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Abstract—Using electrocardiograms as an example, we demon-
strate the characteristic problems that arise when modeling
one-dimensional signals containing inaccurate repeating pattern
by means of standard convolutional networks. We show that
these problems are systemic in nature. They are due to how
convolutional networks work with composite objects, parts of
which are not fixed rigidly, but have significant mobility. We also
demonstrate some counterintuitive effects related to generaliza-
tion in deep networks.

Index Terms—deep learning, representation learning, ECG

I. INTRODUCTION

Modern convolutional networks have achieved great success
in pattern recognition. In recent years they have also proven
themselves in sequence analysis problems [1], showing some
specific advantages over recurrent networks [2]. However,
the well-known issue of deep networks is the difficulty of
interpreting of the resulting model. A lot of work has been
done in this direction, both practical [3] and theoretical [4]
[5].

Convolutional networks are mainly investigated [6] [7] on
tasks related to the analysis of visual scenes, i.e. photo, video.
ECG diagnostic task belongs to another class of problems. It
is sequence classification problem, where the signal has fuzzy
cyclic structure. Convolutional networks have been success-
fully applied to this task [8] [9] [10]. Interpretability of the
model is especially important in medicine, so in this paper we
focused on elucidating the details of how deep convolutional
networks build a representation of signals with fuzzy cyclic
structure.

In the tasks of image analysis under certain conditions,
a good interpretability of a deep model is achievable - the
model learns deep features that are understandable to human.
However, convolutional networks are known to experience fun-
damental difficulties in some situations. In [11] it was shown
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that the problem arises when the network needs to determine
the coordinates of some object inside the region, looking at
the picture of this region. This behavior is reproducible even
on a simple synthetic problem of that kind.

Doctors consider the electrocardiogram (ECG) signal as a
sequence of composite objects - cardiac cycles. Each cycle
usually includes several components. These objects can be
located in different places of a specific ECG. This, at first
glance, makes the situation similar to that considered in work
[11]. However, for diagnosis by ECG, one does not need to
know the absolute coordinates of these objects inside the ECG.
Rather, one needs to know the distances between them, i.e.
the problem arises of determining not absolute coordinates,
but relative ones.

There is theoretical evidence that deep learning networks
work well with a periodic signal [12]. However, an ECG signal
implies only “approximate” shear symmetry. The cardiac cycle
can vary from time to time both in morphology and in duration.

The article is organized as follows. In the first part (II-A)
experiments with interpolation demonstrate the problems of
representing the ECG signal by means of a deep convolutional
autoencoder. These problems are stable under hyperparameters
variation and do not disappear after the use of standard
regularization tools. In section II-B, we investigate the cause
of these problems with another interpolation experiment.

The section III is devoted to the question of whether
the convolutional network exploits the inter-cyclic symmetry
present in the signal.

ECG data

The experiments used the ECG of patients from the LUDB
dataset [13] - both those with pathologies and healthy ones.
Example ECGs are shown in figure 1. Each record ECG is
10 seconds long, with a sampling rate of 500 Hz. An ECG
have three main components: the P-wave, the QRS-complex
and T-wave (fig. 2).
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Fig. 1: Example of data: signal of one ECG lead of a healthy patient
(top) and with disease (bottom). The signal is normalized and the
baseline drift is eliminated.

Fig. 2: Schematic cardiac cycle.

The project’s code is available at:
https://github.com/Namenaro/cnn-ecg

II. INTERPOLATION BETWEEN ECGS

One of the standard means of assessing the quality of
representation is interpolation between points in the dataset
by a generative model. If the structure of the model is
chosen correctly, then the resulting representation tends to
be disentangled (and therefore interpretable by a human) and
satisfies the manifold hypothesis.

It was empirically shown in [14], that in the case when the
deep network is able to successfully parameterize the manifold
in the data space, the curvature of the manifold is small. As
a result of this, straight segments in latent space correspond
quite closely to geodesics on that manifold. This observation
provides a tool for exploring the learned features of a deep
generative model.

A. Interpolation by means of 1D-convolutional network

A simple convolutional autoencoder was built and trained
on 4-second ECG signals of lead V6. The encoder model
consists of five blocks (table I): the first four blocks include
one-dimensional convolutions with ReLU activation function,
batch normalization along the channels axis and max pooling
with pooling window 2 and the last block is a fully connected

layer with dimensionality of the output space 30. The structure
of the decoder is symmetrical.

TABLE I: Structure of encoder. Regularisation layers are not
shown.

Type Parameters Input size
conv 100x1/30 512x1
pool 2 512x30
conv 100x1/15 256x30
pool 2 256x15
conv 30x1/15 128x15
pool 2 128x15
conv 20x1/5 64x15
pool 2 64x5
dense 30 32x5

The trained model showed good reconstruction on the
test and training part of the patients: all significant peaks
were reconstructed recognizably, the model eliminated high-
frequency noise from the signal.

The algorithm of the interpolation experiment was as fol-
lows:

1) two ECGs are randomly selected from the data set
2) using the encoder, the corresponding coordinates in the

latent space are calculated
3) a straight line is drawn between these two points
4) using a decoder, points of this segment are decoded into

the data space
From the assumption that straight lines in the latent space

correspond quite closely to some paths on the learned data
manifolds, the decoded points from this line should also be
decoded into ECGs.

Figure 3 shows these decoded states. Signals from a straight
line in the latent space at some point in time (pretty fast) cease
to be ECGs (fig. 3d-f). When considering the transition from
one ECG to the other, it was found that the segments gradually
disappears in one place and gradually ”grows” in another. In
other words, the number of important peaks was changing
during the interpolation and the periodical structure (repeating
cardiac cycle) had disappeared in some moment.

On the assumption that this behavior is influenced by the
repeating structure in the signal, similar experiments were
conducted, but with a single centered cardiac cycle.

B. Cropped signal interpolation

For this experiment, the data was generated as follows: all
R-peaks were found on the ECG, the found R peaks and 1-
second areas around them were used as new data (This interval
was chosen because it is the average length of the RR interval
of a healthy person).

In this experiment, there is no repeating complex structure
in the signal, because only one cardiac cycle is involved. The
following behavior was registered: when the segment (a wave,
a complex of waves) of the first ECG and the corresponding
segment of the second ECG are placed at a distance smaller
than their length, than the network “moves” the wave from
one position to another. That is, at every moment the wave
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Fig. 3: Example of generated images by the encoder from eight points of a straight line between the representation of the first
ECG (a) and the second ECG (h) in the latent space of the autoencoder. The points of the straight line are taken sequentially
from the first ECG to the second one. Thus, images (b)-(d) are generated by the decoder from intermediate values. It can be
seen that not all images correspond to the ECG signal.

exists, but its center of mass drifts from position A to position
B (see fig. 4b).

If there is a large distance in time between the corresponding
complexes of the two ECGs, then during interpolation the
complex gradually disappears in one place and “grows” in
another, as in 4-second ECG signal (fig. 4a).

We experimentally investigated whether the variation of
hyperparameters of convolutional architecture affects the de-
scribed effect. It turned out that no: neither the size of the
convolutional kernels, nor their number, nor the compression
ratio had a significant effect.

One-cycle interpolation result (shown in fig. 4) indicates that
the problem of interpolation between two long ECGs is not in
the presence of periodicity, but in the fact that the components
of the cardiac cycle are not located on rigidly fixed places
inside the cycle. Indeed, the distance between the R-peak and
T-peak can vary greatly depending on the pathology of the
cardiovascular system. A small variation of this distance of
the neural network is not terrible (we see it on 4b). However,
when the distance between the center of mass of the given
wave on two ECGs becomes comparable to the size of the
time interval containing the wave, the network interpolates
incorrectly.

The described feature of the network’s behavior on one
cycle determines its behavior on the entire signal with multiple
cycles: at some stage the simulated cyclic structure will
disappear with a high probability. That probability depends
on the variability of the signal structure: in case of ECG, the
normal heart rate is 60-100 beats per minute, therefore two
different 4-seconds ECGs may have a different number of

(a) T-wave retracts in one position and appears in another position

(b) T-wave ”moves” from one position to another

Fig. 4: Interpolation between two signals by means of 1d-
convolutional network. Shades of gray correspond to the interpo-
lation steps. Signals between which interpolation is performed are
highlighted in orange and blue. The rightmost peak is the T-wave.
QRS-complex is in the middle. QRS-complex does not need to move,
it only needs to change the morphology and it changes it smoothly.
The T-wave needs to change the morphology and to move, but this is
not what happens: it disappears in one place and appears in another,
there is no movement.



complexes with different distances between them. Fig.1) shows
how some pathologies can affect the regularity of distance
between the complexes.

Therefore, when interpolating between two 4-second elec-
trocardiograms of healthy or unhealthy persons, it is impossi-
ble to align the ECG (by shift). Such alignment would be
possible to some extent only in a homogeneous group of
healthy patients - and only on relatively short duration of the
signals.

III. ONE PERIODICITY-DEPENDENT EFFECT IN
AUTOENCODERS

The experiments of the previous section showed that the
hyperparameters of the network do not affect the qualitative
properties of interpolation. However, they affect the capacity
of the network and, therefore, they should affect its ability to
generalize and to overfit. Here we found an unusual effect, to
which the rest of the article is devoted.

It was shown in [15] that if the network structure “fits well”
with the data, then after retraining it on a very small amount
of data, it shows a good generative ability in a special task: to
restore those regions of the input image that did not contribute
to the error functional.

We modified the auto-encoder error functional: now the
usual mean squared error in some regions of the signal is
multiplied by zero. Thus, these regions no longer contribute
to the calculation of the error gradient. In other words, in these
regions the network can output anything, so we will call them
”unpunished”. It turned out that different network architectures
react to this modification in different ways.

There is a dependence between the reconstruction quality
and the degree of signal compression: the network with a
small size of the pooling in the middle layers reconstructs
ECG well both inside the ”unpunished” area and outside.
But with increase the compression ratio, the error inside
the ”unpunished” area increases without affecting the error
outside. The differences are shown in the fig.5.

To test the dependence of this effect on the cyclic pattern
of the signal, we repeated this experiment with a non-periodic
signal. We sampled the trajectories of different Gaussian
processes (with different kernels). The duration of each tra-
jectory coincided with the duration of the ECG. The resulting
trajectories were normalized in such a way that the average and
variance for each of them coincided with the corresponding
values for the ECG. Then ”good” and ”bad” networks were
trained on these trajectories using the same protocol as for
ECGs, described above. Result shown in the figures 7 and 9.

The behavior of a ”bad” network remains unchanged: it
is the same on ECG and a non-periodic signal. But for a
”good” network the picture now is different: the error inside
the ”unpunished” area on a cyclic signal is systematically
lower. There are no significant changes in the punishable area.
(fig.7b).

Simply put, a bad network is bad everywhere - both on
a random signal and on ECG. A good network is bad only
on a random signal. On a signal containing a repeating

Fig. 5: Example of ECG processing by ”good” and ”bad” networks.
The real ECG is shown at the top. Two other images are outputs
of two different convolutional autoencoders. Red area is unpunished
(doesn’t affect error gradients). This example shows the difference
between two convolutional autoencoders with different pooling rate,
which appears only within the unpunished area. It’s clearly seen that
“bad” and “good” networks behave identically outside the red region,
but only ”good” network preserves the signal structure inside the
unpunished area.

Fig. 6: Example of ECG processing by ”good” network with big
size of ”unpunished” area. The real ECG is shown at the top. Middle
image shows an output of the autoencoder with ”unpunished” area,
which covered all cardiac cycles. Bottom image shows an output
of the autoencoder with one cardiac cycle out of ”unpunished” area.
Red area is unpunished (doesn’t affect error gradients). This example
shows the influence of area size.

pattern, good network demonstrates an unexpected property
- it restores even those fragments of the signal that it was not
”asked” to restore.

The described effect in good network depends nonlinearly
on the size of the unpunished region. When ”unpunished”
area covers all cardiac cycles, reconstruction error is large,
but when at least one full signal period appears outside that
region, reconstructed signal becomes much better(fig. 6).

With further reducing ”unpunished” area, reconstruction



(a) On the ECG signal (b) On a non-periodic signal

Fig. 7: A scatter plot of errors inside the ”unpunished” area and outside. Each point corresponds to one ECG. On the ECG signals (a), all
points of a ”good” network are grouped in a dense cloud with a low error inside the ”unpanished” area. On a non-periodic signal (b) the
error inside the ”unpanished” area is almost as high as outside of it. Green cloud in (a) concentrates in the left while in (b) it is not.

Fig. 8: The figure shows how the error of a good network inside
an unpunished area changes when the size of this area changes.
The error drop curve of the network becomes much less steep
from the moment when the network begins to “see” one full cycle
of the electrocardiogram from under the ”unpunished” area. 10
experiments were performed for each area size, then their results
were averaged. Averaged over these experiments, the mean and std
for each ”unpunished” area size are shown in the figure.

error drops much less, even when new peaks appear in
”observed” area (fig. 8). This behavior is also stable and does
not depend on a specific electrocardiogram.

The reconstruction error outside the unpunished area pre-
dictably increases slightly as this area itself decreases.

IV. CONCLUSION

Experiments in section II have shown that basic convolu-
tional networks are poorly suited to the problem of modeling
of signals with fuzzy cyclic structure. That does not mean that
their representation cannot be used in the transfer learning
techniques, but almost certainly means it will not be inter-
pretable.

Sec. II-A provides description of what damages inter-
pretability when modeling a fuzzy cyclic signal by means of
a convolutional network. Wide class of ECG was used as an
example.

Section II-B empirically shows the cause of this problem.
Its source lies in the mechanism of how basic convolutional

Fig. 9: Example processing of non-periodic signal by ”good” and
”bad” networks - the networks are of the same architectures as in 5,6.
The real gaussian trajectory is shown at the top. Two other images
are outputs of two different convolutional autoencoders. Red area is
unpunished (doesn’t affect error gradients). This example shows a
lesser manifestation of the described effect on non-periodic signal.

networks model scenes consisting of moving components. This
is shown by the example of a moving T-wave of the cardiac
cycle.

The section III describes an interesting interplay between
hyperparameters of the network and the way of how it recon-
structs ECG signal. It turned out that even if one does not
punish the network practically over the entire length of the
signal, it still reconstructs it with good quality under three
conditions:

1) the signal must contain repeating pattern
2) at least one period must get into that very small punish-

able area
3) the compression factor does not have to be very large

(but can still be significant)
The exact nature of this effect still awaits a theoretical

explanation.



V. DISCUSSION

It is known that for the diagnosis of certain diseases by
ECG, a small number of features is enough. For example,
for a myocardial infarction, this number can be reduced to
seven [16]. This indirectly indicates the presence of a low-
dimensional structure in ECGs. But our experiments have
demonstrated that basic convolutional autoencoders fail to
learn interpretable parametrisation of the ECG-s manifold in
the space of all signals of predefined length. Experiments
indicate that common regularization techniques (like batch
normalization [17]) do not help to eliminate the negative
effects from sec.II. Probably, some other regularization must
be developed for this situation.

The most direct solution to the problem is, probably, to
use more complicated convolutional architectures. In [18] it
was demonstrated, that U-Net-like architecture is capable to
achieve high results in the task of ECG segmentation. In
this work we investigated only the problems of the basic
convolutional networks - i.e. networks of the “linear” multi-
layer convolutional structure without complications like in
[18]. But it was shown that even such basic architectures show
a satisfactory result on the same ECG segmentation task [19],
and very good results - in ECG-based biometric authentication
systems [20]. Segmentation results on healthy patients even in
such networks were high, although the result was somewhat
worse on unhealthy ones. As we have shown here, that result
is combined with poor ECG representation, which makes it
relevant to search for a way to improve the representation in
convolutional networks in general.

In ECG case there is a repeating nonrigid structure (cardiac
cycle), usually consisting of three moving objects: the P-
wave, the QRS complex and the T-wave. The word ”usually”
here means that with some pathologies, some components
can degenerate. From patient to patient and from disease to
disease, these objects can change their morphology, size and
location within the cycle. However, within the framework
of one pathology, the set of these components should be
unchanged in all ECGs containing this pathology. A specific
pathology of the cardiovascular system should give us a
specific invariant that persists during transformations. But how
to make the network parameterize this invariant?

When interpolating between two ECGs, each of which
contains all three components of the cardiac cycle, none of
these components should disappear or clone. The number
of waves must be an invariant that is maintained during
the entire interpolation. Per-pixel changes occurring between
interpolation steps are changes that must preserve the number
of waves and their order. This article shows that this is
precisely what does not happen. In some cases, the wave
disappears in one place, and appears in another, instead of
drifting smoothly.

If one introduces a condition that makes every important
wave drift during interpolation, it would probably solve a
significant part of the problems of representing signals with
fuzzy cyclic structure. The use of optimal transportation theory

looks particularly promising in that sense. It could probably be
used to enforce the interpolation trajectory of the network to
coincide with the solution of the stochastic optimal control
problem of moving the ”masses” of each wave to a new
location. We leave this as a direction for the future work.
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