
Improve the LSTM and GRU model for small
training data by wavelet transformation
1st Jengnan Tzeng∗

Dept. of Mathematical Sciences,
National Cheng-Chi University

Taipei, Taiwan
https://orcid.org/0000-0003-4072-7274

2nd Yen-Ru Lai
Dept. of Mathematical Sciences,
National Cheng-Chi University

Taipei, Taiwan
freedom870601@gmail.com

3rd Ming-Lai Lin
Dept. of Mathematical Sciences,
National Cheng-Chi University

Taipei, Taiwan
f861231@gmail.com

4th Yu-Han Lin
Dept. of Mathematical Sciences,
National Cheng-Chi University

Taipei, Taiwan
harry02261112@gmail.com

5th Yu-Cheng Shih
Dept. of Mathematical Sciences,
National Cheng-Chi University

Taipei, Taiwan
leo978810@gmail.com

Abstract—Regarding collision prediction technology, the most
common are car reversing radar and infrared rays, which provide
warnings by sensing the distance between objects and cars.
Although radar detection is accurate, radar systems that can
provide instant 360-degree feedback are very expensive. The
cost of infrared is much lower, but they cannot be applied to
high-temperature environments. As the result, the technology
of preventing collisions using only images from cameras is an
important artificial intelligence topic in recent years. If a low-
resolution CCD and artificial intelligence technology can be used
to achieve a certain degree of accuracy in collision prediction,
then low-cost anti-collision technology is worth looking forward
to. Furthermore, we hope to provide anti-collision warnings
on motorcycles and bicycles using this technology. In order
to achieve this goal, computational simplification is a technical
threshold. It’s only when simple calculations achieve high-
precision prediction can we meet the low power consumption
requirements for image AI to be applied small vehicles. Therefore,
we hope to find out a better image representation basis and
combine it with AI technology to fulfill the requirements of
less calculation and high accuracy. In addition, we also hope to
create models with sufficient accuracy with small training data.
This experiment will reduce development costs and get better
efficiency in the early stage of developing ADAS.

Index Terms—wavelet, Haar basis, AI, ADAS, small training
data

I. INTRODUCTION

In order to make it possible for the computer to determine
whether there is a collision by only inputting the image, and as
the image is continuously inputted in a time series method, we
accordingly choose an artificial intelligence network method
that can process time-series data. In this case, the famous
recurrent neural network (RNN) method meets this character-
istic [1], as this method is mainly used to process sequential
input, especially when inputs are of various lengths [2]. We
can define each observation data as a time series sequence

Funded by the Ministry of Science and Technology (project number MOST
107-2115-M-004-002)

and for each sequence we give it its label. A RNN training
model contains the following three network layers: the first
layer is the input layer, the second is the hidden layer and the
third is an output layer. And the hidden layer is a recursive
structure, and the training coefficient at the current time t
is generated by the current input integrated with its previous
training coefficient in the hidden layer. If we look into the inner
structure of the hidden layer, we can see that it is constructed
by many small neural networks, which are connected with one
another and sharing their updated training coefficients. Such
network in the hidden layer is capable of memorizing, and
therefore, it is a great tool for time serial data AI training [3].

However, the RNN structure has the problem of gradient
vanishing, so a new method is proposed. We call it a long
short term memory network (LSTM) [4]. It has three control
units in the hidden layer, which are the input gate, the forget
gate, and the output gate. Through the training data, we see
these three gates can be selectively open or closed judged by a
sigmoid function. In the input gate, open means receiving data
and closed means objecting. If the data are received, the newly
generated memory unit will join into the long-term memory.
In the forget gate, open means memorizing the previous nodes
and closed means forgetting the previous nodes. In the output
gate, open means the current result is added to the output and
closed means no output .

Gated Recurrent Unit (GRU)was proposed by Cho 2014
[5]. It is also designed to solve thevanishing gradient prob-
lemwhich comes with a standard recurrent neural network, but
it has more simple structure than LSTM. GRU is considered
as a variation of LSTM and in some cases produces equally
excellent results. It has gating units that modulate the flow of
information inside the unit without having separate memory
cells.

In the practical application of these artificial intelligence
networks, the input data can be an intuitive data or a trans-
formed data. Just as the Fourier representation is often applied

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

to sound signals [6], wavelet is an important method for repre-
senting image data. Wavelet representation mainly focuses on
orthogonality and multi-resolution representation. Unlike the
Fourier transformation, the support of the wavelet function is
compact. Thus, wavelet can capture signal information in both
frequency and physical domain at the same time. The simplest
Haar wavelet can use the average and difference of two data
to make a multi-resolution data representation structure. Ingrid
Daubechies proposed an orthogonal wavelet in 1990 [7] that
there are general forms of orthogonal wavelet, and then the
academic community has made a more in-depth exploration
of wavelet knowledge. However, in imitating the information
transmission of biological vision or hearing system, we believe
that if the biological information system is a kind of wavelet
transformation, it would not be the fancy Daubechies’s high
order wavelet transformation, it is would be the Haar wavelet.

In the survey, we have tried two methods of collision.
One method developed by Jagannath Aghav in 2017 uses
deep learning to extract the relative speed of moving objects
towards a body to determine whether a collision will occur
[8]. The other method is a neural network work that imitates
locust vision [9]. Notice that the learning materials required
in these two methods need to be sufficient, which is different
from our article since we discuss how to obtain preliminary
learning results with a small number of learning samples.
As such, when applying these two methods to these small
samples collected, we cannot get a stable model with learning
effect, i.e., , the prediction accuracy is not obviously more
than 50Therefore, this article will compare the difference in
prediction accuracy between the LSTM and GRU methods
with and without Haar wavelet transformation.

II. MATHEMATICAL NOTATION

We first define the mathematical notations that will be used
in this paper. Let Vk = (Fk,1, Fk,2, . . . , Fi,T) be the input
video, where Fk,t is the t-th still picture in the k-th input
video. We assume that each Fk,t is an m-by-n matrix and
elements of Fk,t are integer number that refers to the gray
level of grayscale image.

For each Fk,t, there are m rows and n columns. Each row
or column in the matrix can be regarded as a one-dimensional
discrete data. Haar function φ(x) is a step function. Assume
that φ(x) is defined by

φ(x) =

{
1 if x ∈ [0, 1],
0 o.w. (1)

It is very special that φ(x) can be reconstructed by the
combination of its scaling and shifting functions. For example,

φ(x) = φ(2x) + φ(2x− 1). (2)

This function is called a scaling function or father wavelet.
Let ψ(x) = φ(2x) − φ(2x − 1) be the mother wavelet. We
can see that φ(2x) = (φ(x) + ψ(x))/2 and φ(2x − 1) =
(φ(x) − ψ(x))/2. If a space Vj is spanned by φ(2jx − k)
for k ∈ Z and j ∈ Z+, then Vj ⊂ Vj+1. We called this
is a multi-resolution structure. We also define a space Wj is

spanned by ψ(2jx− k) for k ∈ Z and we can easily see that
Vj+1 = Vj +Wj .

The 1-D discrete wavelet transformation is starting from a
given sequence ak for k = 0, . . . , 2N − 1. We can consider
the function f(x) =

∑2N−1
k=0 akφ(2jx − k) ∈ Vj . Since

Vj = Vj−1 +Wj−1, we can represent f(x) by φ(2j−1x− k)

and ψ(2j−1x − k). That is f(x) =
∑N−1
k=0 Lkφ(2j−1x −

k) + Hkψ(2j−1x − k), where Lk = (a2k−1 + a2k)/2 and
Hk = (a2k−1 − a2k)/2. We can only focus on a sequence ak
with length 2N be decomposed to two sequences Lk and Hk
with length N . The sequence Lk is the low pass coefficient
and Hk is called the high pass coefficient. Convert discrete
sequence ak to the low pass sequence Lk and high pass
sequence Hk is the first layer 1-D wavelet transformation. We
can apply the wavelet transformation only to the low pass part
Lk to get the second layer wavelet representation. Moreover,
we can continuously repeat this process until the sequence is
represented almost by mother wavelets.

For the first 2-D wavelet transformation, we apply each row
of the input matrix the first layer 1-D wavelet transformation
and put the low pass part to the left (L part) and the high pass
part to the right (H part). See figure 1 (a) to (b). And then we
apply each column the first layer 1-D wavelet transformation
again and put the low pass part to the top (LL part and HL part)
and the high pass part to the bottom (LH part and HH part).
See figure 1 (b) to (c). Just as the 1-D wavelet transformation,
the 2nd layer wavelet transformation is applied to the 2-D
wavelet transformation only on the LL part. See Figure 1 (c)
to (d). We can continuously this process to make almost all
components coefficients of the mother wavelets.

Fig. 1: Example of 2nd layer 2-D wavelet transformation.

We then define Φk as the k-layer 2-D Haar wavelet trans-
formation. For example, X1 = Φ1(X0), where X0 is a
2`1 -by-2`2 matrix. Then the upper left corner of X1 is the
LL pass of X0, where X1(i, j) = (X0(2i − 1, 2j − 1) +
X0(2i−1, 2j)+X0(2i, 2j−1)+X0(2i, 2j))/4 for i ≤ 2`1−1,

j ≤ 2`2−1; the upper right corner of X1 is the HL pass of X0,
where X1(i, j) = (−X0(2i − 1, 2j − 1) + X0(2i − 1, 2j) −
X0(2i, 2j − 1) + X0(2i, 2j))/4 for i ≤ 2`1−1, j ≥ 2`2−1;
the bottom left corner of X1 is the LH pass of X0, where
X1(i, j) = (−X0(2i−1, 2j−1)−X0(2i−1, 2j)+X0(2i, 2j−
1) + X0(2i, 2j))/4 for i ≥ 2`1−1, j ≤ 2`2−1; and the
bottom right corner of X1 is the HH pass of X0, where
X1(i, j) = (X0(2i−1, 2j−1)−X0(2i−1, 2j)−X0(2i, 2j−
1)+X0(2i, 2j))/4 for i ≥ 2`1−1, j ≥ 2`2−1. Then, the general
Xk = Φk(X0) can be defined as below:

Xk(i, j) =

{
Y (i, j) if i ≤ 2`1−k+1 and j ≤ 2`2−k+1

Xk−1(i, j) o.w.
(3)

where Y = Φ1(Xk−1(1 : 2`1−k+1, 1 : 2`2−k+1)).
Given a fixed number of layer τ , we define

Wn = (Φτ (Fn,1),Φτ (Fn,2), . . . ,Φτ (Fn,T)). (4)

That is Vn is the n-th video input with standard representation
and Wn is the n-th video input with τ -th layer Haar wavelet
representation. We also define W̃n as below:

W̃n = (ΦHτ (Fn,1),ΦHτ (Fn,2), . . . ,ΦHτ (Fn,T)), (5)

where ΦHτ (Fn,t) captures only the HH parts of Φτ (Fn,j), and
then resizes these HH part matrixes to vectors and combines
them to one long vector. For each n, the level vector Yn =
(yn,1, yn,2, . . . , yn,T) where yn,t is the sub-level of each Fn,t.
If Vn or Wn is the case of collision, then yn,t is increasing
and we set yn,1 = 0 and yn,T = 1; else yn,t = 0 for all
t = 1, . . . , T .

Next, we briefly introduce the notations and settings we used
in the AI learning process. The following xt will be replaced
by ΦHτ (Fn,t) if we are looking for the AI model with wavelet
transformation or Fi if without wavelet transformation. The
general RNN updates the recurrent hidden state ht by

ht =

{
0, t = 0
xtψ(ht−1, xt), o.w., (6)

where ψ is a nonlinear function, such as the composition of a
logistic sigmoid with an affine transformation. To update the
recurrent hidden state is often represented as

ht = g(Axt +Bht−1), (7)

where g is a smooth, bounded function, such as a logistic
sigmoid function or a hyperbolic tangent function.

In the LSTM model, we retain a memory unit at time t, say
cjt . The formula of output hjt can be

hjt = ojt tanh(cjt), (8)

where ojt is determined by the amount of the previous memory
content exposure. This output gate is of the following form:

ojt = σ(Aoxt +Boht−1 +Doct)
j , (9)

where σ is a logistic sigmoid function and Do is a diagonal
matrix. The memory cell cjt is computed by partially forgetting
the existing memory cjt−1 and adding a new memory c̃jt , where

cjt = f jt c
j
t−1 + ijt c̃

j
t and c̃jt = tanh(Acxt + Bcht−1)j . The

design of cjt includes the forget gate f jt and the input gate ijt .
These gates are formulated as

f jt = σ(Afxt +Bfht−1 +Dfct−1)j ,

ijt = σ(Aixt +Biht−1 +Dict−1)j ,
(10)

where the subindex f and i refer to the forget gate and input
gate and Df , Di are diagonal.

The GRU is similar to LSTM and its structure is simple.
The relative formula are the following:

hjt = (1− zjt)h
j
t−1 + zjt h̃

j
t , (11)

where an updated gate zjt refers to the amount of the updates
and

zjt = σ(Azxt +Bzht−1)j . (12)

The candidate activation h̃jt is computed by

h̃jt = tanh(Axt +B(rt · ht−1))j , (13)

where rt is a reset gate and the operator ’·’ is an element-wise
multiplication. And the reset gate rjt is computed by

rjt = σ(Arxt +Brht−1)j . (14)

That’s all for notation setting.

III. METHODOLOGY AND EXPERIMENTAL RESULTS

We use Python 3.5 as our programming language with
Jupyter notebook IDLE interface. The using packages are
pywt, keras, sklearn and pywt. The keras and sklearn packages
are often used in machine learning and the pywt package is
used in the discrete wavelet transformation.

Given that most of data about collision experiments in
Open data is the data which obtain collision images from the
perspective of a third party, we hence do not use the data in
Open data, say, the 32 crash datasets on data.world website,
for experiments. We use a rolling table tennis ball to hit the
camera to simulate the process of a vehicle collision. A fixed
camera is placed on one end of the table, and on the other end
a table tennis ball is rolled by a person toward the camera. To
control the speed of the ball, we make a slope track. Due to
the slope is fixed, as we release the ball from the higher end
of the track, we will get a similar speed of the moment the
ball leaves the track in our 200 repeated actions. By adjusting
the direction of the track, we can control whether the ball will
hit the camera. Due to the human operation, the result of the
speed each time will be slightly different. We will collect two
data types. One is data with collision, and the other is data
without collision. Each video data is composed of 7-20 frames,
and the size of each image frame is 2048 * 2048. We take the
last 7 frames as training materials. When a collision occurs,
we set the last frame to be the moment when the collision
occurs. When there is no collision, we set the last frame to be
the moment when the ball passes by the camera. In total, we
have collected 100 collision data and 100 collision-free data.
Each input contains 7 time-series photos and each photo is
stored in a grayscale format.

We use a standard 2-D Haar wavelet transformation to
process our input image. We also use a three-layer Haar
wavelet transformation to transfer data from a standard basis
to the Haar wavelet basis. Then, the pre-input data looks like
Wn = (φ3(F1), φ3(F2), . . . , φ3(F7)). For each φ3(Ft), we
extract the HH parts and resize them into the vector type
and combine them to a long vector. Therefore, we obtain the
input data W̃n, where W̃n = (φH3 (F1), φH3 (F2), . . . , φH3 (F7)).
For fair comparison, we rescale the input original frames to
a 443-by-443 matrix. (Notice that if we do not rescale the
input original frames to the small size, the performance of the
AI model without wavelet transformation will become worse
than the resized performance.) This total matrix size is similar
to the three HH parts of each element of W̃n. Ṽn represents
these resized input data. The numbers of W̃n and Ṽn are both
100. We will separate these data into the training and testing
sets. Then we compare the performance of LSTM and GRU
models.

For the training LSTM and GRU model, we design 5 layers
of network. They are kernel layer, recurrent kernel layer,
bias layer, dense layer and second bias layer. To obtain the
better performance, we use an orthogonal matrix as the initial
matrix in both LSTM and GRU, which will also make a better
convergence rate. The initial orthogonal matrix is determined
randomly by the Python packages.

Because different inputs will obtain different outputs, we
use K fold cross validation to avoid the overfitting. In our
experiments, we set K = 10. That is we separate our data
into two parts, each time we use 20 data for testings and
180 data for trainings. When the input changes, the output of
each layer will be changed too. We randomly split the data to
training sets and testing sets, and repeat the splitting 64 times.
From each training set, we build an AI model to examine the
prediction ability of each testing set. We will also observe the
distribution of each component of the output matrix for each
layer, and then to find out the important components. If some
standard deviation of the component is small and the value is
significant, then we will keep this component. On the other
hand, if the relative standard deviation is large and the value
is small, we will forcibly set the component becomes zero.
Finally, we will retrain the network to see whether the model
can perform well.

For each K fold cross validation, we construct four models.
The first is LSTM model with wavelet data (W̃i as input),
the second is LSTM model with original data (Ṽi as input),
the third is GRU model with wavelet data, and the final is
GRU model with original data. With these four models, we can
analyze whether the Haar wavelet transformation will improve
the performance.

Table I shows the average accuracy of the testing set in
LSTM and GRU model with/without wavelet transformation.
Each number is the result of the above-mentioned 64 op-
erations. We can see that the LSTM model is better than
the GRU model, no matter we use wavelet transformation
or not. Haar wavelet representation actually improves the
average accuracy in both LSTM and GRU model, especially in

TABLE I: Comparison of the LSTM and GRU model in testing
set with/without wavelet transformation.

Case Average accuracy variance
LSTM (with wavelet) 0.900 0.007
GRU (with wavelet) 0.536 0.010

LSTM (without wavelet) 0.4999 0.011875
GRU (without wavelet) 0.49687 0.0092

(a) LSTM (b) GRU

Fig. 2: Distribution of the standard deviation of Kernel layer

LSTM model. In GRU model, wavelet transformation elevates
7.8752% accuracy from 49.687% to 53.60%; and it elevates
very much in LSTM model from 49.99% to 90.0%. In the
training sets, all the accuracy rates are 100%. Notice that
without wavelet transformation, both LSTM and GRU model
do not complete the AI learning process, because they guess
all results to be none collision.

As each model is determined by the training set, we
would like to observe the stability of the models. Hence, we
observe the distribution of the standard deviation of individual
elements of the matrix corresponding to the kernel layer, the
recurrent kernel layer, and the density layer. Figure 2 has
two graphs, which are the standard deviation distributions
of the LSTM model and the GRU model. We can see from
the distribution map that most of the standard deviations are
concentrated near 0. This indicates that the values of most
matrix elements are nearly the same in different models, which
means these AI models are stable.

From figures 3 and 4, we can observe that the matrix
elements corresponding to the recurrent kernel layer and dense
layer are more sensitive to the input data. The sensitivity of
the dense layer is greater than that of the kernel layer. Since
the kernel layer is more stable than the recurrent kernel layer
and dense layer, we try to force the elements close to 0 to
be 0. This approach is an attempt to eliminate unimportant
elements of the kernel layer so that we can predict with less
data. We know that the input data can be greatly improved
after being converted by wavelet transformation. When we
force non-significant elements to be 0, we use partial elements
to calculate the interpretation result, so the accuracy usually
decreases. Due to the large amount of data in the kernel
layer, it is necessary to appropriately reduce its size while
maintaining a certain degree of prediction accuracy. We take
a uniform grids on the interval [0.005, 0.05] as the threshold
value, and set the absolute value of the matrix element of the
kernel layer less than the threshold value to be 0. After setting

(a) LSTM

(b) GRU

Fig. 3: Distribution of the standard deviation of Recurrent
Kernel layer

(a) LSTM (b) GRU

Fig. 4: Distribution of the standard deviation of Dense layer

up this kernel layer, we continued to use training data to learn
the parameters of other layers in the model. Lastly, we observe
the performance of the revised model on accuracy.

Figure 5 shows the predicted ability of the model when we
forced elements of the kernel layer less than a threshold value
to be 0. The Y axis of figure 5 is accuracy, and the X axis
is the percentage of kernel layer that we forcibly set to be 0.
As the percentage is increasing, the accuracy will gradually
decrease as expected. We observe that even if the percentage
is as high as 85%, that is, we only use 15% of the memory
capacity for the model, our accuracy is still more than 70%.
Notice that the result demonstrated in Figure 5 is based on
the best model among all models we train according to our
experience, but the best model is very likely to be different
depending on various factors in the training process.

In previous experiments, we used a fixed slope to control
the speed of the table tennis ball rolling. We are curious about
what the model learned with a fixed speed would look like if
it is applied to a sample with a various speed. So we recorded
another data set that includes 60 non-collided images and 60
collided images. We can see that on the speed-control samples,
we have 90% accuracy, which will quickly drop to 63.33%
when we use the non-speed-control samples. The decrease
in accuracy shows that our model is really poor at resolving

Fig. 5: Relationship between the accuracy and model memory.

samples with speed changes. However, this 63.33% accuracy
is still better than 49.99% of LSTM model without wavelet
transformation.

We have another way to present the wavelet basis indeed
helps visual AI recognition. We sort the values of the matrix
elements corresponding to the kernel layer from small to large.
We cut 1000 equal parts between the maximum and minimum
values. In each small interval, we count how many elements
in the matrix fall within this interval. Then we convert these
accumulated numbers into probabilities.

We can roughly treat these 1000 intervals as 1,000 possible
information representations, and calculate their information
entropy through the probability just calculated. In the case
of LSTM model with wavelet transformation, the average
number of matrix element values in the kernel layer is
−4.5265064 × 10−5, the standard deviation is 0.04842207,
the median is −4.194437497 × 10−5, the quartile of Q1 is
−2.93498808 × 10−2, and Q3 is 2.928800 × 10−2. Most
of the data is centered around zero. After our calculation
the entropy is 5.3574225293. In the case of LSTM model
without wavelet transformation that has the best accuracy
rate among others, the average number of matrix element
values in the kernel layer is 1.9123004 × 10−6, the standard
deviation is 0.0022573355, the median is 1.4606289369 ×
10−6, the quartile of Q1 is −1.52123105 × 10−3, and Q3

is 1.52504939 × 10−3. Most of the data is centered around
zero. After our calculation the entropy is 8.3288037021. The
maximum information entropy in these 1,000 message types
is 9.965784284662087. We see that the message entropy
8.3288037021 of the case LSTM without wavelet transforma-
tion is close to the completely random number case. Hence,
applying a wavelet transformation really helps the model to
capture important information, rather than 50% to 50% random
guessing. This outcome is also reflected in our ability to
predict whether it is a collision image.

IV. CONCLUSION

Most of the AI image research indicates that investigating
collisions problem require more than 6,000 data. We try to
complete the training of AI collision models with fewer data.
By using image data with high-high-frequency parts of Haar
wavelet expansion as input data, we observe that although only
200 sample data is used as AI learning, our prediction accuracy

has been greatly improved to 90%. When using new data
that does not control speed to make predictions, although the
accuracy of the prediction has dropped significantly, the model
using wavelet transformation still shows higher accuracy after
comparing with the model without wavelet transformation.
Therefore, we verified that the wavelet basis really has the
ability to improve AI image recognition.

We have seen that Haar wavelet transformation is a transfor-
mation that requires very few computational cost, and hence
it can enhance the AI image recognition for small sample. For
training the AI image models with larger sample, we therefore
suggest that the Haar basis should be used to exhibit the
image signal inputted. From the angle of entropy, we save
significant memory space in computation and obtain fairly
good recognition rate, which makes it possible to apply the
ADAS technique to motorcycles or even bicycles. In the future,
we need to expand the training data to areas like the marching
and collision motions of bicycles in the real world so that we
can develop a more complete ADAS AI model.

ACKNOWLEDGMENT

My thanks to Ming-Lai Lin, Yu-Han Lin, and Yu-Cheng
Shih, who helped collect the image data of the collision, and
thank Yen-Ru Lai for completing most of the AI programming
and calculation. We are also deeply grateful to the Ministry
of Science and Technology (project number MOST 107-2115-
M-004-002) for supporting our experiments.

REFERENCES

[1] H. Li, B.S. Manjunath and S.K. Mitra, “Graphical models and image
processing,” Elsevier,1995

[2] A. Graves, “Sequence Transduction with Recurrent Neural Net-works,
CoRR, vol. abs/1211.3711, 2012.

[3] M. Bod en, “A guide to recurrent neural networks and backpropagation,”
2001.

[4] Malhotra, P., Vig, L., Shroff, G., & Agarwal, P., “Long short term mem-
ory networks for anomaly detection in time series,” Presses universitaires
de Louvain, 2015

[5] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555. 2014

[6] R. G. Osuna, “Introduction to Speech Processing, 1st ed. Computer
Science & Engineering- Texas A & M University, 2016.

[7] I Daubechies, “Ten Lectures on Wavelets,SIAM, 1992
[8] Aghav, J., Hirwe, P., & Nene, M., “Deep Learning for Real Time

Collision Detection and Avoidance, In Proceedings of International
Conference on Communication, Computing and Networking, 2017

[9] Yue, S. and Rind, F. C., “Collision detection in complex dynamic scenes
using and lgmd-based visual neural network with feature enhancement,
Neural Netw. IEEE Trans. 17, 705-716. doi:10.1109/TNN.2006.873286

