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Abstract—Reducing the noise impact of ships on the marine
environment is one of the objectives of new propellers designs,
since they represent the dominant source of underwater radiated
noise, especially when cavitation occurs. Consequently, ship de-
signers require new predictive tools able to verify the compliance
with noise requirements and to compare the effectiveness of
different design solutions. In this context, tools able to provide
a reliable estimate of propeller noise spectra based just on the
information available at design stage represent a fundamental
tool to speed up the design process avoiding model scale tests.
This work focus on developing such a tool, adopting methods
coming from the world of Machine Learning and Deep Neural
Networks, in order to create a model able to predict the cavitating
marine propeller noise spectra. For this purpose authors will
make use of a dataset collected by means of dedicated model scale
measurements in a cavitation tunnel combined with the detailed
flow characterization obtainable by calculations carried out with
a Boundary Element Method. The performance of the proposed
approaches are analyzed considering different definitions of the
input and output variables used during the modelization.

Index Terms—Marine Propeller, Cavitation Noise, Noise Pre-
diction, Machine Learning, Deep Learning, Hybrid Models.

I. INTRODUCTION

Marine propellers are the first contributor to ships radiated
noise in water and, in case of cavitation, the noise levels
increase abruptly [1]. In order to reduce the amount of
noise produced, international organisations and class societies
started to emanate non-mandatory guidelines to reduce the
noise emissions [2], [3].

Within the different noise mitigation strategies that can
be adopted by the shipping industry, the analysis of design
solutions aimed at the reduction of radiated noise for new ships
is of utmost importance. This task requires the availability
of tools and procedures for the prediction of the propeller
radiated noise even at the design stage. Model Scale Tests
(MSTs) are traditionally considered the most reliable method
for cavitation noise prediction, as they are performed in
cavitation tunnels by testing a model of the propeller in the full
scale working conditions. This approach represents a valuable
tool both for the final verification of the propeller design and
for the comparison of few alternative solutions, although scale
effects must be carefully taken into account to retrieve the full
scale noise from MSTs. However, MSTs are time-consuming,
expensive, and their inclusion in the early stages of the design
procedure is unpractical.

In this context, the availability of a propeller noise predictive
tool, based on the information available at the design stage, is
of paramount importance to reach cost and time effectiveness.

A. State-of-the-art
A possible approach is represented by the use of Physical

Models (PMs) combined with empirical relations. In general,
the functional form of these formulations is derived from the
physical equations describing the phenomenon under some
simplifying assumptions. The formulations are successively
tweaked on available experimental data to adapt them to
practical cases. As an example, a formulation for the prediction
of the characteristic frequency of noise generated by cavitating
vortices is presented in [4]; although this formulation succeeds
in describing the behavior of an isolated vortex, it may require
case-by-case tuning, especially when different geometries and
wakes are considered. However, as claimed by the author, the
method is not able to model the phenomenon considering all
the whole dynamics, as for instance the interactions with other
phenomena, if present. Moreover, a method for the prediction
of tip vortex noise through an empirical relation was presented
in [5]. Eventually, a simple empirical formulation for the noise
generated by thruster propellers has been presented in [6]
where a simple relation between the amplitude of noise and
the area of sheet cavitation is provided.

An attractive alternative consists in tackling the problem
utilising Data Driven Models (DDMs), as proposed in present
work. DDMs approximate the relations existing between some
target quantities (the targets) and the available data on quanti-
ties and phenomena influencing the targets (the features). This
is achieved through robust statistical inference procedures and
data collected in previous experiments, including both features
and targets, to make predictions about previously unseen
cases. These methods do not need any a-priory knowledge
about the mathematical expression governing the physical
system. As a consequence, the DDMs can also model complex
propeller cavitation patterns, including possible interactions
between different phenomena, without the need to consider
any simplifying assumptions.

DDMs have proved to be valuable instruments in many
marine applications, such as fuel consumption and efficiency
prediction or ship components condition-based maintenance
via status prediction [7]–[9], or to determine the best propeller
design given operational requirements and constraints [10].
The application of DDMs in the field of ship radiated noise is
mostly limited to classification problems [11], [12], while there
is a lack of work regarding their application to the problem of
ship and propeller noise modelling. Recently [13] proposed an
Artificial Neural Network approach for the prediction of the
propeller cavitation noise given a number of design parameters
and an extensive collection of noise samples from cavitation
tunnel tests.
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In the view of developing DDMs, the employment of
MSTs to collect data by means of systematic investigations of
propeller noise is very desirable. Nevertheless, also in the case
of MSTs, collecting a very large set of test cases could require
significant effort in terms of cost and time. Consequently,
the available data is typically not as large as required. In
this context, the capability of DDMs, which usually produce
black-box (non-parametric) models, may be limited in terms
of generality.

In order to improve the performance of the DDMs, the
knowledge of the physical phenomena included in the PMs
can be exploited. This idea is the basis of Hybrid Models
(HMs), which are developed to take advantage of the best
characteristics of both PMs and DDMs by combining them
together. The application of HMs to the problem of propeller
noise modelling based on data obtained through MSTs has
been presented in [14] with satisfactory results.
B. Contribution

Models developed in the aforementioned works consider
as features only the main characteristics and functioning
parameters of the propeller. However, these quantities are
generally not sufficient to describe the whole phenomenon that
a propeller undergoes. Actually, cavitation noise depends on
the whole propeller geometry, and on the flow field, including
the effects of non-uniform propeller inflow, as in realistic
conditions. Furthermore, if the considered features include
only global parameters, it is not possible to appreciate the local
effects of specific design solutions, which may be remarkable
for custom designed propellers. With the purpose to address
these limits, the approach presented in this work exploits as
features the detailed results of hydrodynamic computations,
carried out by means of an in-house developed Boundary
Element Method (BEM) [15], [16]. These features provide
an accurate characterisation of the hydrodynamic field of
the propeller at an acceptable computational cost, implicitly
including the effects of the complete propeller geometry.

The hydrodynamic quantities computed by the BEM
(i.e. surface pressure distributions over the blades, and bound
circulation) include highly structured data in the form of 3D
and 2D tensors. In order to fully exploit all the information
contained in these tensors, some advanced techniques coming
from the world of Deep Learning [17] have been proposed.
These techniques allow first to find a rich representation of the
tensors by finding all the information describing the cavitation
phenomena and then to exploit it to make an effective and
sufficient prediction of the propeller cavitation noise.

These models have been compared with the conventional
models previously presented in [14], where the 1D features
were manually selected based on the theories on cavitation
noise. It is demonstrated that the advanced models outstand
the performance of the conventional ones if a high dimensional
and complex dataset is considered. On the contrary, if a low
dimensional dataset composed only by simple variables is
taken into account, the performance of the advanced model is
close to that of the more conventional models. As a result, the
proposed approach is proven to bring significant improvements
with respect to more traditional techniques if a complex set of
features is provided.

Furthermore, with respect to [14], the whole feature set has
been rearranged in order to include only data easily obtainable
at the early stage of propeller design. Different combinations
of input variables and targets have been considered, allowing
to analyze the relative merits of each.

II. PROBLEM DEFINITION

The present work aims to model the unknown relation
existing among some input variables describing the propeller,
its functioning points and the wake inflow (the features) and
the corresponding cavitation radiated noise (the targets). This
relation has to be learned from the previous observations of the
targets which are collected in dedicated MST at the UNIGE
cavitation tunnel (described in detail in [14]). Conversely, the
features are obtained both from design papers and from BEM
calculations. Surveys have been performed on controllable
pitch propellers considering pitch settings, wake configurations
and loads, chosen to provide an exhaustive characterisation of
cavitation noise. The tests and the subsequent noise analyses
have been performed in compliance with the International
Towing Tank Conference (ITTC) regulations [18]. In particular
for each working point (sample) the cavitation pattern and
the noise emission have been assessed. Many cavitation types
exist, but the purpose of this study is focused on the most
common cavitation types, i.e. the tip vortex cavitation and the
suction side sheet cavitation. As a result, the final dataset is
composed by 258 samples, each sample corresponding to a
row of the dataset.

In the modelisation phase, five alternative set of features
have been accounted:
• Feature Set 1 (FS1), consisting in a set of scalar pa-

rameters providing a global description of the propeller
geometry and its functioning conditions (see [14], [18],
[19]);

• Feature Set 2 (FS2), consisting in the point by point
intensity of the design ship inflow wake, evaluated on
a discrete combination of radials and angular positions;

• Feature Set 3 (FS3), consisting in the punctual values of
the geometric angle of attack, that is the relative angle
between blade and flow, evaluated on the same locations
as FS2 (according to formula in [19]);

• Feature Set 4 (FS4), consisting in the distribution on
the blades of pressure coefficient, computed for a finite
number of locations on the blade surface (identified by
the radial and chordwise coordinate), for varying angular
positions of the blade (see [20]);

• Feature Set 5 (FS5), consisting in the complete tensor
of velocity circulation around the blade, computed for a
finite number of radial locations and for varying angular
positions of the blade (see [20]).

FS4 and FS5 are obtained by BEM, FS1, FS2 and FS3 are
design requirements.

Two different parametrizations of the noise signals have
been defined as output targets in order to highlight the most
important spectral characteristics and allow an easy identifica-
tion of the modelisation error:
• Noise Spectra Parametrization 1 (NSP1), consisting in

the central frequency and level of the peak in the noise
spectrum associated to the resonance of the cavitating
vortices [1], [14];

• Noise Spectra Parametrization 2 (NSP2), consisting in the
radiated noise levels in one-third octave band representa-
tion [18].

In brief, NSP1 only account for one of the most important
characteristics of the noise spectrum from a practical point of
view, instead NSP2 is the whole spectrum in one-third octave
bands. The different FS and NSP are summarized in Table I.

1See Section III-B



TABLE I
DATASET VARIABLES DESCRIPTION.

Symbol um Description
Tensor size
if not scalar FS or NSP PM1

P/D Pitch ratio

Geometry
(FS1)

D m Diameter FS0
BAR Blade area ratio
Z Number of blades FS0
c/D Chord ratio at 0.7R FS0
tmax/c Blade maximum thickness at 0.7R
fmax/c Blade maximum camber at 0.7R
αs deg Shaft inclination angle

Working Parameters
(FS1)

J Advance coefficient
KT Thrust coefficient
10KQ Torque coefficient
Va m/s Advance velocity FS0
n Propeller rotation FS0
σv Cav. index ref. to advance velocity
σn Cav. index ref. to rotational speed FS0
σtip Cav. index ref. to resultant speed at blade tip
w Average w

Wake Parameter
(FS1)

max w07 Wake maximum at 0.7R
Wwd07 Wake width at 0.7R

DθW |
−
07 Left wake gradient at 0.7R

DθW |
+
07 Right wake gradient at 0.7R

max w09 Wake maximum at 0.9R
Wwd09 Wake width at 0.9R

DθW |
−
09 Left wake gradient at 0.9R

DθW |
+
09 Right wake gradient at 0.9R

αG07 deg Circumferential average αG at 0.7R

Angle of Attack
(FS1)

min αG07 deg Minimum αG at 0.7R
max αG07 deg Maximum αG at 0.7R
θ|max αG07

deg Angular position of maximum αG at 0.7R
αG09 deg Circumferential average αG at 0.9R
min αG09 deg Minimum αG at 0.9R
max αG09 deg Maximum αG at 0.9R
θ|max αG09

deg Angular position of maximum αG at 0.9R

w Axial wake 360×31
Wake
(FS2)

αG deg Geometric angle of attack 360×31
Angle of Attack

(FS3)

CP Coefficient of pressure on blade 44×25×60
BEM

FS02
(FS4)

C m2/s Blade circulation 60×25
BEM

FS02
(FS5)

fc Hz Central peak frequency NSP1 X
RNLc dB Noise level at fc NSP1 X

RNL1/3 dB Noise Levels in one-third octave bands 24 NSP2 X3

III. MODELIZATION

In the proposed context, namely the estimation of the
variables of the different noise spectra parametrizations based
on a series of input variables characterising the propeller (see
Table I), a general modelization framework can be defined,
characterised by an input space X , an output space Y , and
an unknown relation µ : X → Y to be learned. In the
specific case, X is composed by the FS reported in Table I. In
particular, the FS is composed by a series of scalars (FS1),
a series of two-dimensional tensors (FS2, FS3, and FS5)
and a three-dimensional tensor (FS4). On the other hand,
the output space Y , depends on the chosen parametrization
(NSP1 and NSP2). In this context, the authors define as model
h : X → Y an artificial simplification of µ. The model h can
be obtained with different kinds of techniques, for example
requiring some physical knowledge of the problem, as in PMs,
or the acquisition of large amount of data, as in DDMs, or both
of them, as in HMs.

A. Performance Measures
Independently of the adopted technique, any model h re-

quires some data to be tuned (or learned) on the problem
specificity and to be validated (or tested) on a real-world
scenario. For these purposes, two separate sets of data Dn
= {(X1, Y1), · · · , (Xn, Yn)} and Tm = {(Xt

1, Y
t
1 ), · · · ,

(Xt
m, T

t
m)}, where X ∈ X and Y ∈ Y , need to be exploited,

to respectively tune h and evaluate its performances. It is

2The variable has been used to compute a feature for a PM
3In this case just the last elements of the vectors can be estimated with the

PMs, see Section III-B.

important to note that Tm is needed since the error that h
would commit over Dn would be too optimistically biased
since Dn has been used to tune h.

Note that, in this specific case, Y ∈ Y is not a simple scalar
but it is a more complex structure since it is a characterisation
of the noise spectra. Let us suppose, for a moment, that Y ⊆ R,
namely Y ∈ Y is a scalar. In this case, the error that h commits
on Tm in approximating the real process is usually measured
with reference to different indexes of performance [14]
• the Mean Absolute Error (MAE) is computed by taking

the absolute loss value of h over Tm
MAE(h)= 1

m

∑m
i=1 |h(Xt

i )− Y ti |;

• the Mean Absolute Percentage Error (MAPE) is com-
puted by taking the absolute loss value of h over Tm in
percentage

MAPE(h)= 100
m

∑m
i=1

∣∣∣h(Xti )−Y tiY ti

∣∣∣ ;
• the Pearson Product-Moment Correlation Coefficient

(PPMCC) measures the linear dependency between
h(Xt

i ) and Y ti with i ∈ {1, · · ·,m}

PPMCC(h)=
∑m
i=1(Y

t
i −Y )(h(Xti )−Ŷ )√∑m

i=1(Y
t
i −Y )2

√∑m
i=1(h(X

t
i )−Ŷ )2

,

where Y = 1
m

∑m
i=1 Y

t
i and Ŷ = 1

m

∑m
i=1 h(X

t
i ).

Other state-of-the-art measures of error exist (such as R-
squared and or the Mean Square Error) but, from a physical
point of view, they give a complete description of the quality of
the model and adding more measures would make the results
less readable.

Unfortunately, in the proposed application, Y ⊆ Rp is a
vector representing a parametrization of the cavitation noise
spectra. For this reason, to provide a value which reasonably
represents the error that h commits on Tm when Y ∈ Y is a
parametrization of the cavitation noise spectra, it is necessary
to use a more suitable error measure which targets one of the
particular parametrizations (NSP1 and NSP2).

For what concerns NSP2 the authors will redefine the
MAPE as the average MAPE among the different parameters
which compose the parametrizations. This can be done since
NSP2 count homogeneous quantities (see Section II) and
the average MAPE well describes the quality of h, since it
represents the average difference between actual and predicted
spectra.

For what concerns NSP1, it represents just a point of the
spectrum, therefore it is not possible to define the MAPE based
on the distance between actual and predicted spectra for this
target. In this case, the MAPE is defined as the average of the
MAPE computed for the two parameters composing NSP1,
namely the frequency and the level of the spectral hump.

B. Physical Models (PMs)
PMs are derived from the physical theories and relevant

equations describing the phenomenon of interest, under certain
assumptions making the solution of the equations affordable
without the need for sophisticated computational tools. Al-
though the structure of these formulations is derived from
physical equations, experimental data are used to tune the
formulations to deal with real world problems. For this reason,
these methods are usually referred to also as semi-empirical
methods. Two main physical models are considered in present



work: the first one models the noise generated by the resonance
of a cavitating tip vortex, the second regards the noise due to
sheet cavitation.

a) Cavitating vortices noise: The resonance of the tip
vortex cavity is assumed to be the main responsible for the low
frequency hump typically observed in propeller noise spectra,
when vortex cavitation is present. Therefore, this model is used
to predict the central frequency fc and noise level RNLc of
the centre peak (NSP1).

The formulation adopted to describe the relationship be-
tween the pulsation frequency of a cavitating vortex and its
radius can be derived from the analysis of the pulsation of a
single bubble of gas immersed in an infinite fluid domain. The
relation takes the following form

fc
nZ = c1

1
rc/D

√
σtip
Z + c2 , (1)

where rc is the vortex radius, Z is the number of blades, σtip
is the cavitation number evaluated at the blade tip, c1 and c2
are unknown constants whose values can be determined by
fitting on experimental data, as done in [21].

The amplitude of the noise generated by vortex pulsation
depends again on the cavity radius. The formulation used in
present work has been derived following an approach similar
to that proposed by [5]. The original formulation gives the
noise level in dB as a function of some parameters describing
the propeller and its functioning condition. In the formulation
used in present work, the noise level in dB is given as a
function of the vortex cavity radius, the propeller diameter
and the number of blades, as shown in Eq. (2)

RNLc = ap + 20 log10

[(
rc
D

)k√
Z
]
, (2)

where ap and k are again unknown constants to be found
through data fitting.

Both formulations used to compute the frequency and the
noise amplitude of vortex pulsation require the knowledge of
the cavity radius. This radius can be found, in first approxi-
mation, as the radial distance r from the vortex axis, where
the local pressure equals the water vapour pressure; the local
pressure can be determined if the velocity field around the
vortex is known and this requires the use of a vortex model.

Within the several vortex models available in the literature,
the one described in [22] has been used to estimate the
radial distribution of the azimuthal velocity component. This
model is based on the assumptions of 2-D and axisymmetric
vortical flow, implying constant axial velocity, negligible radial
velocity with respect to the tangential velocity, and constant
velocity distribution in the azimuthal direction. According
to this model, the azimuthal velocity distribution is given
as v(r) = f(C∞, β, rν , p,D, ζ, r), where C∞ is the vortex
strength, ζ is a prescribed parameter taking the value of
1.2564, and p has been fixed at 0.75 as suggested by [22].

The viscous core radius rν is an input and differ for every
propeller and functioning condition. Since direct measure-
ments are not available for present cases, literature values
reported in [23] have been exploited. These values have been
scaled according to the procedure proposed by [24] to take
into account the different Reynolds number.

Eventually, the vortex strength C∞ is needed to compute
the vortex velocity distribution using Proctor’s formula. In this
work, this quantity has been borrowed by BEM bound circu-
lation in correspondence to the blade section at r/R = 0.95.

The coefficient β has to be found by least square fitting on
the experimentally measured fc.

At this point, the azimuthal velocity distribution in the
vortex radial direction is known. Under the previously men-
tioned hypotheses, the pressure distribution can be predicted
integrating the momentum equation in the radial direction [25],
therefore the cavitating radius can be found.

In summary, the structure of the whole physical model for
the tip vortex noise is represented in Figure 1.
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Fig. 1. Schema of the tuning algorithm for the prediction of the vortex peak.

b) High frequency noise: The second model is used to
predict the contribution of sheet cavitation that is assumed
to dominate measured noise spectra in the frequency range
10 kHz to 80 kHz. The model chosen is Brown’s empirical
formula discussed in [6].

L = K + η
[
10 log10(ZD

4n3f−1) + 10 log10

(
AC
AD

)]
, (3)

where AD is the propeller disk area, f is the frequency and L
is the noise dB level. The cavitating area AC has been derived
from the distribution on the blades of the pressure coefficient
Cp, assuming that cavitation is present where the drop in
local pressure is greater than the reserve of static pressure
(Cp < −σn). This approximation neglects cavities dynamics
and the real extent of cavitation, therefore the predicted area
is expected to be underestimated.

In the formula, the unknown parameters are the constants
K and η which have been found by fitting to the experimental
RNLs.

C. Data Driven Models (DDMs)

In this section the authors will present the proposed DDMs
for predicting the different NSPs based on the different FSs
(see Table I) exploiting the data presented in Section II.

Even if the scenario of this paper is slightly different with
respect to the one of [14] (see Section I), a first idea could be
to exploit the same methodology for defining new DDMs and
HMs and adapt it to the scope of this work. Unfortunately,
for the reasons that will be clarified in this section [17],
[26], this approach would result in very low performance,
in terms of accuracy, as will be shown in the experimental
results of Section IV-B. The reasons behind this decay in
performance need to be searched in the philosophy behind
the methodology proposed in [14] that, from now on, will be
named as Conventional DDMs (CDDMs) or Shallow DDMs
(SDDMs). CDDMs relies on the simple pipeline presented in
Figure 2(a):
• from the available inputs, i.e. the propeller characteristics

and operational conditions, the raw information about the
FSs of Table I are extracted;

• from the raw FSs, experts of the problem together with
data scientists extract a series of rich features, that should
be able to provide all the information about the desired



(a) CDDMs or SDDMs.

(b) ADDMs or DDDMs.

Fig. 2. Conventional (Shallow) DDMs vs Advanced (Deep) DDMs.

output, in this case the different parameters of the NSPs
(this process is called Feature Engineering);

• a functional form of the predictive model, the SDDM,
is defined by the data scientist. Then the parameters of
the SDDMs are learned from the input/output samples,
called dataset, where the input is coded with the features
engineered in the previous step;

• finally the learned model can be exploited to make
prediction about the NSPs.

This approach is very effective under a simple, but quite strict,
assumption: the feature engineered by the experts should be
rich enough to describe the phenomena, but characterised by
a cardinality not too high compared to the number of samples
of the dataset [17], [26]. If only FS1 is available, somehow
analogously to the work of [14], then CDDMs would be the
correct choice. As a matter of fact, in this case also FS2, FS3,
FS4, and FS5 are available, and exploiting the CDDMs of [14]
would result in an exploding number of features, because of
the FSs intrinsic cardinality, and the model would be not able
to learn the correct model with a dataset of limited cardinality
like the one available for this study (see Section II). Moreover,
the extraction of rich and representative features from the FS2,
FS3, FS4, and FS5 is a complex task not suited for a human
expert.

For these reasons, in this paper, the authors will exploit
an Advanced DDMs (ADDMs) or Deep DDMs (DDDMs).
ADDMs rely on the pipeline presented in Figure 2(b)
• as for the CDDMs, from the available inputs, (propeller

characteristics and operational conditions), the raw infor-
mation about the FSs of Table I are extracted;

• contrarily to the CDDMs, experts of the problem together
with data scientists do not perform a Feature Engineering
phase, but they define a functional form of the model,
namely a structure of the model, to be learned from the
data. This structure is composed of two levels: a first
level (DDDMS) is dedicated to learning the features to be
provided to the same SDDM exploited for the CDDMs;

• from the dataset, both the SDDM and the DDDM param-
eters are learned;

• finally the learned model can be exploited to make
prediction about the NSPs.

The main differences between the CDDMs and the ADDMs
rely on the fact that, in the ADDMs there is just minimal
intervention of experts and data scientists in the definition
of the model. In fact, in ADDMs, as it will be shown in

this section, just the functional form of the features must
be designed, while in CDDMs the features are basically
handmade, everything else is learned from the dataset.

In this work, the CDDMs is not described in details,
nevertheless, all the relevant details are reported in the original
work of [14]. For completeness, the authors just recall that the
CDDMs proposed in [14] is a combination of features engi-
neered by experts [14] plus a Kernel Regularised Least Squares
(KRLS) [27] model plus a Feature Reduction phase [28] plus
an advance Model Selection phase [29].

Instead, from now on, a detailed description of the proposed
ADDMs is reported, starting from the basic principles that
guided the definition of the proposed functional form until
the final proposed model. In particular, the authors will first
explain the building blocks of the proposed ADDM, and then
they will show how to combine them to derive the proposed
architecture and solve the problem faced in this work. For
simplicity, if not specified otherwise, the proposed ADDMs
is simply referred as DDMs since, as it will be shown in
Section IV-B, the ADDMs are the most effective ones for the
purpose of this paper.

The architecture of the proposed DDMs will be built incre-
mentally to explain the different choices.

For what concerns the FS1, this FS is somehow analogous
to the one of [14] and for this reason a simple shallow neural
network is enough [17] since it has the same expressivity of
the approach defined in [14]. In order to limit the number
of weights to be learned, the hidden layer will be a simple
Random Layer, namely a sort of Extreme learning machine
(ELM) [17], [30], [31], with a hyperbolic tangent activation
function to provide the necessary non-linearity, and the output
layer will be a simple Dense Layer with linear activation
function and the L2 regularisation to limit the overfitting [17].
This structure basically emulates, with much fewer parameters
to tune, the one proposed in [14]. The hyperparameter to be
tuned are just the number of neurons of the hidden layer
nRL ∈ 2{2,4,6,8,10} and the amount of regularisation defined
by λ ∈ 10{−4.0,−3.5,··· ,+3.0} in the output layer since the
number of inputs is defined by FS1 and the number of output
neurons is defined by the particular NSP to be predicted. The
initialisation of the output Dense Layer is a simple zero-valued
initialisation.

For what concerns instead FS2, FS3, FS4, and FS5, the
process is a bit more complicated. The authors will first present
the proposed method for dealing with the 2D-tensors (FS2,
FS3, and FS5) and the treatment of the 3D-tensor (FS4) will
be just summarised because analogous. As already mentioned
before and deeply explained in [17], the 2D-tensors cannot
be simply stacked with FS1 by means of a Concatenation
Layer [17] and fed to a classical neural network. For this
reason, a more condensed representation of these FSs needs
to be learnt, and, for this purpose, the convolution layers is
the best choice [17]. The only problem of the Convolutional
Layers is that, based on the setting of their parameters, they are
designed to react to just a particular scale of dimension and for
this reason it would be good to have more layers which react
to different scales [17]. The solution that has been adopted in
this paper is to use and Inception Layer [32] composed of three
parallel Convolutional Layers (equipped with linear activation
functions to mitigate the gradient vanishing effect, that will be
clarified later, and no regularisation because of the intrinsic
sparsity of the architecture) reacting to different scales. In
order to limit the number of weights to be learned, one of



the three Convolutional Layers is a simple 2D Max Pooling
Layer [17]. Then, in order to agglomerate all the information
at different scales and produce a condensed representation,
the outputs of the two 2D Convolutional and the 2D Max
Pooling Layers are combined adopting a Concatenation Layer
and then exploiting a Dense Layer (equipped with linear acti-
vation functions [17], again to mitigate the gradient vanishing
effect [17], and dropout as regulariser [17]). This building
block is depicted in Figure 3.

Fig. 3. Proposed architecture for extracting a good representation from the
two-dimensional tensors (see FS2, FS3, and FS5 in Table I) in the dataset
described in Section II.

The convolution layer has multiple hyperparameters that
have to be tuned [17]. Suppose that the input space, being
a 2D-tensor, is a matrix of size Rq1×q2 . The patch, or the
size of the filter to be learned, is Rbrfq1codd×brfq2codd where
rf ∈ (0, 1) is an hyperparameter which regulates the ratio
between the size of the 2D-input tensor and the filter while
b·codd represents the closer smaller odd number. The padding is
the addition of elements at the border of the tensor to mitigate
the edge effects, and its size. The stride is the movement
step of the filter on the tensor which is brsq1c along the
first dimension of the tensor and brsq2c along the second
dimension, rs ∈ (0, 1) is and hyperparameter which regulates
this movement. The dilation is a further sparsity capability of
the filter reaction, which is brdq1c along the first dimension of
the tensor and brdq2c along the second dimension, rs ∈ (0, 1)
is and hyperparameter which regulates it. In our case, for the
padding, a zero padding has been exploited. It is now necessary
to tune for the 2D Convolutional (C2D1, C2D2, and MP2D1)
and the 2D Max Pooling Layers the rf (rC2D1

f , rC2D2

f , rMP2D1

f ∈
{0.1, 0.2, 0.4}), the rs (rC2D1

s , rC2D2
s , rMP2D1

s ∈ {0.1, 0.2, 0.4}),
and the rd (rC2D1

d , rC2D2

d , rMP2D1

d ∈ {0.1, 0.2, 0.4}). Then, for
the dense layer, it is necessary to tune the number of neurons
nDL ∈ 2{2,4,6,8,10} and the dropout rate rd ∈ 10{−3,−4,−2,−1},
namely the number of neurons to randomly deactivate during
training [17]. The problem of this architecture is its initializa-
tion phase since a deterministic or random initialization would
be not sufficient to guarantee good performances [17]. For
this reason the authors initialize, or more precisely pre-trained,
the architecture of Figure 3 with a surrogate problem, using
the autoencoders approach [17]. Basically, since the output of
the dense layer in Figure 3 should be a good and condensed
representation of the FSs (FS2, FS3, and FS5), based on that
representation it should be possible to retrieve the original
FSs. Subsequently, the weights have been initialised using the
approach proposed in [33], the authors attach to the Dense
Layer of Figure 3 another Dense Layer where the outputs are
the same FS provided to the block as input, and finally the
network is trained using the algorithms that will be explained
later in this section. The architecture of the autoencoder for
pre-training the block of Figure 3 is depicted in Figure 4. After
this pre-training phase the last Dense Layer added for the pre-
training is removed, and the Inception Layer plus the dense
layer after that have been kept.

Fig. 4. Architecture of the autoencoder for initialising the architecture
presented in Figure 3.

The extension of this 2D block defined for FS2, FS3, and
FS5 can be trivially extended to the case of FS4 where a 3D
block needs to be developed.

At this point, it is possible to combine all outputs of the
blocks developed for FS2, FS3, FS4, and FS5 in a Concatena-
tion Layer together with FS1 and fed them to the same SDDMs
described for FS1. It is possible to do perform this action since
FS1 plus the outputs of the blocks developed for FS2, FS3,
FS4, and FS5 is an informative and condensed information
about all the features. The resulting architecture, namely the
proposed DDM, is depicted in Figure 5.

Fig. 5. Proposed DDM architecture.

What still needs to be described is how the network has
been trained (or pre-trained the blocks just described for FS2,
FS3, FS4, and FS5). As described before, many gradient
descend-based algorithms [17] (e.g. SGD, RMSprop, Adagrad,
Adadelta, Adam, etc.) exist for solving the problem. The
only issue of these algorithms is the Gradient Vanishing
effect [17], namely the fact that in deep network the gradient
tends to go to zero exponentially in the number of layers.



For this reason, in the proposed architecture, the authors have
exploited, in all the trained layers, linear or RELU activation
functions which mitigate this problem [17]. Then, the Mini
Batch Stochastic Gradient Descent (SGD) algorithm has been
used, characterised by three hyperparameters [17]: learning
rate of the gradient, momentum that accelerates SGD in the
relevant direction, and batch-size of each iteration.

The last problem that authors need to solve is how to
tune the hyperparameters of the proposed architecture. Since
all DDMs are characterised by a set of hyperparameters
H influencing their ability to estimate µ, a proper Model
Selection (MS) procedure, namely the process of tuning them
to achieve optimal performances, needs to be performed [29].
Several methods exist for MS purpose but resampling methods,
like the well-known k-Fold Cross Validation (KCV) or the
nonparametric Bootstrap (BTS) approaches represent the state-
of-the-art MS approaches when targeting real-world applica-
tions [29]. Resampling methods rely on a simple idea: the
original dataset Dn is resampled once or many (s) times,
with or without replacement, to build two independent datasets
called training, and validation sets, respectively Lil and Vsv ,
with i ∈ {1, · · · , s}. Note that Lil∩Viv = � and Lil∪Viv = Dn.
Then, in order to select the best combination the hyperparam-
eters H in a set of possible ones H = {H1,H2, · · · } for the
proposed architecture or, in other words, to perform the MS
phase, the following procedure has to be applied

H∗ : arg min
H∈H

1

s

s∑
i=1

L̂
(
h∗{H,Lil}

,Viv
)

(4)

where h∗{H,Lil}
is the model with its set of hyperparameters

H learned with with the data Lil . Since the data in Lil are
independent of the ones in Viv , the idea is that H∗ should
be the set of hyperparameters which allows achieving a small
error on a data set that is independent of the training set.
In this work, the authors will exploit the BTS procedure and
consequently s = 100, if l = n and the resampling must be
done with replacement [29].

D. Hybrid Models (HMs)
The problem that authors want to address here is how to

construct a model able to both take into account the physical
knowledge about the problem encapsulated in the PMs of
Section III-B and the information hidden in the available data
described in Section II as the DDMs of Section III-C. For this
reason the proposed HM is a combination of the PMs and the
DDMs.

In order to reach this goal different approaches exist (see
e.g. [14], [34], [35]) but all these methods have been developed
in the context of conventional DDMs (like the KLRS men-
tioned above) and not for advance DDMs (es the one based
on DNNs described in Section III-C). In fact, for conventional
DDMs there are many ways of including the knowledge
encapsulated in the PMs. For example, in [34], [35] authors
simply add to the input space of the DDMs the prediction of
the PMs, while in [14], [35] authors tried to build a model
able to contemporary learn the target task and how the PMs
behave.

These different flavours of HMs, for conventional DDMs,
are due to the fact that the model functional form for con-
ventional DDMs cannot be arbitrary modified without com-
promising their ability to effectively and efficiently learn from
data or weakening they theoretical properties [17], [26]. Vice

versa, the architecture of the advanced DDMs based on DNNs
described in Section III-C can be easily and almost arbitrary
modified to meet the requirements of the particular application.
Moreover, different ways of changing the architecture may re-
sults in the same effect because of the nature of the functional
form of these DDMs, and for this reason the simplest solution
can be chosen.

For example, in the case under examination, it could be
possible to change the architecture of the proposed DDM
depicted in Figure 5 using the two main different philosophies
introduced in [14], [34], [35] which consists in

I changing the FS, namely the input space, or
II force the DDMs to learn contemporary the NSPs and the

PMs, namely change the output space.
For what concerns the Option II the modification is trivial
while the Option I is not as much trivial as it may seem since it
is required to define where and how the prediction of the PMs
should be fed to the DDM. Since the PMs already provide
a good approximation of the propeller characteristic, in this
particular case an actual NSP approximation, the most natural
choice would be to consider this information at the same level
of the FS1 that need to be fed to the layer which condensates
all the information about the different FSs in order to improve
its representativity. But such a choice is somehow equivalent to
change the output space of the DDM since this would result
in a consistent change of the last layers of the DDMs (in
particular the expressivity, of size, of the random layer) [17].
Since these two modifications, in the proposed DDM, would
have a similar effect, the authors decide to use the Option I
since it affects more directly the last layers, not influencing
the other ones. The result is the HM architecture depicted in
Figure 6, where the authors just underline, for simplicity, the
differences between the DDMs of Figure 5 and the proposed
HM.

Fig. 6. DNN-based HM architecture (see Figure 5 for the missing pieces).

Note that the HMs can be built just for the NSP for which
a PM is provided, able to estimate all, or just a subset, of the
parameters of the NSP. Hence, in this case, the HM can be
defined just for all the NSPs (see Table I).

Note also that the hyperparameters of the architecture, also
for the HMs, need to be tuned with the same procedure
described in Section III-C for the DDMs.

IV. EXPERIMENTAL RESULTS

In this section, the performances of the PMs, DDMs, and
HMs, (see Sections III-B, III-C, and III-D) are tested and



compared by means of the data described in Section II and
the performance measures described in Section III-A. With
respect to [14], just the extrapolation scenario is considered
since it is the most interesting and challenging.

For what concerns the PM, please recall that PMs are just
able to predict a subset of the parameters of the different
NSPs, while the DDMs are able to predict all the targets.
HMs differ from the DDMs every time the PMs are able to
predict the spectral parametrization or a part of it. The set of
hyperparameters tuned during the MS phase are the same as
those of the DDMs.

All the tests have been repeated 30 times and the average
results are reported, together with their t-student 95% confi-
dence interval, in order to ensure the statistical consistency of
the results.

A. Scenario
The extrapolation scenario has been studied [14]: in this

scenario, the models try to predict the propeller noise in groups
of loading conditions characterized by different cavitation
extents with respect to those exploited for building the model.
These groups of loading conditions are defined based on the
combination of thrust coefficient KT and cavitation number
σn, as exemplified in Figure 7 on a typical cavitation bucket:
the cavitation extent of interest grows moving down from the
Suction Side (S.S.) vortex inception line and, for the same
σn, increasing the KT . Basically the scenario defines how Dn

G1

G2
G4

G3 G5

G6

S.S. bubbles

Fig. 7. Extrapolation groups.

and Tm are built, that are the subset of data exploited for
building and testing the models. The extrapolation scenario
tests the capability of the models to predict radiated noise for
cases not included in the variable domain of the data used to
build them. The practical application of this scenario is the
prediction of noise for those full scale propeller operational
conditions which cannot be consistently reproduced at model
scale due to viscous scale effects, as explained in [14]. In order
to obtain an indication of the extrapolation performance, the
authors included in Dn samples of only five of the six groups
of different operational conditions and use the sixth group as
Tm.

B. CDDMs vs ADDMs
In order to compare the CDDMs (like the KRLS-based

DDMs introduced in [14] and recalled in Section III-C) and
the ADDMs proposed in this work, the authors have first
reported in Table II the errors measured with the MAPE in
the proposed extrapolation scenario with different FSs for the
different NSPs.

From the results reported in Table II, the CDDMs show
comparable performances to ADDMs only when the FS1 is

considered alone, hence when the cardinality of the FS is not
too high with respect to the number of samples. If multidimen-
sional features are considered, the error for CDDMs is usually
higher with respect to ADDMs. The worst performances for
the CDDMs are attained for FS1+FS4 (FS4 is the single
feature with the higher cardinality) and for FSAll. The lowest
error for the CDDMs, when multidimensional features are
considered, is in the case FS1+FS5 probably because FS5 (the
blade circulation) account for important information on blade
loading with smaller dimensions than FS4. Conversely, the
minimum prediction error is obtained, for the ADDMs, when
all the features are considered.

In summary, results suggest that only by using the ADDMs
it is possible to improve the performance of the model ex-
ploiting more rich and complex features. On the other hand,
it must be noted that the errors obtained with the CDDMs
and the simplest feature set FS1 are only a few percentages
higher than the minimum errors obtained with the ADDMs.
Notwithstanding this, the improvements achieved exploiting
the ADDMs with more complete and physically meaningful
features are significant.

C. PMs vs DDMs vs HMs

From now on, for the sake of simplicity, the proposed
ADDMs will be referred as DDMs since, as reported in
Section IV-B, the ADDMs are the most effective ones for the
scopes of this paper. In order to compare the PMs, DDMs,
and HMs Table III reports the errors measured with the MAPE
with different FSs for the different NSPs. Note that the PMs
are able to fully predict only the NSP1 and it always uses only
FS0. Instead, since the PMs is able to predict part of all the
NSP2 it is always possible to build the HMs.

The results highlight the limits of the PMs, which are
not able to accurately predict all the trends present in the
experimental data. Nevertheless, the information enclosed in
these simple formulations allows to improve the performance
of DDMs, as confirmed by the results obtained for the HMs.
The improvement with respect to the simple DDMs is more
significant when all the features are considered where the
MAPE for the HMs is about 2% lower than the DDMs. This
result agrees with the higher capabilities of HMs to generalise,
thanks to the information encapsulated in the PMs.

D. The Effect of Using the Different FSs on the DDMs and
the HMs

From the results reported in Table III, it is also possible to
understand the effect of using the different FSs on the DDMs
and the HMs.

The DDMs seem to be able to well exploit these multidi-
mensional inputs. When one multidimensional feature (FS2,
FS3, FS4, FS5) is added to FS1, results are generally im-
proved. Surprisingly, the effects of the different multidimen-
sional features are all rather similar, preventing to rank these
features based on their importance. For the DDMs, the best
performances are achieved when all the possible features are
considered. However, the absolute improvement with respect
to the use of one single multidimensional feature added to FS1
is not large given the low errors.

The same patterns are reflected in the HMs (Table III).
If all the features are considered, the HMs show the best
performances among all the considered models.



E. The Best PMs, DDMs, and HMs
In order to better detail the quality of the best PMs,

DDMs, and HMs in predicting the different parameters of the
different NSPs, the errors measured with the MAE, MAPE,
and PPMCC, with the best FS according to Table III are
reported in Tables IV- V. The word “best” is used to intend
the model which produces the best accuracy, or lower error,
for each type, according to Table III.

The best MAE for fc is below 60Hz and for RNLc it is
lower than 1 dB, both for DDMs and HMs. In Figure 8 the
comparison reported shows the PM, and the best DDM and
HM predicting the NSP1. Looking more in detail, it can be
noticed that the DDMs/HMs are able to predict cases in which
the PM fails, i.e. when FS0 is not sufficient to characterise the
samples. Some outliers are visible in the DDMs and HMs:
these samples should be investigated and properly treated,
e.g. adjusting the position of the peak or removing them from
the dataset.

The NSP2 (noise corrected for spherical propagation) is
visible in Tables V. Each column refers to a one-third octave
band (from 1 to 24) in the range 0.4 kHz to 80 kHz for the
DDM/HM, instead the PM is available only for the range
1 kHz to 80 kHz. The different levels are well predicted and
no particular trends seem to exist among the different parts of
the spectrum.

TABLE II
COMPARISON BETWEEN CDDMS PROPOSED IN [14] AND THE PROPOSED

ADDM. TABLE REPORTS THE ERRORS MEASURED WITH THE MAPE
WITH DIFFERENT FSS FOR THE DIFFERENT NSPS.

NSP1 NSP2
FS CDDM ADDM CDDM ADDM

1 8.0±0.3 8.0±0.3 7.9±0.3 7.9±0.3

1,2 13.0±0.3 6.9±0.3 12.2±0.3 7.0±0.3

1,3 12.9±0.3 7.1±0.3 12.2±0.3 7.0±0.3

1,4 16.1±0.3 7.2±0.3 14.8±0.3 7.0±0.3

1,5 10.9±0.3 6.9±0.3 10.5±0.3 7.0±0.3

All 19.0±0.3 6.0±0.3 17.5±0.4 6.1±0.3

TABLE III
COMPARISON BETWEEN PMS, DDMS, AND HMS. TABLE REPORTS THE

ERRORS MEASURED WITH THE MAPE WITH DIFFERENT FSS FOR THE
DIFFERENT NSPS. NOTE THAT THE PMS ARE ONLY ABLE TO FULLY

PREDICT THE NSP1 AND PMS DO NOT CHANGE IF WE CHANGE THE FS
SINCE THEY ALWAYS USE JUST A SUBSET OF THE FS1. INSTEAD, SINCE

THE PMS ARE ABLE TO PREDICT PART OF THE NSP1 AND NSP2 WE CAN
BUILD THE HMS FOR THOSE NSPS.

NSP1 NSP2
FS PM DDM HM DDM HM

1

12.1±1.1

8.0±0.3 8.0±0.3 7.9±0.3 7.9±0.3

1,2 6.9±0.3 6.1±0.3 7.0±0.3 6.2±0.3

1,3 7.1±0.3 5.8±0.3 7.0±0.3 6.2±0.3

1,4 7.2±0.3 6.0±0.3 7.0±0.3 6.1±0.3

1,5 6.9±0.3 5.8±0.3 7.0±0.3 6.1±0.3

All 6.0±0.3 4.3±0.3 6.1±0.3 4.5±0.3

V. CONCLUSIONS

In this paper, an approach to estimate propeller cavitation
noise spectrum by means of deep learning models has been
presented. In order to verify a propeller to be compliant with
noise requirements only considering the information available
at the design stage, the proposed models have been developed
exploiting a dataset collected through model scale measure-
ments in a cavitation tunnel, combined with the detailed
flow characterization obtained by Boundary Element Method
calculations.

TABLE IV
COMPARISON BETWEEN THE BEST PM, DDM, AND HM IN PREDICTING
THE DIFFERENT PARAMETERS OF NSP1. TABLE REPORTS THE ERRORS
MEASURED WITH THE MAE, MAPE, AND PPMCC WITH BEST FS FOR
THE DIFFERENT PARAMETERS OF NSP1. FOR THE PM THE BEST FS IS
NOT INDICATED SINCE PM ALWAYS USES JUST A SUBSET OF THE FS1.

FS* fc RNLc

MAE
PM - 206.2±21.4 4.9±0.4

DDM all 122.6±5.5 2.1±0.1

HM all 84.7±5.4 1.5±0.1

MAPE
PM - 10.1±1.0 14.1±1.1

DDM all 6.0±0.3 5.9±0.3

HM all 4.1±0.3 4.4±0.3

PPMCC
PM - 0.76±0.01 0.39±0.12

DDM all 0.99±0.01 0.99±0.01

HM all 0.99±0.01 0.99±0.01

(a) fc, PM (b) RNLc, PM

(c) fc, DDM, FSall (d) RNLc, DDM, FSall

(e) fc, HM, FSall (f) RNLc, HM, FSall

Fig. 8. Comparison between the best PM, DDM, and HM in predicting the
different parameters of NSP1 according to Table III. Figure reports the scatter
plot (measured values on the x axis and predicted ones on the y axis) with
best FS according to Table III for the different parameters of NSP1.

According to the results, the proposed approach is definitely
promising, however its potential needs to be further investi-
gated. In particular, the inclusion of detailed flow quantity,
although improving the performance of the method in a
relative sense, has a somewhat limited effect from a practical
point of view. This fact may be partially ascribed to the fact
that also simpler modelization approaches allowed obtaining
good results in the tested scenario. It must be noticed that,
despite the effort spent in building the dataset, it still accounts
for a rather limited number of propellers and configurations,
preventing the opportunity to verify the performance of the
method on fully unseen cases.

Future activities will be therefore dedicated to the enlarge-
ment of the dataset and to the investigation of more realistic



TABLE V
COMPARISON BETWEEN THE BEST PM, DDM, AND HM IN PREDICTING THE DIFFERENT PARAMETERS OF NSP2. TABLE REPORTS THE ERRORS

MEASURED WITH THE MAE, MAPE, AND PPMCC WITH BEST FS FOR THE DIFFERENT PARAMETERS OF NSP2. FOR THE PM THE BEST FS IS NOT
INDICATED SINCE PM ALWAYS USES JUST A SUBSET OF THE FS1 AND IS ONLY ABLE TO PREDICT A SUBSET OF THE PARAMETERS OF NSP2.

FS RNL 1
3

(1) RNL 1
3

(2) RNL 1
3

(3) RNL 1
3

(4) RNL 1
3

(5) RNL 1
3

(6) RNL 1
3

(7) RNL 1
3

(8) RNL 1
3

(9) RNL 1
3

(10) RNL 1
3

(11) RNL 1
3

(12)

MAE DDM all 2.4±0.1 2.0±0.1 2.3±0.1 2.1±0.1 2.1±0.1 2.3±0.1 2.0±0.1 2.0±0.1 1.6±0.1 1.9±0.1 1.6±0.1 1.7±0.1
HM all 1.8±0.1 1.4±0.1 1.7±0.1 1.7±0.1 1.5±0.1 1.5±0.1 1.5±0.1 1.5±0.1 1.2±0.1 1.4±0.1 1.2±0.1 1.2±0.1

MAPE DDM all 6.9±0.3 6.9±0.3 7.2±0.3 7.0±0.3 6.9±0.3 7.4±0.3 6.6±0.3 7.0±0.3 6.8±0.3 7.0±0.3 6.9±0.3 7.3±0.3
HM all 5.1±0.3 4.9±0.3 5.3±0.3 5.4±0.3 5.0±0.3 4.9±0.3 5.0±0.3 5.1±0.3 5.2±0.3 5.1±0.3 5.3±0.3 5.3±0.3

PPMCC DDM all 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.98±0.01 0.98±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01
HM all 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.98±0.01 0.99±0.01 0.98±0.01 0.98±0.01 0.99±0.01 0.99±0.01

FS RNL 1
3

(13) RNL 1
3

(14) RNL 1
3

(15) RNL 1
3

(16) RNL 1
3

(17) RNL 1
3

(18) RNL 1
3

(19) RNL 1
3

(20) RNL 1
3

(21) RNL 1
3

(22) RNL 1
3

(23) RNL 1
3

(24)

MAE
PM - - - 14.2±1.1 14.1±1.2 13.8±1.3 14.1±1.2 14.2±1.3 14.1±1.3 14.0±1.3 14.1±1.3 14.3±1.4 14.3±1.4

DDM all 1.8±0.1 1.4±0.1 1.6±0.1 2.0±0.1 2.5±0.1 2.2±0.1 2.4±0.1 2.2±0.1 2.3±0.1 2.3±0.1 2.5±0.1 2.4±0.1
HM all 1.3±0.1 1.0±0.1 1.2±0.1 1.5±0.1 1.8±0.1 1.8±0.1 1.7±0.1 1.8±0.1 1.7±0.1 1.7±0.1 1.8±0.1 1.8±0.1

MAPE
PM - - - 62.4±4.8 50.7±4.3 39.4±3.6 40.6±3.6 42.7±3.8 43.3±4.0 42.7±4.1 41.6±3.9 40.4±3.9 41.2±4.1

DDM all 6.8±0.3 6.7±0.3 6.8±0.3 7.2±0.3 7.0±0.3 6.4±0.3 7.1±0.3 6.8±0.3 6.9±0.3 6.8±0.3 7.0±0.3 6.9±0.3
HM all 5.1±0.3 5.0±0.3 5.3±0.3 5.3±0.3 5.2±0.3 5.2±0.3 5.0±0.3 5.6±0.3 5.0±0.3 4.9±0.3 5.1±0.3 5.1±0.3

PPMCC
PM - - - 0.14±0.01 0.15±0.01 0.08±0.04 0.10±0.01 0.08±0.02 0.09±0.11 0.11±0.02 0.10±0.02 0.11±0.07 0.13±0.07

DDM all 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01
HM all 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01

scenarios, as the prediction of noise for a completely unseen
propellers and configuration.
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