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Abstract—We tackle the problem of algorithmic fairness, where
the goal is to avoid the unfairly influence of sensitive information,
in the general context of regression with possible continuous
sensitive attributes. We extend the framework of fair empirical
risk minimization of [1] to this general scenario, covering in
this way the whole standard supervised learning setting. Our
generalized fairness measure reduces to well known notions of
fairness available in literature. We derive learning guarantees for
our method, that imply in particular its statistical consistency,
both in terms of the risk and the fairness measure. We then
specialize our approach to kernel methods and propose a convex
fair estimator in that setting. We test the estimator on a com-
monly used benchmark dataset (Communities and Crime) and
on a new dataset collected at the University of Genoa1, containing
the information of the academic career of five thousand students.
The latter dataset provides a challenging real case scenario of
unfair behaviour of standard regression methods that benefits
from our methodology. The experimental results show that our
estimator is effective at mitigating the trade-off between accuracy
and fairness requirements.

Index Terms—Machine Learning, Algorithmic Fairness, Re-
gression, Kernel Methods

I. INTRODUCTION

The problem of designing learning methods that do not use
sensitive information in a discriminatory way (e.g. knowledge
about the ethnic group of an individual, sex, age) is receiving
increasing attention, due to its fundamental importance in real-
life scenarios, see e.g. [2]–[21] and references therein. In this
paper we follow a recent line of work [1], [7], [9]–[13], [22]–
[26] in which the fairness constraint is directly taken into
account during the learning procedure. An important departure
from previous work that we take in this paper is to consider the
possibility that the sensitive feature and/or the output (response
variable) we wish to predict take real values.

The importance of being able to solve regression tasks and
possibly dealing with continuous sensitive features can be
highlighted by the following example. At the University of
Anonymous, automatic systems are needed to predict stu-
dents’ performance for the purpose of improving the teaching
quality and the students’ support systems. In this case, the
response variable is the course mark and the sensitive features
can be both categorical (e.g. sex or ethnic group) or continuous
(e.g. age or financial status).

Common notions of fairness that have been used in the
setting of classification with categorical sensitive features
is that of Equal Opportunity or Equalized Edds [4]. They

1The data and the research are related to the project DROP@UNIGE of
the University of Genoa.

aim to balance decisions of a classifier among the different
sensitive groups and label sets. We show how these notions
can be extended to the general supervised learning setting
(regression and classification) with general sensitive features
(categorical and continuous). We observe that these novel
fairness constraints can be incorporated within the Empirical
Risk Minimization (ERM) framework. Our method and anal-
ysis build up and extend the Fair ERM (FERM) framework
developed in [1]. As the fairness measures used here are
more general than those employed in that work, we name our
approach General FERM (G-FERM). We show that G-FERM
is supported by consistency guarantees both in terms of risk
and fairness measure. Specifically, we derive both risk and
fairness bounds, which support the statistically consistency of
G-FERM. We give a concrete instance of G-FERM in the
setting of kernel methods, leading to a form of constrained
regularized empirical risk minimization, in which the fairness
constraint is obtained by composting the `1 norm with a linear
transformation.

Contributions. First, we present new generalized notions
of fairness that encompass well studied notions used for
classification and regression with categorical and numerical
sensitive feature. Second, we study statistical bounds for
G-FERM that imply consistency properties both in terms
of fairness measure and risk of the selected model. As a
third contribution, we instantiate G-FERM in the setting of
kernel methods, leading to an efficient convex estimator. We
test this estimator on a commonly used benchmark dataset
(Communities and Crime) and on a new dataset collected at
University of Anonymous, containing the information of the
academic career of five thousand students. The latter dataset
provides a challenging real case scenario of unfair behaviour
of standard methods for regression that is solvable by using our
methodology. The experimental results show that our estimator
is effective at mitigating the trade-off between accuracy and
fairness requirements.

Paper Organization. In Section II we discuss previous
work on fairness, with a particular focus on regression and or
continuous sensitive features. In Section III we introduce our
notion of fairness which leads us to the G-FERM and study
its statistical properties. In Section IV we give the kernel-
based G-FERM estimator and in Section V report on numerical
experiments on two real datasets. Finally in Section VI we
draws conclusions and comment on future research directions.
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II. RELATED WORKS

In the context of fairness, most of the papers in literature
address the problem of binary classification task with cate-
gorical (or even binary) sensitive features [4], [7]; a broad
review on classification with categorical sensitive feature is
provided in [1]. This task is indeed very important, because
it is strictly related to the possibility of having access to
specific benefits (e.g. loans) without being discriminated due
to gender or ethnic characteristics. On the other hand, the set
of problems solvable by using these methods is limited and
not comprehensive of all the real-world case scenarios.

Focusing on the works able to handle regression tasks, we
can divide them by the type of problems they are able to solve
and the notion of fairness they exploit. As we will see, with
very few exceptions – e.g. [27] – most of the methods in litera-
ture are not able to deal with both classification and regression
task and with both numerical and categorical sensitive features
with an unified approach supported by theoretical consistency
results. In fact, they introduce task oriented notions of fairness
and/or do address the statistical consistency of their method
with respect to the risk and the fairness measure employed.

The largest family of methods tackle regression problems
with (single) categorical or binary sensitive feature [13], [28]–
[30]. For example, in [13], a convex approach for regression is
proposed, where the authors use a specific definition of fairness
in order to have models which treat similar examples in a
similar way, in the sense of the predicted outcome. The authors
tackle the problem by introducing a new convex regularizer
and by imposing this notion on different regression tasks.
Another example is [29], where the authors use an adapted
version of Demographic Parity [31] for classification, in the
context of regression.

Reducing the regression problem to have only categorical
sensitive features is a serious limitation. In this sense, few
interesting papers present regression methods able to deal with
continuous sensitive attributes [12], [27], [32]. Differently to
our approach, the authors impose other definitions of fairness
(e.g. Disparate Impact [7] or even ad-hoc brand new defini-
tions). Moreover, it is important to note that these methods
do not naturally extend to the case of not-continuous sensitive
attributes.

Considering a larger spectrum of possible methodologies,
it is possible to find in literature other methods able to solve
regression tasks by imposing some concept of fairness. [33]
and [34] tackle the regression problem exploiting the causal
machine learning framework. These methods can handle po-
tentially both continuous and categorical sensitive features.
The authors’ analysis considers only the case of categorical
ones, leaving the evolution to continuous sensitive attributes
as possible future works. Another interesting idea, presented
in [35], is to study the fairness as a property of the metric
of the feature space. The authors introduce a new definition
of metric-related fairness allowing them to solve a regression
problem with categorical and continuous sensitive attributes.
Finally, learning fair pre-processing rules is another possible

way to obtain a regression model that is fair. In fact, for
example in [17], the fair representation of the data can be
used in synergy with any classic regression method, in order
to generate a fair regression model.

III. LEARNING WITH FAIRNESS CONSTRAINTS

In this section, we introduce our framework for learning
under fairness constraints. We first recall some notation used
throughout this work in Section III-A. We then present the
proposed fairness measures in Section III-B, which lead us to
consider in Section III-C a generalized version of the FERM
approach [1]. Finally in Section III-D we discuss the statistical
properties of our method.

A. Setting

Let D={(x1, s1, y1), . . . , (xn, sn, yn)} be a training set
formed by n samples drawn independently from an unknown
probability distribution µ over X×S×Y , where X is the input
space, S is the space of the sensitive attribute and Y is the
output space. Both S and Y may be finite or continuous; if Y
is a finite set of labels we are dealing with the classification
setting and if Y ⊆ R we are dealing with the regression setting.

Let K and Q be positive integers and define the sets

YK={t1, · · ·, tK+1}⊂R, SQ={σ1, · · ·, σQ+1}⊂R,

where t1<t2<· · ·<tK+1, and σ1<σ2<· · ·<σQ+1. The sets
YK and SQ are prescribed by the user: the discretization
process is driven by the application at hand and points in the
same interval are regarded as indistinguishable. For example,
it does not make sense to state that a group of students at the
University of Anonymous is mistreated because the average
grades are distant by less than 5% of the mark range. We also
define, for every 1≤k≤K and 1≤q≤Q, the subsets of training
points

Dk,q={(xi, si, yi) : 1≤i≤n, y∈[tk, tk+1), s∈[σq, σq+1)}

and let nk,q=|Dk,q|.
We consider a function (or model) f chosen from a set
F of possible ones. The functional form of the model may
explicitly depend on the sensitive feature (i.e. f :X×S→R)
or not (i.e. f :X→R) based on specific legal requirements in
the application at hand [26], [36]. For this reason we will
indicate f :Z→R where Z may contain the sensitive feature
(i.e. Z=X×S) or not (i.e. Z=X ). The error (risk) of f is
measured by a prescribed loss function `:R×Y→R . The risk
of a model L(f), together with its empirical counterpart L̂(f),
are defined respectively as

L(f)=E [`(f(z), y)] ,

and

L̂(f)= 1
n

∑
(z,y)∈D `(f(z), y).

When necessary we will indicate with a subscript the particular
loss function used and the associated risk, i.e. Lp(f) =
E [`p(f(z), y)].



The purpose of a learning procedure is to find a model
that minimizes the risk. Since the probability measure µ
is usually unknown, the risk cannot be computed, however
we can compute the empirical risk and a natural learning
strategy, called Empirical Risk Minimization (ERM), is then
to minimize the empirical risk within a prescribed set of
functions, see e.g. [37].

B. ε-Loss General Fair

In the literature different definitions of fairness of a classifier
or real-valued function exist as described in Section II. It is
important to stress that there is not yet a consensus about
which definition should be employed to evaluate algorithmic
fairness. Moreover, most of the current fairness definitions are
not able to deal with regression problems (or with continuous
sensitive attributes), losing their meaning or being even not
definable. In this work we proposes a general notion of fairness
able to deal with both classification and regression and with
both categorical and numerical sensitive features and which
generalizes previously known notions of fairness.

Definition 1: A model f is ε-general fair (ε-GF) with ε ∈
[0, 1] if satisfies the following condition

1
KQ2

∑K
k=1

∑Q
p,q=1

∣∣P k,p(f)−P k,q(f)
∣∣≤ε

where, for every 1≤k≤K and 1≤q≤Q, we have defined the
conditional probabilities

P k,q(f)=P
{
f(z)∈[tk, tk+1)

∣∣∣y∈[tk, tk+1), s∈[σq, σq+1)
}
.

This definition says that a model is fair if its predictions are
equally distributed independently of the value of the sensitive
attribute. It can be further generalized as follows.

Definition 2: For every 1≤k≤K let `k be a loss function.
For every 1≤k≤K, 1≤q≤Q, define the conditional risks

Lk,qk (f)=E
[
`k(f(z), y)|y∈[tk, tk+1), s∈[σq, σq+1)

]
.

We say that a function f is ε-loss general fair (ε-LGF) with
ε ∈ [0, 1] if it satisfies the following condition

1
KQ2

∑K
k=1

∑Q
p,q=1

∣∣∣Lk,pk (f)− Lk,qk (f)
∣∣∣≤ε.

This definition says that a model is fair if its errors, rel-
ative to the loss function, are approximately equally dis-
tributed independently of the value of the sensitive at-
tribute. Definition 2 includes Definition 1 when we choose
`k(ŷ, y)=1{ŷ 6∈[tk, tk+1)}, for 1≤k≤K. Moreover, it is pos-
sible to link Definition 2 to other fairness measures used before
in the literature.

Remark 1: If we choose ε=0, Y={−1,+1}, S={0, 1},
YK={−1.5, 0, +1.5}, SQ={−0.5, 0.5, 1.5} and, for every
1≤k≤K, let `k be the 0-1-loss, that is `k(y, y)=1{yŷ≤0},
then Definition 2 reduces to the notion of Equalized Odds [1],
[4]. On the other hand, in the same setting, if we let, for
every k, `k be the linear loss, `k(ŷ, y) = (1 − yŷ)/2, then
we recover other notions of fairness introduced in [26]. When
ε=0, Y⊆R, S={0, 1}, YK={−∞,∞}, SQ= {−0.5, 0.5, 1.5}
then Definition 2 reduces to the notion of Mean Distance

introduced in [28] and also exploited in [27]. Finally, in
the same setting, if S⊆R in [27] it is proposed to use the
correlation coefficient which is equivalent to setting SQ=S in
Definition 2.

C. General Fair Empirical Risk Minimization

In this paper, we aim at minimizing the risk subject to a
fairness constraint. Specifically, we consider the problem

min
f∈F

{
L(f):

K∑
k=1

Q∑
p,q=1

∣∣∣Lk,pk (f)−Lk,qk (f)
∣∣∣≤ε} , (1)

where ε ∈ [0, 1] is the amount of unfairness that we are
willing to bear. Since the measure µ is unknown we replace
the deterministic quantities with their empirical counterparts.
That is, we replace Problem (1) with

min
f∈F

{
L̂(f):

K∑
k=1

Q∑
p,q=1

∣∣∣L̂k,pk (f)−L̂k,qk (f)
∣∣∣≤ε̂} , (2)

where ε̂ ∈ [0, 1], and, for every k∈{1, · · ·,K} and every
q∈{1, · · ·, Q} we defined the empirical conditional risks

L̂k,qk (f) = 1
nk,q

∑
(z,y)∈Dk,q

`k(f(z), y).

We will refer to Problem (2) as G-FERM since it generalizes
the FERM approach introduced in [1].

D. Statistical Analysis

Let f∗ be a solution of Problem (1), and let f̂ a solution of
Problem (2). In this section we will show that these solutions
are linked one to another. In particular, if the parameter ε̂ is
chosen appropriately, we will show that, in a certain sense, the
estimator f̂ is consistent. Our analysis extends the reasoning
in [1] to the more general setting presented here.

For this purpose, we require that for any data distribution,
it holds with probability at least 1−δ with respect to the draw
of a dataset that

supf∈F
∣∣L(f)− L̂(f)

∣∣ ≤ B(δ, n,F) (3)

where B(δ, n,F) goes to zero as n grows to infinity, that is
the class F is learnable with respect to the loss [37]. Moreover
B(δ, n,F) is usually an exponential bound which means that
B(δ, n,F) grows logarithmically with respect to the inverse
of δ.

Remark 2: If F is a compact subset of linear separators in
a reproducing kernel Hilbert space, and the loss is Lipschitz
in its first argument, then B(δ, n,F) can be obtained via
Rademacher bounds [38]. In this case B(δ, n,F) goes to
zero at least as

√
1/n as n grows and decreases with δ as√

ln (1/δ).
We are now ready to state the first result of this section.
Theorem 1: Let F be a learnable set of functions with

respect to the loss function ` : R × Y → R, let f∗ be a
solution of Problem (1) and let f̂ be a solution of Problem (2)
with

ε̂ = ε+
∑K
k=1

∑Q
q,q′=1

∑
p∈{q,q′}B(δ, nk,p,F).



With probability at least 1− δ it holds simultaneously that

L(f̂)− L(f∗) ≤ 2B
(

δ
(4KQ2+2) , n,F

)
,

K∑
k=1

Q∑
p,q=1

∣∣∣Lk,pk (f)− Lk,qk (f)
∣∣∣

≤ε+2

K∑
k=1

Q∑
q,q′=1

∑
p∈{q,q′}

B
(

δ
(4KQ2+2) , nk,p,F

)
.

Proof 1: We first use Eq. (3) to conclude that, with proba-
bility at least 1− 2KQ2δ,

sup
f∈F

∣∣∣∣∣
K∑
k=1

Q∑
p,q=1

∣∣Lk,pk (f)−Lk,qk (f)
∣∣−∣∣L̂k,pk (f)−L̂k,qk (f)

∣∣∣∣∣∣∣
≤

K∑
k=1

Q∑
q,q′=1

∑
p∈{q,q′}

B(δ, nk,p,F). (4)

This inequality in turn implies that, with probability at least
1− 2KQ2δ, it holds that{

f : f ∈ F ,
K∑
k=1

Q∑
p,q=1

∣∣∣Lk,pk (f)−Lk,qk (f)
∣∣∣ ≤ ε}

⊆
{
f : f ∈ F ,

K∑
k=1

Q∑
p,q=1

∣∣∣L̂k,pk (f)−L̂k,qk (f)
∣∣∣ ≤ ε̂}. (5)

Now, in order to prove the first statement of the theorem, let
us decompose the excess risk as

L(f̂)−L(f∗)=L(f̂)−L̂(f̂)+L̂(f̂)−L̂(f∗)+L̂(f∗)−L(f∗).

The inclusion property of Eq. (5) implies that L̂(f̂)−L̂(f∗) ≤
0 with probability at least 1 − 2KQ2δ. Consequently with
probability at least 1− 2KQ2δ it holds that

L(f̂)− L(f∗) ≤ L(f̂)− L̂(f̂) + L̂(f∗)− L(f∗).

The first statement now follows by Eq. (3). As for the
second statement, its proof consists in exploiting the results
of Eqns. (4) and (5) together with a union bound.
A consequence of the first statement of Theorem 1 is that as n
tends to infinity L(f̂) tends to a value which is not larger than
L(f∗), that is, G-FERM is consistent with respect to the risk
of the selected model. The second statement of Theorem 1,
instead, implies that as n tends to infinity we have that f̂ tends
to be ε-fair. In other words, G-FERM is consistent with respect
to the fairness of the selected model.

Remark 3: Since K,Q≤n the bound in Theorem 1 behaves
as
√

ln (1/δ) /n in the same setting of Remark 2 which is
optimal [37].

Thanks to Theorem 1 we can state that f∗ is close to f̂
both in term of its risk and its fairness. Nevertheless, our final
goal is to find an f∗h which solves the following problem

min
f∈F

{
L(f):

K∑
k=1

Q∑
p,q=1

∣∣P k,p(f)−P k,q(f)
∣∣≤ε} . (6)

Note that, the quantities in Problem (6) cannot be computed
since the underline data generating distribution is unknown.
Moreover, the objective function and the fairness constraint of
Problem (6) are non convex.

Theorem 1 allow us to solve the first issue since we can
safely search for a solution f̂h of the empirical counterpart of
Problem (6), which is given by

min
f∈F

{
L̂(f):

K∑
k=1

Q∑
p,q=1

∣∣∣P̂ k,p(f)−P̂ k,q(f)
∣∣∣≤ε̂} (7)

where

P̂ k,q(f)=
1

nk,q

∑
(z,y)∈Dk,q

1 {f(z)∈[tk, tk+1)} . (8)

Unfortunately, Problem (7) is still a difficult non-convex non-
smooth problem, and for this reason it is more convenient to
solve a convex relaxation. That is, we replace the possible non-
convex loss function in the risk with its convex upper bound
`c (e.g. the square loss `c=(y−f(z))2) and the losses `k,
1≤k≤K, in the constraint with a relaxation (e.g. the linear loss
`l(ŷ, y)=ŷ−y) which allows to make the constraint convex. In
this way, we look for a solution f̂c of the convex G-FERM
problem

min
f∈F

{
L̂c(f):

K∑
k=1

Q∑
p,q=1

∣∣∣L̂k,pl (f)−L̂k,ql (f)
∣∣∣≤ε̂}. (9)

Note that this approximation of the fairness constraint corre-
spond to matching the first order moment [1].

The questions that arise here are whether f̂c is close to
f̂h, how much, and under which assumptions. The following
proposition sheds some lights on these issues.

Proposition 1: If `c is a convex upper bound of the loss
exploited to compute the risk then L̂h(f) ≤ L̂c(f). Moreover,
if for f : X → R and for `l

K∑
k=1

Q∑
p,q=1

∣∣∣P̂ k,p(f)−P̂ k,q(f)
∣∣∣− ∣∣∣L̂k,pl (f)−L̂k,ql (f)

∣∣∣≤∆̂

with ∆̂ small, then also the fairness is well approximated.
The first statement of Proposition 1 tells us that exploiting

the quality in approximating the risk depend on the quality
of the convex approximation. The second statement of Propo-
sition 1, instead, tells us that if ∆̂ is small then the linear
loss based fairness is close to the GF. This condition is quite
natural, empirically verifiable, and it has been exploited in
previous work [1], [39]. Moreover, in Section V we present
experiments showing that ∆̂ is small.

The bound in Proposition 1 may be tighten by using
different non-linear approximations of the GF. However, the
linear approximation proposed in this work gives a convex
problem, and as we shall see in Section V, works well in
practice.

In summary, the combination of Theorem 1 and Propo-
sition 1 provides conditions under which a solution f̂c of
Problem (2), which is convex, is close, both in terms of risk



and fairness measure, to a solution f∗h of Problem (6), which
is our final goal.

IV. G-FERM WITH KERNEL METHODS

In this section, we specify the G-FERM framework to the
case that the underlying space of models is a reproducing
kernel Hilbert space (RKHS) [40], [41].

We let κ:Z×Z→R be a positive definite kernel and
let φ:Z→H be an induced feature mapping such that
κ(z, z′)=〈φ(z),φ(z′)〉, for all z, z′∈Z , where H is the
Hilbert space of square summable sequences. Functions in the
RKHS can be parametrized as

f(z) = 〈w,φ(z)〉, z ∈ Z, (10)

for some vector of parameters w ∈ H. In practice a bias term
(threshold) can be added to f but to ease our presentation we
do not include it here.

We propose to solve Problem (9) in the case that F is a ball
in the RKHS and employ a convex loss function `c(y, ŷ) to
measure the empirical error. Standard choices are the square
loss in the case of regression or the hinge loss in the case of
binary classification. They are defined, for every y, ŷ ∈ R, as
(y− ŷ)2 and max(0, 1− yŷ), respectively. As for the fairness
constraint we use the linear loss function `l which implies the
constraint to be convex. Then, we introduce the mean of the
feature vectors associated with the training points restricted
by the discretization of the sensitive feature and real outputs,
namely

uk,q = 1
Nk,q

∑
(z,y)∈Dk,q

φ(z). (11)

Using Eq. (10) the constraint in Problem (9) becomes∑K
k=1

∑Q
p,q=1 |〈w,uk,p − uk,q〉| ≤ ε̂ (12)

which can be written with more compact notation as
‖ATw‖1≤ε̂, where A : H → RKQ2

is the linear operator
mapping a vector w to the vector 〈w,uk,p −uk,q〉. With this
notation, the fairness constraint can be interpret as the com-
position of ε̂ ball of the `1 norm with a linear transformation
A.

In practice, we solve the following Tikhonov regularization
problem

min
w∈H

n∑
i=1

`c(yi, 〈w,φ(zi)〉) + λ‖w‖2 (13)

s.t. ‖A>w‖1 ≤ ε̂,

where λ is a positive parameter. Note that, if ε̂=0 the constraint
reduces to the linear constraint A>w=0.

Problem (13) can be kernelized by observing that, thanks
to the Representer Theorem [40]

w =
∑n
i=1 αiφ(zi). (14)

The dual of Problem (13) may be derived using Fenchel
duality, see e.g. [42, Theorem 3.3.5]. We postpone the discus-
sion to future work since in our experiments we employed an
off-the-shelf convex optimization solver2.

2https://www.ibm.com/analytics/cplex-optimizer

Finally, we note that in the case when φ is the identity
mapping (i.e. κ is the linear kernel on Rd) and ε̂=0 then the
fairness constraint of Problem (13) can be implicitly enforced
by making a change of representation [1].

V. EXPERIMENTS

In this section we present a set of experiments to test the
performance of the proposed method, both in terms of error
and fairness. We will study both the cases with categorical and
continuous sensitive feature in the context of the regression
(continuous label). The classification task, as special case of
our proposed framework, has been already studied in [1].
For this purpose, we selected two metrics to compare our
method with the other baselines. Concerning the error we
collected the Mean Absolute Percentage Error (MAPE), that is
equal to L̂(f) on the test set when `(f(z), y) = 100 |y−f(z)|

|y| .
For what concerns the fairness of the model we will exploit
the Differences of GF (DGF), see Definition 1, that is the
following quantity, still estimated on the test set as

DGF(f) =
∑K
k=1

∑Q
p,q=1

∣∣∣P̂ k,p(f)− P̂ k,q(f)
∣∣∣

where the expression of P̂ k,p(f) is given in Eq. (8).
A set of four different algorithms is considered, with two

different types of validation procedures. The algorithms are
divided in two groups: linear and non-linear kernels. Con-
cerning the linear methods, the baseline is regularized least
squares (RLS), where we solve Problem (13) with no fairness
constraint and a linear kernel. Fair RLS is our method in
this category, that solves Problem (13) with a linear kernel
including the fairness constraint. A kernel version of the same
methods is KRLS, that solves Problem (13) with no fairness
constraint and a Gaussian kernel, i.e. κ(z, z′) = e−γ‖z−z

′‖2 .
In comparison, our proposed algorithm is Fair KRLS, where
we tackle Problem (13) with the fairness constraint and a
Gaussian kernel.

We follow two different types of possible validation pro-
cedures3. The first one is standard, and we call it Naive
Validation (Naive). In particular, we performed a nested 10-
fold cross validation (CV) to select the best hyperparameters
and to test the final model. This procedure is repeated 30
times, and we reported the average performance on the test
set alongside its standard deviation. A second validation pro-
cedure, called Novel Validation Procedure (NVP) as in [1],
is slightly different and more focused on finding the best fair
model among the ones with low error. Also in this case, as
general structure, we performed a nested 10-fold CV to test the
final model. For the inner part of the nested CV, we employ a
two steps procedure. In the first step, the 10-fold CV error for
each of the combination of the hyperparameters is computed.
In the second step, we shortlist all the hyperparameters’
combinations with error close to the best one (in our case,
above 90% of the best MAPE). Finally, from this list, we
select the hyperparameters with the lowest DGF.

3Hyperparameters range: λ ∈ {10−4.0, 10−3.5, · · · , 10+4.0} and γ ∈
{10−4, 10−3, · · · , 10+4}.



For the sake of completeness, all the experiments have been
performed both having and not having the sensitive feature
in the model’s functional form, i.e. the sensitive feature is
available (or not available) at test time.

A. Datasets

For the purpose of testing the proposed proposed method-
ology we employed two different datasets for regression.

The first one is a classic benchmark dataset for fairness
called Communities and Crime dataset4 (CRIME). CRIME
combines socioeconomic data and crime rate data on com-
munities in the United States. In the case of categorical
sensitive feature, following [28], we made a binary attribute
s as to the percentage of black population, which yielded
970 instances of s=1 with a mean crime rate 0.35 and
1024 instances of s=0 with a mean crime rate 0.13. In this
case SQ={−0.5, 0.5, 1.5}. Concerning the experiments with
continuous sensitive feature we maintain the real value of the
percentage of black population, avoiding the binarization step
of it and then we consider Q=5 and a uniform set SQ over
[0, 1], i.e. SQ={0.0, 0.2, . . . , 0.8, 1.0}.

The second dataset we propose is new and it has been col-
lected at the University of Anonymous (UNIV). This dataset
is a proprietary and highly sensitive dataset containing all the
data about the past and present students enrolled at the UNIV.
In this study we take into consideration students who enrolled,
in the academic year (a.y.) 2017-2018. The dataset contains
5000 instances, each one described by 35 attributes (both
numeric and categorical) about ethnicity, gender, financial
status, and previous school experience. The scope is to predict
the average grades and the end of the first semester. In the case
of categorical sensitive feature, we consider as sensitive feature
the gender (s=1 female and s=0 male) and consequently
SQ={−0.5, 0.5, 1.5}. In the context of continuous sensitive
attribute, we select as sensitive feature the income of the
student, with Q=5 following the official separation in five
bins from the tuition system of the University of Anonymous
(details at link link anonymous).

B. Results and Discussion

Results for regression tasks with categorical sensitive fea-
ture are presented in Table I, where MAPE and DGF are shown
for the different datasets (CRIME and UNIV), algorithms
(RLS and KRLS), validation procedure (Naive and NVM),
with and without the fairness constraints, and availability of
the sensitive feature at test time.

For both datasets, it is clear the advantage of using our
method (see also Figure 1) in order to obtain more fair models
(i.e. lower DGF) at the expenses of a slightly higher error
(i.e. higher MAPE). Moreover, having the sensitive feature
at test time increases model accuracy (i.e. lower MAPE)
and reduces the fairness measure (i.e. higher DGF). The
improvement is stronger in the kernel case, and where the
original unfairness of the standard method is higher.

4http://archive.ics.uci.edu/ml/datasets/communities+and+crime

TABLE I
RESULTS WITH ε̂ = 0 AND K = 10.

CRIME UNIV
Method MAPE DGF MAPE DGF

Sensitive Feature 6∈ the model’s functional form.
Naive RLS 9.1±0.5 0.19±0.06 21.2±1.8 0.29±0.08
NVM RLS 10.2±0.8 0.16±0.05 23.4±1.9 0.23±0.09
NVM Fair RLS 10.5±1.0 0.11±0.04 24.2±1.9 0.15±0.09
Naive KRLS 8.7±0.4 0.18±0.05 12.2±0.8 0.19±0.05
NVM KRLS 8.9±0.7 0.17±0.05 13.7±1.1 0.12±0.05
NVM Fair KRLS 9.0±0.7 0.11±0.04 14.1±1.2 0.06±0.03

Sensitive Feature ∈ the model’s functional form.
Naive RLS 9.1±0.6 0.20±0.05 19.7±1.7 0.33±0.11
NVM RLS 9.5±0.6 0.18±0.05 21.9±1.9 0.28±0.09
NVM Fair RLS 9.5±0.7 0.12±0.03 21.8±1.8 0.19±0.10
Naive KRLS 8.5±0.6 0.19±0.04 11.5±0.8 0.21±0.06
NVM KRLS 8.6±0.6 0.18±0.05 12.6±0.9 0.13±0.05
NVM Fair KRLS 8.7±0.7 0.12±0.04 12.9±0.9 0.07±0.03

CRIME UNIV
0
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15

20
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Naive NVM NVM Fair (OURS)

CRIME UNIV
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Fig. 1. Graphical representation of Table I for the non-linear version of the
methods, when the sensitive feature is not in the model’s functional form.

TABLE II
∆̂ WITH ε̂ = 0 AND K = 10.

CRIME UNIV
Method ∆̂ ∆̂

Sensitive Feature not included
in the model’s functional form.
NVM Fair RLS 0.03 0.02
NVM Fair KRLS 0.03 0.03

Sensitive Feature included
in the model’s functional form.
NVM Fair RLS 0.04 0.03
NVM Fair KRLS 0.03 0.03

An important question concerns the sensitivity of our
method with respect to the parameter ε̂ (acceptable unfairness)
and the number of bins K. Tables III and IV reports this
analysis. We repeated the same experimental procedure of
Table I for both datasets (CRIME and UNIV), and algorithms
(RLS and KRLS), and possible availability of the sensitive
feature at test time, when the fairness constraint is active and
with the NVM. We let ε̂ range in {0, 0.005, 0.001} with fixed
K=10, and also let K range in {5, 10, 20} maintaining ε̂=0.
The results confirm our theoretical insights. Making ε̂ larger
induces lower MAPE and larger DGF, confirming the trade-
off between error and fairness. Considering K, we have that



Fig. 2. Two overlapped (White q=1 Black q=2) histograms of Pk,q for the
CRIME dataset with NVM KRLS and NVM Fair KRLS when the sensitive
feature not included in the function form of the model.

TABLE III
RESULTS VARYING ε̂ WITH K = 10

ε̂ = 0 ε̂ = 0.005 ε̂ = 0.01
Method MAPE DGF MAPE DGF MAPE DGF

CRIME

Sensitive Feature 6∈ the model’s functional form.
NVM Fair RLS 10.5 0.11 10.3 0.14 10.2 0.16
NVM Fair KRLS 9.0 0.11 8.9 0.14 8.9 0.17

Sensitive Feature ∈ the model’s functional form.
NVM Fair RLS 9.5 0.12 9.5 0.16 9.5 0.18
NVM Fair KRLS 8.7 0.12 8.6 0.17 8.6 0.18

UNIV

Sensitive Feature 6∈ the model’s functional form.
NVM Fair RLS 24.2 0.15 23.7 0.19 23.4 0.23
NVM Fair KRLS 14.1 0.06 13.9 0.09 13.7 0.12

Sensitive Feature ∈ the model’s functional form.
NVM Fair RLS 21.8 0.19 21.8 0.24 21.9 0.28
NVM Fair KRLS 12.9 0.07 12.7 0.09 12.6 0.13

larger values of K corresponds to impose a higher number
of constraints, something that impacts negatively the MAPE
value (i.e. the higher K, the higher MAPE). On the other
hand, increasing the value of K makes the final model more
fair, with a lower DGF.

Figure 2 shows the different behaviours of the standard
non-linear regression models (without fairness constraints,
i.e. NVM KRLS) and our method (NVM Fair KRLS) over the
CRIME dataset, specifically when the sensitive feature is not
part of the model’s functional form. In particular, we reported
the different element in the summation which composes the
DGF: P k,q(f) for White (q=1) and Black (q=2). Our method,

TABLE IV
RESULTS VARYING K WITH ε̂ = 0

Dataset K = 5 K = 10 K = 20
Method MAPE DGF MAPE DGF MAPE DGF

CRIME

Sensitive Feature 6∈ the model’s functional form.
NVM Fair RLS 10.4 0.13 10.5 0.11 15.5 0.05
NVM Fair KRLS 9.0 0.14 9.0 0.11 14.8 0.04

Sensitive Feature ∈ the model’s functional form.
NVM Fair RLS 9.5 0.16 9.5 0.12 13.8 0.05
NVM Fair KRLS 8.7 0.15 8.7 0.12 13.7 0.04

UNIV

Sensitive Feature 6∈ the model’s functional form.
NVM Fair RLS 23.6 .019 24.2 0.15 35.7 0.06
NVM Fair KRLS 13.7 .010 14.1 0.06 22.4 0.03

Sensitive Feature ∈ the model’s functional form.
NVM Fair RLS 21.8 0.25 21.8 0.19 33.9 0.09
NVM Fair KRLS 12.8 0.11 12.9 0.07 21.8 0.03

TABLE V
RESULTS WITH ε̂ = 0, K = 10 AND Q = 5.

CRIME UNIV
Method MAPE DGF MAPE DGF

Sensitive Feature 6∈ the model’s functional form.
NVM KRLS 8.9±0.7 0.17±0.05 15.9±1.3 0.16±0.06
NVM Fair KRLS 10.5±0.8 0.05±0.02 17.8±1.4 0.04±0.02

Sensitive Feature ∈ the model’s functional form.
NVM KRLS 8.6±0.6 0.18±0.05 14.5±1.3 0.19±0.07
NVM Fair KRLS 10.1±0.8 0.06±0.03 16.2±1.4 0.05±0.02

(bottom plot) obtains two probability distributions among the
two different groups that are more similar with respect the
baseline (top plot).

We collected in Table II the ∆̂ values (see Proposition 1), for
both datasets, for both NVM Fair RLS and NVM Fair KRLS,
with and without the sensitive feature in the model’s functional
form. As it can be noted, the value ∆̂ remains small and, con-
sequently, our method provides a good convex approximation
of the original non-convex optimization problem of Eq. (7) in
practice.

As a final experiment, we empirically demonstrate that it
is possible to generate fair models with continuous sensitive
features. Table V reports the results for NVM KRLS and NVM
Fair KRLS for both datasets with and without the sensitive fea-
ture in the functional form of the model. The obtained MAPE
and DGF confirm the results described above in the case of
categorical sensitive attributes, empirically demonstrating that
our methodology is able to tackle the regression tasks having
categorical and continuous sensitive feature.

VI. CONCLUSION AND FUTURE WORK

In this work, we studied the problem of enhancing su-
pervised learning with fairness requirements. We presented
a framework based on empirical risk minimization under a
novel and generalized fairness constraint. Contrarily to the
previous methods, our approach can handle both regression
and classification problems and both continuous or categorical



sensitive attributes. Furthermore we observed that our ap-
proach generalizes and reduces to known approaches available
in literature. We addressed the statistical properties of the
method and considered a convex relaxation of the fairness
constraint, which can be linked to the non-convex constraint
by means of a data dependent bound. We instantiated this
approach in the setting of kernel methods, for which the
convex fairness constraint can be efficiently implemented both
implicitly and explicitly. Finally, we provided experimental re-
sults on two real-world datasets that indicate the effectiveness
of our approach in comparison with some baselines which
either do not impose the fairness constraint or impose the
constraint during the validation procedure. Future work will
be devoted to extend the range of applicability of our method
and to study tighter bounds under specialized conditions.

ACKNOWLEDGEMENTS

This work was supported in part by both SAP SE and
Amazon Web Services.

REFERENCES

[1] M. Donini, L. Oneto, S. Ben-David, J. Shawe-Taylor, and M. Pontil,
“Empirical risk minimization under fairness constraints,” in Advances
in Neural Information Processing Systems, 2018.

[2] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger, “On
fairness and calibration,” in Advances in Neural Information Processing
Systems, 2017.

[3] A. Beutel, J. Chen, Z. Zhao, and E. H. Chi, “Data decisions and
theoretical implications when adversarially learning fair representations,”
in Conference on Fairness, Accountability, and Transparency in Machine
Learning, 2017.

[4] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised
learning,” in Advances in neural information processing systems, 2016.

[5] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkata-
subramanian, “Certifying and removing disparate impact,” in ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2015.

[6] B. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro,
“Learning non-discriminatory predictors,” in Computational Learning
Theory, 2017.

[7] M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi,
“Fairness beyond disparate treatment & disparate impact: Learning clas-
sification without disparate mistreatment,” in International Conference
on World Wide Web, 2017.

[8] M. B. Zafar, I. Valera, M. Rodriguez, K. Gummadi, and A. Weller,
“From parity to preference-based notions of fairness in classification,”
in Advances in Neural Information Processing Systems, 2017.

[9] M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi, “Fair-
ness constraints: Mechanisms for fair classification,” in International
Conference on Artificial Intelligence and Statistics, 2017.

[10] T. Kamishima, S. Akaho, and J. Sakuma, “Fairness-aware learning
through regularization approach,” in International Conference on Data
Mining Workshops, 2011.

[11] M. Kearns, S. Neel, A. Roth, and Z. S. Wu, “Preventing fairness
gerrymandering: Auditing and learning for subgroup fairness,” arXiv
preprint arXiv:1711.05144, 2017.
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