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Abstract—Vector Symbolic Architectures belong to a family
of related cognitive modeling approaches that encode symbols
and structures in high-dimensional vectors. Similar to human
subjects, whose capacity to process and store information or con-
cepts in short-term memory is subject to numerical restrictions,
the capacity of information that can be encoded in such vector
representations is limited and one way of modeling the numerical
restrictions to cognition. In this paper, we analyze these limits
regarding information capacity of distributed representations. We
focus our analysis on simple superposition and more complex,
structured representations involving convolutive powers to encode
spatial information. In two experiments, we find upper bounds for
the number of concepts that can effectively be stored in a single
vector only depending on the dimensionality of the underlying
vector space.

Index Terms—VSAs (Vector Symbolic Architectures), dis-
tributed representations, capacity analysis, cognitive modeling

I. INTRODUCTION

Understanding and building cognitive systems has seen
extensive research over the last decades leading to the de-
velopment of several cognitive architectures. A cognitive ar-
chitecture is a “general proposal about the representation and
processes that produce intelligent thought” [1]. On the one
hand, these architectures are used to explain and better under-
stand important aspects of human behavior and intelligence.
On the other hand, they are also used to design computers and
robots mimicking certain cognitive abilities of humans.

VSAs (Vector Symbolic Architectures) [2] refers to a family
of related cognitive modeling approaches that represent sym-
bols and structures by mapping them to (high-dimensional)
vectors. Such vectors are one variant of distributed repre-
sentations in the sense that information is captured over all
dimensions of the vector instead of one single number, which
allows to encode both, symbol-like and numerical structures
in a similar and unified way. Additionally, the architectures’
algebraic operations allow manipulation and combination of
represented entities into structured representations. There are
several architectures such as MAP (Multiply-Add-Permutate)
[3], BSCs (Binary Spatter Codes) [4] and HRRs (Holographic
Reduced Representations) [5], which propose different com-
pressed multiplication operations replacing the initially used
tensor product [6] and resulting in vectors with the same

dimension as the input vectors. One advantage of this approach
is that the number of dimensions remains fixed, independent
of the number of entities combined through the architecture’s
algebraic operations. Schlegel et al. [7] give an overview of
eight different variants of VSAs and compare their properties
and characteristics.

VSAs have been employed in a diverse variety of applica-
tion domains, for instance, as one building block for imple-
menting cognitive tasks such as RPMs (Raven’s Progressive
Matrices) [8] in SNNs (Spiking Neural Networks) [9] for
the Spaun (Semantic Pointer Architecture Unified Network)
model [10]. Furthermore, VSAs have been used for encod-
ing and manipulating concepts [11] as well as for human-
scale knowledge representation of language vocabularies [12].
Kleyko et al. [13] used VSAs to imitate the concept learning
capabilities of honey bees. In robotics [14], VSAs have been
used to learn navigation policies for simple reactive behaviors
to control a Braitenberg-vehicle robot [15]. In previous work,
we proposed an automotive environment representation based
on the SPA (Semantic Pointer Architecture), one particular
VSA, and employed this representation to tasks such as context
classification [16] and vehicle trajectory prediction [17]. For
the latter [17], we used the convolutive power of vectors to
encapsulate spatial positions of several vehicles in vectors of
fixed length (cf. Fig. 1 and Sec. II). Komer et al. [18] propose
a similar representation of continuous space using convolutive
powers and analyze it from neural perspective.

However, given the mathematical properties of VSAs, there
are systematical limitations to the amount of information
that can be encoded in such a vector representation. These
limitations are strongly connected to the chosen dimension
of the underlying vector space and are a feature of such
modeling architectures for being able to model limitations
of cognitive functions of living beings, who are also not
able to store unlimited amounts of information. Considering
human subjects for instance, the capacity to process and store
information or concepts in short-term memory as well as other
cognitive tasks is subject to numerical restrictions [19]. Hence,
numerical limitations of cognitive architectures like VSAs are
one way of modeling the numerical restrictions to cognition
observed in human subjects. In our context of interest, i.e.,
automated driving [17], however, we need to analyze these
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Fig. 1. Visualization of the convolutive vector power encoding one particular driving scene in a 512-dimensional vector. The left plot depicts a scene from a
real-world driving data set, while the middle and right plots visualize the similarity between the representation vector of that scene and auxiliary comparison
vectors created from a sequence of discrete values as heat map for the target vehicle (middle) and other cars (right).

restrictions imposed by VSAs in general and the SPA in
particular to provide upper borders regarding the amount of
information that can be stored in our vector representation.

A. Contribution
In this paper, we analyze the limits regarding information

capacity of distributed representations with the goal of finding
bounds for, e.g., the number of concepts that can effectively
be stored in a single vector before the accumulation of noise
makes it impossible to retrieve the original individual vectors.
Therefore, our contribution is a two-stage analysis: First, we
analyze the amount of information that can effectively be
stored in a single vector through superposition (i.e., addition)
of several concept vectors. A similar but slightly different
experiment has been conducted in [20]: the atomic vocabulary
vectors, referred to as elemental vectors in [20], are sparse in
the sense, that they mostly contain 0 elements, and the super-
posed vectors are normalized after adding them. Furthermore,
[20] only compares the similarity between the superposition
and the original vector with the similarity between the original
vector and the most recently added random vector as baseline
for the expected similarity between randomly chosen vectors.
In contrast, we calculate the similarity between the superpo-
sition vector and n other random vectors for reference.

Secondly, we analyze the information capacity of vector
representations involving the convolutive vector power for
encapsulating spatial information. Given our scene represen-
tation proposed in [17] (cf. Fig. 1 and Sec. II), we are
primarily interested in representing two-dimensional values in
vectors, which is why we focus our analysis of the convolutive
power encoding scheme on this case. In our analysis, we
show that the information capacity is tightly linked to the
dimension of the underlying vector space and furthermore,
we give upper bounds for the capacity of superposition and
convolutive power representations for three different vector
dimensionalities.

II. MATERIALS AND METHODS

A. Convolutive vector-power
The SPA [9] is based on Plate’s HRRs [5], which is one

special case of a Vector Symbolic Architecture [2]. Here,

atomic vectors are picked from the real-valued unit sphere,
the dot product serves as a measure of similarity, which we
denote by φ , and the algebraic operations are component-wise
vector addition ⊕ and circular convolution ⊗. In this work,
we make use of the fact that for any two vectors v,w, we can
write

v⊗w = IDFT (DFT (v)�DFT (w)) , (1)

where � denotes element-wise multiplication, DFT and IDFT
denote the Discrete Fourier Transform and Inverse Discrete
Fourier Transform respectively. Using Eq. (1), we define the
convolutive power of a vector v by an exponent p ∈ R as

vp := ℜ

(
IDFT

(
(DFTj (v)p)

D−1
j=0

))
, (2)

where ℜ denotes the real part of a complex number. Further-
more, we call a vector u unitary, if ‖v‖ = ‖v⊗u‖ for any
other v (see [5, Sec. 3.6.3 and 3.6.5] for more details on the
convolutive power and unitary vectors).

Finally, we consider any two vectors similar, if their simi-
larity is significantly higher than what we would expect from
two randomly chosen vectors. For growing dimension D, the
cosine similarity follows approximately a normal distribution
Nµ,σ , with µ = 0 and σ = 1√

D
[21]. Using the three-sigma-

rule, we denote εweak =
2√
D

as weak similarity threshold and
εstrong =

3√
D

as strong similarity threshold.

B. Vector representation

We are primarily interested in representing two-dimensional
values in vectors, which is why we focus our analysis of
the convolutive power encoding scheme on this case. Hence,
we encode two numerical values x,y, i.e., a two-dimensional
entity, by generating two random, unitary vectors X,Y repre-
senting the corresponding units and applying Equation (2)

V = Xx⊗Yy. (3)

To encode a sequence (xi,yi) for i = 1, . . . ,n of two-
dimensional numerical values all sharing the same units, we
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(a) Convolutive power encoding for one two-dimensional numerical entity
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(b) Convolutive power encoding for two two-dimensional numerical entities

Fig. 2. Visualization of the convolutive power encoding scheme for 512-dimensional representation vectors depicting the similarity between the representation
vector and auxiliary comparison vectors created from a sequence of discrete values. The left plot in both rows shows a two-dimensional grid of the similarities,
while the middle and right plot show the individual entities respectively. The red circles in the left plot and the dashed blue lines in the middle and right plots
indicate the actual encoded values.

simply sum up a their individual encoding vectors generated
via Equation (3), which leads to

V =
n

∑
i=1

Xxi ⊗Yyi . (4)

Figure 2 visualizes vectors encoding one (cf. Fig. 2a and
Equation (3)) and two numerical entities (cf. Fig. 2b and
Equation (4)) given by two units within one vector. To generate
the similarities shown in Fig. 2, we calculate the dot product
between the vectors actually representing the encoded values
and vectors Ṽi = Xx̃i ⊗Yỹi encoding a sequence of discrete
sample values (x̃i, ỹi) for i = 1, . . . ,m. The left plot in each
row of Fig. 2 depicts the similarities as heat map over a
two-dimensional grid. The middle and right plots in Fig. 2
visualize the similarities of each unit, which is similar to
plotting the heat map in three dimensions as ridges and
slicing them through one of the ground axes. In both rows,
we observe high similarity peaks way above both similarity
thresholds at the actual encoded values and significantly lower
similarity values everywhere else. However, comparing the
similarities at the positions of the encoded values, we observe
a drop of similarity values from roughly 0.7 to 0.5 when
encoding two two-dimensional numerical values instead of
only one. This gives a graphic explanation that there is a
limit of how many values can effectively be encoded in such
a representation before the actual values can not be properly

recovered anymore. Such limitations regarding the number of
concepts that can be represented in one vector depending on
its dimension are a recurrent theme in the field of VSAs and
the subject of our analysis in the following section.

III. EXPERIMENTS

In this section, we conduct our analysis regarding the
capacity of distributed representations for simple superposition
in Sec. III-A and representations employing the convolutive
power in Sec. III-B. The code for reproducing our analysis,
results and figures can be found online 1.

A. Superposition capacity

First, we evaluate the capacity of superposition, i.e., the
addition operation. Superposition is used to store and combine
several concept vectors vi for i = 0, . . . ,n in an unordered set

s =
n

∑
i=0

vi. (5)

We can determine if a vector of interest w belongs to that
ordered set by calculating the similarity φ (s,w) between the
superposition vector and the vector of interest. For sufficiently
high-dimensional vectors, the similarity φ (s,w) will be close
to 0 in case the vector w is not part of the sum. However, the
more vectors we add to the superposition vector s, the more

1https://github.com/fmirus/spa capacity analysis
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Fig. 3. Visualization of the SPA’s superposition capacity for vector dimensions 256, 512 and 1024. The blue boxes indicate the similarity between the
superposition vector and its summands, the orange boxes illustrate the similarity between the superposition vector and other randomly generated vectors. The
dotted lines visualize the similarity threshold based on the vector dimensionality for reference.

noise accumulates in the representation and thus decreases the
similarity between the superposition vector s and its individual
ingredients vi. In order to analyze how many vectors can
be added together by superposition before individual vectors
become irretrievable, we conducted the following experiment:
assuming we want to add n vectors vi for i = 1, . . . ,n into
a superposition vector s as in Equation (5), we randomly
generate a vocabulary of 2n vectors vi for i = 1, . . . ,2n and
sum up the first n members to create our superposition vector
s. Then we calculate the cosine similarity φ (s,vi) between the
superposition vector s and every vector vi for i = 1, . . . ,2n in
the vocabulary.

Figure 3 shows the result of our experiment for 3 random
vocabularies per superposition length containing vectors of
dimension 256, 512 and 1024. The blue boxes in each figure
illustrate the similarity between the superposition vector s and
each of the individual vectors vi for i= 1, . . . ,n it contains, i.e.,
the members of the unordered superposition set. The orange
boxes depict the similarity between s and the other vocabulary
vectors vi for i = n+ 1, . . . ,2n it does not contain, i.e., the
non-members. The dotted red and green lines indicate the
SPA’s weak and strong similarity threshold depending on the
dimension of the vector space. Considering the weak similarity
threshold εweak =

2√
D

, we observe that for a vector dimension
of 256 the SPA allows roughly 50 items to be stored in a
superposition vector. For higher vector dimensions 512 and
1024, the number of items that can be superposed increases
to roughly 100 and 200 respectively. Considering the strong
similarity threshold εstrong = 3√

D
, the upper borders for the

number of items being stored in a superposition vector are
slightly more conservative with 25, 50 and 100 for vector
space dimensions of 256, 512 and 1024 respectively. We
also observe in our experiments that the similarity between
the superposition vector and non-member random vectors is
consistently below the weak similarity threshold εweak for the
majority of the samples. However, once the similarity between
the superposition vector and its members drops below either
of the similarity thresholds for the majority of the samples, we
can not distinguish between members and non-members with
a sufficiently high probability. For 256 dimensional vectors for
instance, we even observe that the members and non-members
become nearly indistinguishably when adding more than 80
vectors. Thus, we have to choose rather conservative bounds
for the number of items to be encoded in a superposition
vector.

B. Capacity of structured representations involving convolu-
tive powers

In the previous section, we have analyzed the SPA’s capacity
regarding the number of items that can be stored in an
unordered set using superposition. For encoding more complex
information, such as driving situations [17], in a semantic
vector substrate, we employ more complex representation than
superposition of single items alone. In this section, we analyze
the capacity of structured vector representations involving the
convolutive vector-power (see Eq. (2)). Figure 2 illustrates that
we can unbind positions by querying the representation vector
with sample vectors encoding discrete position examples, but
also that encoding several entities of the same type in one
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Fig. 4. Capacity analysis for the superposition of vectors encoding spatial positions using the convolutive vector-power for varying vector dimensions.

position vector as in Fig. 2b yields lower similarities of the
true positive positions compared to the encoding of only one
item as in Fig. 2a. Hence, our capacity analysis has to cover the
amount of objects encoded in one vector, but also the number
of items per object class.

Therefore, we conduct the following experiment: assuming
we want to encode n spatial entities, i.e., objects oi with
two-dimensional location information (xi,yi) for i = 1, . . . ,n
as shown in Fig. 2 for n = 1 (Fig. 2a) and n = 2 (Fig. 2b),
into a single representation vector s, we generate a vocabulary
of random vectors vi for i = 1, . . . ,n encoding object class
labels and random unitary vectors X,Y to encode the units of
the spatial information. In contrast to the experiment in III-A,
where we simply summed up a certain number of random
vectors, we are interested in a more specific analysis, since
there are several possibilities to distribute the positional values
(xi,yi) over the available object class vectors vi. For instance,
for a total number of two superpositions, i.e., n = 2, there are
two possibilities to generate our representation vector, namely

s1 = v1⊗Xx1 ⊗Yy1 +v1⊗Xx2 ⊗Yy2 , (6)
s2 = v1⊗Xx1 ⊗Yy1 +v2⊗Xx2 ⊗Yy2 . (7)

The vector s1 in Equation (6) encodes two objects of the
same type, while the vector s2 encodes occurrences of two
different object types at the given locations. As we are working
with random vectors in this experiment, we can, without loss
of generality, skip the vector encoding two objects of type
represented by the vector v2, which would yield a result
equivalent to Equation (6). More generally, we are interested

in all sets

Cm, j =

{
0 < k1, . . . ,km ≤ n | m≤ n and

m

∑
i=1

ki = n

}
(8)

of natural numbers ki summing up to the total number of
objects n ignoring permutations of the ki. We index the sets
with j, since there potentially exist several possibilities to
decompose n into sums of m natural numbers.

In our experiments, for each number n of total objects
to be encoded in the vector representation, we calculate
all possible sets Cm, j (ignoring permutations) and generate
random position values (xi,yi) for i = 1, . . . ,n and a random
vocabulary as described above. For each set Cm, j, we generate
a representation vector

sm, j =
m

∑
i=1

ki

∑
l=1

vi⊗Xxi ⊗Yyi (9)

as well as query vectors Pi = Xx̃i ⊗Yỹi encoding a sequence
of discrete sample values (x̃i, ỹi) for i = 1, . . . ,M evenly
distributed over the length of the positional encoding grid.
In other words, Equation (9) states, that each class label vi
appears ki times yielding a sum of n objects. We query the
representation vector for the position of each class by binding
it to the pseudo-inverse (see also [5], [9]) element v̄i for each
class label vector, i.e.,

sm, j⊗ v̄i ≈
ki

∑
l=1

Xxi ⊗Yyi , (10)

and calculate the similarity with the discretized position vec-
tors Pk to get

si,k =
∣∣φ (sm, j⊗ v̄i,Pk)

∣∣ . (11)
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Fig. 5. Capacity analysis for the superposition of vectors encoding spatial positions using the convolutive vector-power for varying vector dimensions. In
contrast to Fig. 4, this figure illustrates the similarity for vectors containing spatial information for several objects of the same class.

For samples close to the originally encoded positions, i.e.,
|xi− x̃i| < ε and |yi− ỹi| < ε for a certain threshold ε (here,
we use ε = 0.4), we label si,k as positive similarity denoting a
member of the representation vector. Otherwise, we consider
the similarity si,k at position (x̃i, ỹi) not a member of the
representation vector sm, j.

Figure 4 shows the results of this capacity analysis regarding
the total number of superposed objects within the represen-
tation vector for varying vector dimensions. In Sec. III-A,
we have already analyzed the SPA’s capacity regarding the
number of items that can be stored in an unordered set using
superposition. Similar to Fig. 2, we observe that the similarity
of the non-members is in the order of magnitude of the simi-
larity thresholds while the similarity for the member position
decreases with a growing number of spatial items encoded in
the vector. However, for encoding more complex information,
like automotive scenes [17] in a semantic vector substrate,
we employ more complex representation than superposition
of single items alone.

Therefore, Fig. 5 shows a different evaluation of the same
data showing the number of addition operations per class on
the x-axis. In contrast to Fig. 4, Fig. 5 illustrates the similarity
for vectors containing spatial information for several objects
of the same class. That is, Fig. 5 illustrates the similarity
of vectors containing a specific number k of superpositions
per class on its x-axis independent of the total number of
superpositions. We observe, that not only the similarity of the
members decreases with growing number of superpositions
per class, but the similarity of the non-member increases
beyond the weak similarity threshold. Similar to the simple

superposition capacity analysis, we consider the point in the
plots where the member similarities fall below the strong sim-
ilarity threshold the upper border for the maximal number of
spatial objects per class to be encoded in this representational
substrate. For instance, this upper bound for 256 dimensional
vectors is 10 superpositions per class, which is roughly half
of the upper bound for the number of simple superpositions.
For higher-dimensional vectors (here 512 and 1024), these
limits are beyond the evaluated number of superpositions
per class. Therefore, using at least 512 dimensional vectors
for automotive scene representation yields a sufficiently high
information capacity. On the other hand, we expect upper
bounds for the higher dimensions similar to 256-dimensional
vectors, i.e., roughly half the number of superpositions as
stated in Sec. III-A.

IV. CONCLUSION

In this paper, we analyzed the capacity of structured vector
representations in VSAs based on simple superposition and
superposition combined with the convolutive power encoding
of spatial information. We provided a more detailed analysis
of the superposition capacity compared to those available in
the literature, e.g. in [20]. Furthermore, we evaluated the
capacity of structured representations involving convolutive
vector powers to encode spatial information, which, to the
best of our knowledge, is the first of its kind. Thereby, we
found upper bounds for the amount of information that can
effectively be encoded in such representations depending on
the dimension of the underlying vector space. These bounds
have to considered in future work regarding distributed rep-



resentations, for instance, of automotive scenes like in [17]
to evaluate if the amount of information to be encoded in the
vector representation is compliant with these bounds. This will
allow a conclusive assessment of the limits of structured vector
representations in general, whereas our particular focus is on
automotive context.
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