight the salient regions and suppress background pixels
distractions. Finally, the fine-grained and noiseless D3

i deeply
refines the high-level features Di+1. The whole process of the
style is formulated as follows:

Ac = σ(MLP(AP(φ(Cat(Oi,Di+1)), τ), w)

+MLP(MP(φ(Cat(Oi,Di+1)), τ), w)) (6)

D1
i = Oi ⊗ Ac (7)

D2
i = φ(Cat(D1

i ,Di+1), ε) (8)

As = σ(φ7×7(Cat(AP(D2
i ),MP(D2

i )), α) (9)

Di = φ(Cat((D1
i ⊗ As),Di+1), λ) (10)

Where σ(·) is the sigmoid function. MLP(·, w) is the multi-
layer perceptron with the shared parameter w. AP(·) and
MP(·) denotes the average-pooling and max-pooling layer
respectively. ⊗ is the element-wise multiplication. φ(·) is a
1× 1 convolutional layer to reduce the number of channels to

Fig. 5. The details of ADRM-i. ”CA” represents the channel-wise attention
module. ”SA” represents the spatial attention module. The orange box
represents the convolutional layer and the ”7 × 7” denotes the convolution
kernel size of convolutional layer is 7×7. The ”1×1” denotes the convolution
kernel size of convolutional layer is 1× 1.

the same as Oi. φ7×7(·, λ) is a 7× 7 convolutional layer with
parameter α.

We adopt deep supervision to facilitate the model training.
To be specific, for each ADRM-i, we add a 1×1 convolutional
layer with sigmoid activation on Di to obtain the saliency
map Si, then we use cross-entropy loss between the Si and
corresponding ground truth.

IV. EXPERIMENTS

A. Experiment Setup

Implementation Details. VGG-16 network initializes the pa-
rameters of the first 13 convolutional layers and the rest one
are initialized by Xavier [29]. Our model is trained by the
Adam [30] optimizer with an initial learning rate of 1e-5
which is divided by 5 after 31 epochs. The reduction ratio
r is set to 16. Meanwhile, similarly to [20], the weight of
the cross-entropy loss in ADRM-i, i = 5, 4, 3, 2, 1 are set
to 0.5, 0.5, 0.5, 0.8, 1 respectively. During training, we use
horizontal flipping for data augmentation. Then each image
is resized to 256× 256 and randomly cropped to 224× 224.
During testing, we directly resize each image to 224×224, and
these images are fed into our model to generate corresponding
saliency maps. The batch size is set to 4. Our model is trained
on the DUTS-TR dataset. It is trained for 50 epochs in total
and takes about 50 hours on a GTX Titan XP GPU. The code
can be found at https://github.com/CVisionProcessing.
Datasets. Our model is compared with other methods on
five benchmark datasets: ECSSD [31], DUTS-TE [32], HKU-
IS [6], PASCAL-S [33], SOD [34].
Evaluation metrics. Precision-recall (PR) curves, mean ab-
solute error (MAE) and F-measure score (Fβ) are used to
evaluate the performance of the proposed model and other
models. PR curve is a popular way to evaluate the predicted
saliency map. The saliency map is binarized by a threshold
that slides from 0 to 255. Then the binarized saliency map
is compared with the ground truth to calculate the value of
precision and recall. The Fβ is a comprehensive performance
measurement.

Fβ =
(1 + β2)× Precision×Recall
β2 × Precision+Recall

(11)



Where β2 is set to 0.3 to emphasize that precision is more
important than recall. The MAE calculates the average differ-
ence between the predicted map and the corresponding ground
truth.

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|S(x, y)−G(x, y)| (12)

Where S and G are predicted saliency map and corresponding
ground truth, respectively.

B. Ablation Studies

In this section, a series of ablation experiments are conduct-
ed to verify the effectiveness of each module employed in our
model. We also investigate the performance of the component
of DMCEMs, GCEM, and ADRMs.

TABLE I
ABLATION EXPERIMENTS ON THREE DATASETS. THE BEST RESULTS ARE

HIGHLIGHTED IN RED.

No.
Modules ECSSD PASCAL-S DUTS-TE

DMCEMs GCEM ADRMs MaxF MAE MaxF MAE MaxF MAE

1 0.903 0.061 0.844 0.087 0.806 0.065

2
√

0.919 0.052 0.854 0.079 0.912 0.042

3
√

0.931 0.043 0.864 0.073 0.850 0.046

4
√

0.932 0.045 0.864 0.075 0.850 0.048

5
√ √

0.932 0.044 0.869 0.072 0.857 0.046

6
√ √ √

0.939 0.040 0.874 0.069 0.866 0.043

The Effectiveness of DMCEMs. A series of experiments are
conducted to invalidate the effectiveness of DMCEMs. First,
we only add DMCEMs in the baseline (No.2 in Tab. I). The
score of both F-measure and MAE all obviously surpass the
FCN baseline (No.1 in Tab. I) on three datasets. Second, to
investigate the performance of the component in DMCEMs,
we remove dense connection from DMCEMs (No.1 in Tab. II).
We also replace DMCEMs with MCFEM (No.2 in Tab. II).
Compared to the whole model (No.9 in Tab. II), the score of
the two experiments drop significantly. These results demon-
strate two things: i) transmitting rich structural information of
salient objects from low-level to high-level effectively locates
the salient objects with complex shapes. ii) DMCEMs can
extract more effective multi-scale features than MCFEM. The
multi-scale features not only are robust to the salient objects
with various scales, but also to the objects with complex
shapes.
The Effectiveness of GCEM. First, we perform a series of
experiments (No.3, No.4, and No.9 in Tab. II) to find the
optimal value of T. The results indicate the performance is best
when T = 2. We only add GCEM on baseline (No.3 in Tab. I)
or replace it with PPM (No.5 in Tab. II). The numerical results
verify that GCEM can effectively obtain global receptive fields
without losing spatial details in the deepest layer, which makes
our model can precisely locate the salient objects surrounded
by a cluttered background. Besides, we embed both DMCEMs
and GCEM into the baseline (No.5 in Tab. I). The result
of further improvement reflects that the two modules work

harmoniously, effectively alleviating the challenge that salient
objects have large variations in scale, shape and location.

TABLE II
THE PERFORMANCE OF COMPONENT OF EVERY MODULE. THE BEST

RESULTS ARE HIGHLIGHTED IN RED.OURS REPRESENTS COMBINATION OF
DMCEMS, GCEM(T=2), ADRMS.

No. model setting ECSSD PASCAL-S DUTS-TE

MaxF MAE MaxF MAE MaxF MAE

1 w/o dense connection 0.932 0.042 0.870 0.071 0.855 0.046
2 MCFEM [14] 0.933 0.044 0.874 0.073 0.854 0.051

3 GCEM with T=1 0.933 0.043 0.873 0.073 0.856 0.050
4 GCEM with T=3 0.936 0.043 0.876 0.072 0.863 0.046
5 PPM [11] 0.935 0.041 0.873 0.070 0.853 0.049

6 w/o attention 0.932 0.044 0.869 0.072 0.857 0.046
7 Style (a) 0.916 0.050 0.855 0.077 0.829 0.052
8 Style (b) 0.934 0.043 0.876 0.069 0.860 0.044

9 Ours 0.939 0.041 0.874 0.069 0.866 0.043

The Effectiveness of ADRMs. We only equip ADRMs at
baseline (No.4 in Tab. I). The score increased markedly
compared to the baseline. Then, we remove both channel-wise
and spatial attention modules from ADRMs (No.6 in Tab. II).
It proves that the attention modules can effectively filter out
distractions and capture distinguishing features in low-level
features. Besides, to investigate the performance of the pro-
posed style of ADRMs (style (c) in Fig. 2), we replace it with
style (a) and style (b) in Fig. 2, respectively (No.7 and No.8 in
Tab. II). The proposed style achieves best performance (No.9
in Tab. II). It proves that the proposed style can effectively
refine the high-level features and restore a high-resolution
saliency map with sharp boundaries. Finally, we equip ADRM
at the combination of DMCEMs and GCEM (No.6 of Tab. I).
The score of both F-measure and MAE significantly improves.
It demonstrates that the proposed model works collaboratively
for accurate saliency detection.

C. Comparisons to State-of-the-Art Methods

Fig. 6. Precision-Recall curves of our model and 13 state-of-the-art methods
on four datasets

Our proposed model is compared with other 13 state-of-the-
art models, including AFNet [36], PiCANet [20], PAGR [19],



TABLE III
QUANTITATIVE COMPARISONS OF DIFFERENT MODELS ON 5 BENCHMARK DATASETS. THE BEST THREE RESULTS ARE

HIGHLIGHTED IN RED, GREEN AND BLUE.

Method ECSSD HKU-IS SOD PASCAL-S DUTS-TE
MaxF MAE MaxF MAE MaxF MAE MaxF MAE MaxF MAE

UCF [35] 0.911 0.078 0.886 0.074 0.803 0.169 0.846 0.128 0.771 0.117
SRM [11] 0.917 0.054 0.906 0.046 0.845 0.132 0.847 0.085 0.827 0.059
RFCN [11] 0.898 0.095 0.898 0.080 0.807 0.166 0.850 0.132 0.783 0.090
NLDF [18] 0.905 0.063 0.902 0.048 0.837 0.123 0.845 0.112 0.812 0.066
ELD [9] 0.867 0.079 0.839 0.074 0.760 0.154 0.773 0.123 0.738 0.093
DSS [16] 0.916 0.053 0.911 0.040 0.846 0.126 0.846 0.112 0.825 0.057
DHS [10] 0.907 0.060 0.902 0.054 0.827 0.133 0.841 0.111 0.829 0.065
DCL [25] 0.901 0.075 0.885 0.137 0.825 0.198 0.823 0.189 0.782 0.150
Amulet [15] 0.915 0.059 0.896 0.052 0.808 0.145 0.858 0.103 0.778 0.085
BMPM [14] 0.928 0.044 0.920 0.038 0.851 0.106 0.862 0.076 0.850 0.049
PAGR [19] 0.901 0.075 0.885 0.137 0.825 0.198 0.823 0.189 0.782 0.150
PiCANet [20] 0.931 0.047 0.921 0.042 0.855 0.108 0.880 0.088 0.851 0.054
AFNet [36] 0.935 0.042 0.923 0.036 - - 0.868 0.071 0.862 0.046
Ours 0.939 0.040 0.926 0.036 0.853 0.105 0.874 0.069 0.866 0.043

Fig. 7. Visual comparisons of our model and 13 state-of-the-art methods.

BMPM [14], Amulet [15], DCL [25], DSS [16], DHS [10],
ELD [9], NLDF [18], RFCN [11], SRM [11], UCF [35],
MDF [6]. For fair comparison, saliency maps are generated
with running original codes with recommended parameters
setting or provided by the authors.
Quantitative Comparisons. Tab. III shows the quantitative
results of the proposed model and other 13 state-of-the-art
models on five datasets. For different evaluation metrics, our
model is superior to other models in most datasets, which
indicates the effectiveness of our model.
PR Curves. We also draw the PR curves on four datasets
as shown in Fig. 6. The PR curves of our model surpass
other methods on four datasets. It verifies our method is more
effective than other methods.
Visual Comparisons. Fig. 7 shows some saliency maps
generated by our model and other state-of-the-art methods.
These saliency maps are from test datasets. The visual results
indicate that our model can precisely locate salient objects and
restore a high-resolution saliency map with sharp boundaries.
For example, the small objects and large objects (like row 1-2

in Fig. 7) are all located. It means that our model is more
robust to the salient objects with various scales. Also, other
models are unable to precisely detect those salient objects with
irregular and complex shapes (like row 3-4 in Fig. 7). Due
to the foreground regions intertwined with some background
regions, the background regions of the eggs and snake are
possibly misidentified as foreground. But our model can
precisely locate the objects. These visual results also reflect
the effectiveness of the proposed DMCEMs. The images with
low contrast between foreground and background (like row 5-
6 in Fig. 7) can also be precisely detected, which indicates that
our model can sufficiently understand the cluttered scene of the
image. Hence, our model is more robust to the salient objects
surrounded by clutter background than other models, which
verifies the effectiveness of the proposed GCEM. Besides, the
saliency map of the snail and helicopter (row 7-8 in Fig. 7)
generated by our model have more sharp boundaries than other
models. It verifies that the ADRMs can effectively restore a
saliency map with sharp boundaries.



V. CONCLUSION

In this paper, we propose DAGNet for accurate saliency
detection. Firstly, the proposed dense multi-scale context ex-
traction modules (DMCEMs), in addition to extracting original
multi-scale features through a series of pooling layers, is more
important in transmitting the low-level features containing rich
structural information of salient objects to deeper layers to ob-
tain more effective multi-scale features. DMCEMs effectively
alleviate the challenge, of which salient objects have large
variation in shapes. Secondly, the global context extraction
module (GMCE) is designed to further extract global receptive
fields so that the model can precisely locate the salient
objects from a cluttered background. Thirdly, the attention-
based deeply refining modules (ADRMs) are learning to
gradually recover the low-resolution saliency map with blurry
boundaries to the high-resolution map with sharp boundaries.
The comprehensive experiments indicate that our model is
superior to other state-of-the-art models on five benchmark
datasets.
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