
Deep Spiking Neural Network Using
Spatio-temporal Backpropagation with Variable

Resistance
Xianglan Wen

College of Computer Science
Sichuan University
Chengdu, China

wwwenxla@163.com

Pengjie Gu
College of Computer Science

Sichuan University
Chengdu, China

gupj1202@gmail.com

Rui Yan
College of Computer Science

Zhejiang University of Technology
Hangzhou, China
ryan@zjut.edu.cn

Huajin Tang
College of Computer Science and Technology

Zhejiang University
Hangzhou,China
htang@zju.edu.cn

Abstract—In recent years, the learning of deep spiking neural
networks(SNN) has attracted increasing researchers’ interest, and
has also made important progresses in theories and applications.
It is desired to choose a neuron model with biological features
and suitable for SNN training. Currently, Leaky Integrate-and-
Fire(LIF) model is mainly used in deep SNN and some factors
that can express the spatio-temporal information are ignored in
the model. In this work, inspired by the Hodgkin-Huxley(H-H)
model, we propose an improved LIF neuron model, which is an
iterative current-based LIF model with voltage-based variable
resistance. The improved neuron model is closer to the charac-
teristics of the biological neuron model, which can make use of the
spatio-temporal information. We further construct a new SNN
learning algorithm that uses spatio-temporal back propagation
by defining a loss function. We evaluated the proposed methods
on single-label and multi-label data sets. The experimental results
show that the variable resistance of the neuron model will
affect the performance of the model. Choosing the appropriate
relationship between the variable resistance and the membrane
voltage can effectively improve the recognition accuracy.

Index Terms—neuromorphic computing, spatio-temporal,
backpropagation, spiking neural network

I. INTRODUCTION

Neuromorphic computing is one of the frontier fields. It is a
set of technologies that simulates the biological neural system
to improve the robustness of computing system and hardware
efficiency. In the neuromorphic computing, spikes are believed
to transmit and process information [1]–[3]. Currently, some
different models are proposed to emulate the neuron’s behavior
in brain, such as Hodgkin-Huxley(H-H) model [4], Leaky
Integrate-and-Fire(LIF) model [1], Izhikevich model [5], Spik-
ing Response Model(SRM) [6], etc..

This work was supported by the National Natural Science Foundation of
China under grant 61673283, and the Major Scientific Research Project of
Zhejiang Lab(No. 2019KC0AD02).

Inspired by the biological neuron, H-H model describes the
electrical behavior in the membrane of giant squid axons and
most biological spiking neuron models are based on it [5],
[7]. In H-H model it is proposed that there are three different
kinds of ion current in the membrane, including sodium
current, potassium current and a leak current. The conductance
of sodium and potassium is inconstant and related to the
membrane potential. H-H model considers the membrane as a
capacitor [2], and it can be simulated by the equivalent circuit
diagram shown in Fig. 1(a). Although this model can keep
the characteristics of the biological neuron, its computational
complexity limits applications [8]. As a simplified model, LIF
model has been widely used to simulate the large-scale neural
networks [9]. LIF model integrates the presynapses’ spikes.
When the membrane potential is up to the threshold, the
neuron will fire and reset potential to resting potential [10].
Fig. 1(b) shows the equivalent circuit diagram.

Compared with traditional Artificial Neural
Networks(ANN), Spiking Neural Networks(SNN) based
on spiking neuron model are more biological and have
better power efficiency in neuromorphic hardware [11]–[13].
The discrete and binary spike trains can be regarded as the
events happening on precise time, so SNN can capture the
temporal dynamics of neural behaviors. Although there exist
many models [14]–[16], the training of deep SNNs using
backpropagation is still difficult because of the complex
temporal dependencies and non-differentiable of spike
activity [17]. Now there are three main categories to train
deep SNNs. The first is ANN-to-SNN, which transforms
the trained ANN into the same structure’s SNN, usually
based on LIF neurons [18]–[21]. The conversion process
inevitably causes the loss of accuracy, and some approaches
have also been proposed to improve the accuracy, such

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

as scaling weights [18], [19], defining equivalent transfer
function [20] and so on. However, in the transformation
approach the rate-based encode methods without temporal
features are only supported [22], which limits its applications
in dynamic tasks. The second approach is incomplete-BP
category by ignoring some information in backpropagation.
For example, SpikeProp only considers the backpropagate
error at spike times [23], [24], and the temporal dependencies
of spiking neurons is ignored in [25], [26]. Thus, in these
kinds of algorithms, the spatio-temporal features cannot be
extracted efficiently. The third way is spatio-temporal-BP
category, which approximates the derivative of spike function
to overcome its non-differentiability and backpropagates error
both in the spatial field and temporal field. In this category,
SLAYER [17] based on SRM neurons uses the Probability
Density Function to approximate the derivative. STBP [27]
proposes different derivative functions to approximate and
combines spatial dependencies and temporal dependencies
to backpropagate, and it has high performance without any
training skills. Inspired by STBP, STCA [22] changes the
loss function to voltage-driven function and can achieve the
state-of-the-art algorithms. Existing experiments show that
this category has the best performance.

For many of SNN algorithms, they are based on different
LIF neurons, such as the simple iterative LIF models [20],
[27], [28], current-based LIF(C-LIF) models [22], [29]–[31],
and threshold-adaptive LIF models [32]. In these kinds of LIF
models, the resistance is considered as a constant. Compared
with the H-H model in Fig.1 (a), we can discover that the
LIF model merges three types of current and regards their
resistances as a resistance. Thus the resistance is non-constant,
which actually includes the spatio-temporal information. In
this work, we firstly propose an iterative C-LIF model with
voltage-based variable resistance. This model is closer to the
characteristics of the biological neuron model, which can
make use of the spatio-temporal information. Then we further
construct a new deep SNN algorithm that uses spatio-temporal
backpropagation by defining a temporal-like loss function,
which is a voltage-driven loss function like the algorithm
Tempotron [28]. The proposed algorithm can capture the
spatio-temporal features from spike trains. Due to the variable
resistance, our deep SNN is non-linear weighted. To evaluate
the influence and the performance of the proposed methods,
we do some experiments both on single-label(MedleyDB) and
multi-label(MAPS) data sets, which contain spatio-temporal
features. These experiments demonstrate that variable resis-
tance has different influences in the performance, the recog-
nition accuracy can be effectively improved by choosing the
appropriate relationship between the variable resistance and
the membrane voltage, and compared with other methods, the
proposed algorithm shows the state-of-the-art performance.

II. METHODS

In this section, we will describe the approach in detail.
Firstly, we propose the spiking neuron model: the iterative

Fig. 1. The diagram of spiking neuron models.(a)The diagram of Hodgkin-
Huxley model. It has three types of current corresponding to three resistances,
two of them is voltage-based variable resistances. (b)The diagram of Leaky
Integrate-and-Fire model. It has a resistance, and a fire mechanism(shows in
the gray frame: when the voltage up to Vthr , the switch off, the voltage will
be equal to Vreset).

C-LIF model with voltage-based variable resistance. Then, we
define the tempotron-like loss function and show the deep SNN
structure with the proposed spiking model. we also display the
iterative derivation process using error backpropagation in the
spatio-temporal field.

A. The Spiking Neuron Model

Our model is based on C-LIF model [30]. The membrane
voltage of this model is affected by decay and spiking in-
hibition. The membrane voltage U(t) in the model can be
expressed as:

U(t) =N0 ∗
N∑
j=1

Wij

∑
tsj<t

exp(−(t− tsj)/τm) ∗R

−N0 ∗
N∑
j=1

Wij

∑
tsj<t

exp(−(t− tsj)/τs) ∗R

−Vthr
∑
ti<t

exp(−(t− ti)/τm)

(1)

where tsj means the time of s-th spike in j-th presynaptic
neuron and ti is the i-th spike in this neuron; τm and τs
are the decay constants; R is the membrane resistance; Vthr
denotes the threshold of the neuron; N0 is a normalization
factor, follow as:

N0 =
1

fτ − 1
∗ f

fτ
fτ−1
τ (2)

where Fτ is a factor of τm and τs.When U(t) is up to Vthr,
the neuron will fire.

In the traditional C-LIF model, R is regarded as constant
and R = 1MΩ. From the formula of the H-H model, we can
discover that variable resistance is related to the membrane
voltage. To reduce computational complexity and keep up with
the changes in LIF model(the change of membrane voltage

decreases with the increase of membrane voltage.), the current
variable resistance R(t) can be represented as:

R(t) =

(
1− αU(t− 1)

Vthr

)
·R0 (3)

where U(t − 1) is membrane voltage at the last time; α is
constant, which controls the relationship between R(t) and
U(t− 1), and avoids the condition that the neuron is hard to
fire when the membrane approaches the threshold; R0 is the
fixed resistance.

To build deep SNN, the R(t) should be included in the
iterative C-LIF model, which is presented to capture the spatio-
temporal features according to the event-driven property of C-
LIF model [22]. The iterative C-LIF model with voltage-based
variable resistance is shown as:

T in(t) =

N0

L(n−1)∑
j=1

W ij
n · P

j
n−1(t)

(1− αU
i
n(t− 1)

Vthr

)
R0,

(4)

Dmi
n(t) = γmDm

i
n(t− 1) + T in(t), (5)

Dsin(t) = γsDs
i
n(t− 1) + T in(t), (6)

Rein(t) = γmE
i
n(t− 1) + Vthr · P in(t− 1), (7)

U in(t) = Dmi
n(t)−Dsin(t)−Rein(t), (8)

P in(t) = S(U in(t)), (9)

where U in(t) denotes the membrane voltage at time t of the
i-th neuron in n-th layer; γm and γs are the decay constants,
which is associated to τm and τs ; P in(t) is the binary spike
train, and S(x) is the spike function: S(x) = 1 (if x > Vthr) or
0 (otherwise). The relations in U in(t) and R0 are the same as in
U in(t) and Wn. If R0 is changed, scaling Wn without training
still keeps the result, for simple computation, R0 = 1MΩ.

There is a simple condition in Fig. 2. We can find that the
same input spike trains can get the different output in our
model and C-LIF model. In C-LIF model, if the spikes have
same synpase strength, each spike has the same influence in
membrane voltage. In our model, due to variable resistance,
the influence of input spike is not same for different membrane
voltage and same synapse strength. When the membrane
voltage is not equal to 0, the change in membrane voltage
caused by input spike in our model is less than that of C-LIF
model, and the degree of this change is associated with the
distance in membrane voltage and threshold. The closer the
voltage is to the threshold, the less influence the input spike
has.

Fig. 2. A simple comparison of C-LIF and our model. (a)The condition of two
models. The top is C-LIF model, and the bottom is our model. Two models
receive the same spike trains, through the same synapse strength of two input
neuron, they have different T (t), Dm(t)−Ds(t), and output spike. (b)The
membrane voltage of the two models.

B. The Algorithm of Deep Spiking Neural Network

Tempotron is the classical algorithm in monolayer SNN.
When training, it does not spike and change the synaptic
strength according to the distance in max voltage and thresh-
old, it is a voltage-driven algorithm and has good performance.
Here, we bring the training idea and define a Tempotron-like
Loss Function, which can be expressed as:

L =

Vthr − Vmax, if target = 1 & Vmax < Vthr

−(Vthr − Vmax), if target = 0 & Vmax > Vthr

0, otherwise

(10)
where Vmax = UN (t∗) , and t∗ is the time of max membrane
voltage of a neuron in the last layer. There are two conditions
that cause loss in this loss function. The first condition
indicates that the neuron spikes and reaches the desire one
but the Vmax is not up to the threshold in actual. The second
condition suggests that the Vmax is up to the threshold in
actual but the neuron does not spike in desire. Due to the last
layer does not fire when training, the membrane voltage is
different, which is expressed as:

U iN (t) = Dmi
N (t)−DsiN (t), (11)

The spike function S(x) is non-differentiable. Its derivation
only has an infinite value (when it is up to threshold) and 0
(otherwise). To derivation, we can approximate the derivative
of it by g(x). the feature of g(x) is that it only has values in
an interval closed to threshold, which can replace the infinite
value. There are many choices of g(x), such as the derivative
of the rectangular function, sigmoid function, or probability
density function. Here, for simplicity computation, we use the
rectangular function, its derivative follows as:

Fig. 3. The spatio-temporal dependencies of the algorithm. Here shows two time points of t and t+ 1, layer N is the last layer. Each gray circle represents
a neuron, including voltage and its directive variable. There is mainly two types of lines: the orange dashed line represents the temporal dependencies, and
the blue full line represents the spatial dependencies. All of dependencies described by the related equations can be found.

g(x) =

{
1
q , if |x− θ| < q

2

0, otherwise
(12)

Based on the Tempotron-like loss function and the iterative
C-LIF model with variable resistance, we can construct a new
algorithm of deep SNN, the spatio-temporal dependencies of
the algorithm is showed in Fig. 3.

The Tempotron-like loss function has a feature: it only
backpaprogate error when t < t∗ in temporal field. Due to
the Wn affects L through Tn at each time step when t < t∗,
the gradient of Wn is as follow:

∇Wn =

t=t∗∑
t=0

∂L

∂T tn
· ∂T

t
n

∂Wn
. (13)

In order to a neat layout, we denote the subscript n as the
layer of neuron and the superscript t as time in these parts.
Because the relation of ∂T tn and ∂Wn is distinct by (4) - (9)
. The gradient can divided into two part:

a) ∂T tn
∂Wn

: It can be calculated using the derivative rule,
we can get:

∂T tn
∂Wn

=− α

Vthr
· ∂U

t−1
n

∂Wn
·N0WnP

t
n−1

+

(
1− α · U

t−1
n

Vthr

)
·N0P

t
n−1

(14)

and

∂U t−1n

∂Wn
=

[
γm

∂Dmt−2
n

∂Wn
+
∂T t−1n

∂Wn

]
−
[
γs
∂Dst−2n

∂Wn
+
∂T t−1n

∂Wn

]
−
[
γm

∂Ret−2n

∂Wn
+ Vthr · g(U t−2n)

∂U t−2n

∂Wn

]

(15)

When iteration begins from t= 0, all of the derivative can
be calculated.

b) ∂L
∂T tn

: It can be calculated using the iterative mech-
anism and the chain rule to derive the gradients recursively.
By combining with Fig.3, we can find that the T tn affects L
through Dmt

n and Dstn. So we have:

∂L

∂T tn
=

∂L

∂Dmt
n

+
∂L

∂Dstn
. (16)

Since the Dmt
n affects L through Dmt+1

n and U tn, we have:

∂L

∂Dmt
n

=
∂L

∂Dmt+1
n

· γm +
∂L

∂U tn
.

(17)

In the similar way, we can get ∂L
∂Dstn

and ∂L
∂Retn

.
As for ∂L

∂Utn
, there are different values for different layers:

• In the last layer N , when t < t∗, because of the relation
between the variable resistance and voltage, L can be

influenced by U tN through T t+1
N , so the derivative can be

denoted as:
∂L

∂U tn
=

∂L

∂T t+1
N

·
(
− α

Vthr
·N0WNP

t
N−1

)
(18)

When t = t∗, it is obvious that the derivative is 1.
• In other layer n, due to the variable resistance, L can

be influenced by U tn through T t+1
n , and due to the firing

influence, L can be influenced by U tn through P tn, the
derivative can be denoted as:
∂L

∂U tn
=

∂L

∂T t+1
n

· ∂T
t+1
n

∂U tn
+

∂L

∂P tn
· ∂P

t
n

∂U tn

=
∂L

∂T t+1
n

·
(
− α

Vthr
·N0WnP

t
n−1

)
+

∂L

∂P tn
· g(U tn)

(19)

Because P tn can affect L through Ret+1
n and T tn+1, we

have:
∂L

∂P tn
=

∂L

∂Ret+1
n

· ∂Re
t+1
n

∂P tn
+

∂L

∂T tn+1

·
∂T tn+1

∂Dmt
n

=
∂L

∂Ret+1
n

· Vthr +
∂L

∂T tn+1

·
(

1− α · U
t−1
n

Vthr

)
·N0 ·Wn

(20)

When iteration begins from t = t∗, all of the derivative can
be calculated.

Up to now, all of the derivative can be calculated in the
proper iterative order, and we can get the gradient of Wn. The
Algorithm 1 describes the training procedure of our algorithm
in a simple way with binary target and represents some special
values.

III. EXPERIMENT

To demonstrate our model’s performance, we test it in dif-
ferent datasets and different parameters. Here, we divide into
two parts: the first is the experiment in single-label’s dynamic
music dataset(MedleyDB); the second is the experiment in
multi-labels’ music dataset(MAPS).

A. Experiment on Instrument Recognition

The MedleyDB dataset [33] is a dataset of annotated multi-
track recordings. It contains 122 multitrack recordings of songs
with melody annotations and instrument activations. Here, we
extract the monophonic stems of 10 instruments and randomly
select 160 pieces as training samples and 80 pieces as test
samples for each instrument, the time of each pieces is 1.5s.
the 10 instruments contain cymbal, tube, drum, fiddle, woman,
violoncello, guitar, string bass and Erh-hu.

Firstly, we test the influence of variable resistance. We set
the experiment in instrument recognition which only changes
the parameter α. The results are shown in Fig. 4. All of these
experiments use the spikegram as encoding method and has the
same network structure.when α < 0, the performance shows
lower, because in the rate of membrane voltage’s change,

Algorithm 1 the training procedure of our algorithm.
Input: target T, input spike trains S.
Output: ∇W in each layer.

1: //Feedforward
2: for each n ∈ [1, N] do
3: Dmn(0), Dsn(0), Ren(0), Pn(0)← 0. //initialize
4: end for
5: for t = 1 to T do
6: get input spike P0(t). // According to S.
7: for n = 1 to N − 1 do
8: compute Un(t), Pn(t). //use (4)-(8),(9).
9: end for

10: compute UN (t). // use (4)-(6),(11).
11: Vmax, t

∗ ← max(Vmax, UN (t)).
12: end for
13: compute Loss. // use (10)
14: //Backpaprogation
15: for n = N to 1 do
16: //Part 1
17:

∂Tn(0)
∂Wn

, ∂Dmn(0)∂Wn
, ∂Dsn(0)∂Wn

← N0 · Pn−1(t).
18:

∂Ren(0)
∂Wn

← 0.
19: for t = 1 to t∗ do
20: compute ∂Un(t)

∂Wn , ∂Tn(t)∂Wn
. // use (15),(14).

21: end for
22: // Part 2
23: for t = t∗ to 1 do
24: if n = N then
25: compute ∂L

∂Un(t)
. //use(18).

26: else
27: compute ∂L

∂Pn(t)
, ∂L
∂Un(t)

. //use (20), (19).
28: end if
29: compute ∂L

∂Dmn(t)
, ∂L
∂Dsn(t)

, ∂L
∂Ren(t)

. //use (17).
30: compute ∂L

∂Tn(t)
. //use (16).

31: end for
32: compute ∇Wn. //use (13).
33: end for

variable resistance is opposite to LIF model. When α < 0.3,
the performance gets better as the α increase and the F-
measure can up to 98.20% best when α = 0.3. But when
α > 0.3, the current is affected too more by variable resistance
and it can be difficult to fire, the performance decrease. The
results demonstrate that variable resistance can effect the
performance, and a optimal α can effectively improve the
recognition accuracy, on the contrary, some α will decrease
the accuracy .

Secondly, we compare the performace of our model with
other models, including LSTM, temporal CNN [34], TD-SNN
[25], and STCA [22]. Because the input form for ANN and
SNN is not the same, we use different encoding methods
for them. In these models, LSTM and temporal CNN are
traditional ANN and use spectrogram to process data, and TD-
SNN, STCA, and our model use spikegram [35] to encode.
Except the temporal CNN has 76.9k trainable parameters, the

Fig. 4. The influence of variable resistance

other models have 27.6k each. LSTM is a recurrent network
and has a simple structure to keep the same values of trainable
parameters. the temporal CNN has 76.9k trainable parame-
ters and is designed for modeling temporal features, whose
convolutional kernels’ structures are complex. The TD-SNN
is a deep SNN using incomplete-BP category: it ignores the
temporal dependencies. Table I shows the result of instrument
recognition, we choose recall, precision and F-measure to
evaluate performance. The result of Our model showed is
α = 0.3. Though it uses simple structure and relatively
few trainable parameters, it gets the best performance. The
MedleyDB dataset contain abundant spatio-temporal features,
and our models use variable resistance, which can make the
membrane voltage affect input spike trains and strengthen the
temporal dependencies, so it can be better to use the temporal
information to extract these features.

B. Experiment on Multipitch Estimation

In piano music, it’s general to play multiple notes simul-
taneously, named piano multi-pitch. The MAPS dataset [36]
is a dataset of piano multi-pitch estimation, which is a multi-
labels and 88 classes’ dataset(because the piano has 88 notes).
The number of each sample’s labels depends on polyphonic
levels, for example, P3 means play 3 notes simultaneously,
so the sample has 3 labels. Here, we select the P1-P6 levels’
samples and randomly divided them into the training set and
test set. These samples come from I60-68 set in UCHO and
RAND and NO set in ISOL, total 14841.

This dataset still contains abundant spatio-temporal features,
we train the model and test on different polyphonic levels.

TABLE I
THE RESULT OF INSTRUMENT RECOGNITION

Models Structure Precision Recall F-measure

LSTM 96-218-10 96.08% 93.31% 94.62%
Temporal CNN \ 95.94% 99.21% 97.51%

TD-SNN 384-700-10 75.62% 86.56% 80.73%
STCA 384-700-10 97.23% 97.29% 97.25%

proposed 384-700-10 98.23% 98.17% 98.20%

TABLE II
THE INFLUENCE OF VARIABLE RESISTANCE IN MAPS

α 0 0.1 0.2 0.3 0.4
P1 96.69 96.86 96.86 96.30 92.56
P2 95.37 95.29 95.34 94.58 92.48
P3 95.22 95.78 96.44 95.76 94.10
P4 93.19 94.05 94.32 93.77 92.80
P5 92.50 93.14 93.10 92.69 91.50
P6 68.04 67.97 69.66 68.06 66.24
All 90.75 91.30 91.59 91.00 89.47

To test the influence of variable resistance is general or not,
we only change the parameter α as same as the experiment
on Instrument Recognition. The result of the F-measure on
different polyphonic levels is in Table II. It shows that when
α = 0.2, the performance gets best. Variable resistance
affects the temporal dependencies, if the intensity of temporal
dependencies is different, the optimal choices of α will change.

In Table III, we display the results of MAPS dataset in
different polyphonic levels. Here, we list the F-measure of
this dataset. In these compared models, Emiya’s model [36]
is an adaptive method, which can match the frequencies’
inharmonic distribution adaptively and model the spectral en-
velope autoregressively. Benetos’ model [37] is a joint multiple
estimation system transcribe piano music automatically. The
MPEnet [38] is a deep ANN based on multimodal sparse
incoherent non-negative matrix factorization, whose structure
is very complex compared with ours(1745-800-88). Our model
shows a stable performance when the level lower than P6,
and it has the best performance when the level is P3, P4, and
P5. For all polyphonic levels, it still has the state-of-the-art
performance. But it lacks in P6 to compare with MPENet.
Other methods extract temporal feature by converting them
into spatial field, but our model extracts features in both
spatial field and temporal field, which make it show the best
performance.

IV. CONCLUSION

In this work, we first proposed an iterative current-based LIF
model with variable resistance. The proposed model mainly
has the following advantages: (1) the proposed model is close

TABLE III
THE F-MEASURE OF MAPS

Emiya Benetos Proposed MPENet
P1 93 91.86 96.86 \
P2 93 88.61 95.34 97.11
P3 88 91.3 96.44 94.25
P4 80 88.83 94.32 90.08
P5 75 88.14 93.10 86.89
P6 63 69.55 69.66 83.65
All 63 88.54 91.59 90.39

to H-H model, which is inspired by the biological neuron; (2)
it has temporal dependencies. Variable resistance builds a new
relationship in the temporal field, which strengthen the depen-
dencies; (3) it is a nonlinear-weighted network, the weighted
operation is influenced by the state of the neuron. Then we
construct a deep SNN algorithm by defining a voltage-driven
loss function and using spatio-temporal backpropagation. We
do some experiments to demonstrate that the proposed method
is efficient and has a high performance in spatio-temporal
fields.

REFERENCES

[1] R.-M. Memmesheimer, R. Rubin, B. P. Ölveczky, and H. Sompolinsky,
“Learning precisely timed spikes,” Neuron, vol. 82, no. 4, pp. 925–938,
2014.

[2] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[3] Q. Kang, B. Huang, and M. Zhou, “Dynamic behavior of artificial
Hodgkin–Huxley neuron model subject to additive noise,” IEEE trans-
actions on cybernetics, vol. 46, no. 9, pp. 2083–2093, 2015.

[4] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve,”
The Journal of physiology, vol. 117, no. 4, pp. 500–544, 1952.

[5] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[6] W. Gerstner, “Time structure of the activity in neural network models,”
Physical review E, vol. 51, no. 1, pp. 738–758, 1995.

[7] M. Haeusser, “The Hodgkin-Huxley theory of the action potential,”
Nature Neuroscience, vol. 3, no. 11, pp. 1165–1165, 2000.

[8] Z. Wang, L. Guo, and M. Adjouadi, “A generalized leaky integrate-
and-fire neuron model with fast implementation method,” International
journal of neural systems, vol. 24, no. 5, p. 1440004, 2014.

[9] Q. Yu, H. Tang, K. C. Tan, and H. Li, “Precise-spike-driven synaptic
plasticity: Learning hetero-association of spatiotemporal spike patterns,”
Plos one, vol. 8, no. 11, pp. 65–87, 2013.

[10] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I.
Homogeneous synaptic input,” Biological cybernetics, vol. 95, no. 1,
pp. 1–19, 2006.

[11] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Interna-
tional journal of neural systems, vol. 19, no. 4, pp. 295–308, 2009.

[12] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo,
T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low
power, fully event-based gesture recognition system,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 7243–7252.

[13] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[14] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
“STDP-based spiking deep convolutional neural networks for object
recognition,” Neural Networks, vol. 99, pp. 56–67, 2018.

[15] Q. Xu, J. Peng, J. Shen, H. Tang, and G. Pan, “Deep CovDenseSNN:
A hierarchical event-driven dynamic framework with spiking neurons in
noisy environment,” Neural Networks, vol. 121, pp. 512–519, 2020.

[16] T. Zhang, Y. Zeng, D. Zhao, and B. Xu, “Brain-inspired Balanced Tuning
for Spiking Neural Networks.” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18, 2018,
pp. 1653–1659.

[17] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassign-
ment in time,” in Advances in Neural Information Processing Systems,
2018, pp. 1412–1421.

[18] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in 2015 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2015, pp. 1–8.

[19] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,” Frontiers in neuroscience, vol. 11,
p. 682, 2017.

[20] E. Hunsberger and C. Eliasmith, “Spiking deep networks with LIF
neurons,” arXiv preprint arXiv:1510.08829, 2015.

[21] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-
time classification and sensor fusion with a spiking deep belief network,”
Frontiers in neuroscience, vol. 7, p. 178, 2013.

[22] P. Gu, R. Xiao, G. Pan, and H. Tang, “STCA: spatio-temporal credit
assignment with delayed feedback in deep spiking neural networks,”
in Proceedings of the 28th International Joint Conference on Artificial
Intelligence. AAAI Press, 2019, pp. 1366–1372.

[23] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1-4, pp. 17–37, 2002.

[24] O. Booij and H. tat Nguyen, “A gradient descent rule for spiking neurons
emitting multiple spikes,” Information Processing Letters, vol. 95, no. 6,
pp. 552–558, 2005.

[25] A. Samadi, T. P. Lillicrap, and D. B. Tweed, “Deep learning with dy-
namic spiking neurons and fixed feedback weights,” Neural computation,
vol. 29, no. 3, pp. 578–602, 2017.

[26] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in neuroscience, vol. 10, p.
508, 2016.

[27] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropa-
gation for training high-performance spiking neural networks,” Frontiers
in neuroscience, vol. 12, p. 331, 2018.

[28] R. Gütig and H. Sompolinsky, “The tempotron: a neuron that learns
spike timing–based decisions,” Nature neuroscience, vol. 9, no. 3, pp.
420–428, 2006.

[29] R. Gütig, “Spiking neurons can discover predictive features by
aggregate-label learning,” Science, vol. 351, no. 6277, p. 1041, 2016.

[30] Q. Yu, H. Li, and K. C. Tan, “Spike timing or rate? Neurons learn
to make decisions for both through threshold-driven plasticity,” IEEE
transactions on cybernetics, vol. 49, no. 6, pp. 2178–2189, 2018.

[31] R. Xiao, Q. Yu, R. Yan, and H. Tang, “Fast and accurate classification
with a multi-spike learning algorithm for spiking neurons,” in Proceed-
ings of the 28th International Joint Conference on Artificial Intelligence.
AAAI Press, 2019, pp. 1445–1451.

[32] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein,
and W. Maass, “A solution to the learning dilemma for recurrent
networks of spiking neurons,” bioRxiv, p. 738385, 2019.

[33] R. M. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam, and
J. P. Bello, “Medleydb: A multitrack dataset for annotation-intensive
mir research.” in ISMIR, vol. 14, 2014, pp. 155–160.

[34] J. Pons, O. Slizovskaia, R. Gong, E. Gómez, and X. Serra, “Timbre
analysis of music audio signals with convolutional neural networks,” in
2017 25th European Signal Processing Conference (EUSIPCO). IEEE,
2017, pp. 2744–2748.

[35] E. Smith and M. S. Lewicki, “Efficient coding of time-relative structure
using spikes,” Neural Computation, vol. 17, no. 1, pp. 19–45, 2005.

[36] V. Emiya, R. Badeau, and B. David, “Multipitch estimation of piano
sounds using a new probabilistic spectral smoothness principle,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 18, no. 6,
pp. 1643–1654, 2009.

[37] E. Benetos and S. Dixon, “Joint multi-pitch detection using harmonic
envelope estimation for polyphonic music transcription,” IEEE Journal
of Selected Topics in Signal Processing, vol. 5, no. 6, pp. 1111–1123,
2011.

[38] X. Li, Y. Guan, Y. Wu, and Z. Zhang, “Piano multipitch estimation using
sparse coding embedded deep learning,” EURASIP Journal on Audio,
Speech, and Music Processing, vol. 2018, no. 1, pp. 1–23, 2018.

