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Abstract—Rising penetration levels of (residential) photovoltaic
(PV) power as distributed energy resource pose a number of
challenges to the electricity infrastructure. High quality, gen-
eral tools to provide accurate forecasts of power production
are urgently needed. In this article, we propose a supervised
deep learning model for end-to-end forecasting of PV power
production. The proposed model is based on two seminal concepts
that led to significant performance improvements of deep learning
approaches in other sequence-related fields, but not yet in
the area of time series prediction: the sequence to sequence
architecture and attention mechanism as a context generator.

The proposed model leverages numerical weather predictions
and high-resolution historical measurements to forecast a binned
probability distribution over the prognostic time intervals, rather
than the expected values of the prognostic variable. This de-
sign offers significant performance improvements compared to
common baseline approaches, such as fully connected neural
networks and one-block long short-term memory architectures.
Using normalized root mean square error based forecast skill
score as a performance indicator, the proposed approach is
compared to other models. The results show that the new design
performs at or above the current state of the art of PV power
forecasting.

Index Terms—photovoltaic power, PV, forecasting, probabilistic
forecasting, time-series, deep learning, sequence to sequence,
attention, encoder-decoder

I. INTRODUCTION

The shift towards more distributed energy resources (DER)
and their subsequent high penetration levels negatively influ-
ence the electric infrastructure, e.g. through the duck curve
problem [1]. This results in a demand for accurate DER
forecasting tools, especially for resources with high transient
speeds and significant intermittency, such as photovoltaic (PV)
solar energy. At the same time, continuing progress towards
the implementation of the smart grid and the advances of
internet of things technology allow for accurate, high reso-
lution measurements of residential PV production as well as
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high quality, fine-grained weather data such as the forecasts
provided by the high-resolution rapid refresh (HRRR) model.

The performance of models in many sequence-related fields
has been recently dramatically improved through the use of
modern deep learning (DL) approaches. While this is the case
for natural language processing (NLP), language modelling
and other similar tasks [2]–[4], PV power forecasting has
not experienced similar resurrection, as can be seen from
current literature reviews [5]–[9]. This opens the potential for
architectural improvements of DL models in the area of PV
power production forecasting.

In this article, we propose and evaluate a sequence to
sequence (S2S) model with attention to perform day-ahead
forecasts of residential PV power production. This model is
based on two seminal innovations from the field of DL for
NLP: the introduction of S2S architecture by Sutskever et al.
[2] and the use of attention mechanisms as additional context
generators [3], [4].

We show that this model can leverage high resolution
historical data by learning to forecast a time series of binned
probability distributions instead of expected values. This in-
creases forecast skill when compared to baseline models and
results reported in the current literature.

The remainder of this paper is organized as follows. Sec-
tion II presents the technical background concentrating on
the PV forecasting practices, sequence related deep learning
approaches, and commonly used evaluation metrics. The pro-
posed novel forecasting model is introduced in section III and
its performance is evaluated and compared to baseline models
in section IV. Final section V summarizes the results.

II. TECHNICAL BACKGROUND

A. PV Power Forecasting Practises

The PV power forecasting problem has been actively inves-
tigated. This research produced a broad variety of forecasting
models and tools. They span forecast horizons and resolutions
from minutes to weeks, and employ different techniques from
physical and statistical modelling to machine learning (ML).
Forecasts are typically provided as expected values of the
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variable of interest, i.e. a point expected value of PV power
production over the forecast step. However, if the forecast were
represented as a probability distribution, it would inherently
provide more information and thus have a higher value for
the user [5]. Since PV power production depends on multiple
variables, it is a common practice to provide the forecasting
system with additional data from a numerical weather predic-
tion (NWP) model, including pressure, humidity, temperature,
irradiation, and wind speed and direction. And while forecast-
ing the power production from residential installations and
from large PV arrays are considered two distinct problems,
they largely employ the same techniques.

A commonly used forecast horizon is 24h ahead with 1h
sample step. Since PV power production is highly correlated
with solar irradiation, some approaches remove night hours
from the data [10], [11], or forecast solar irradiation as a
proxy [11]. Additionally, to simplify the PV prediction task,
some approaches consider separate predictions on sunny and
cloudy days [12], or according to seasons [10], [13]. In
contrast to such strategies, the proposed model is truly end-
to-end: it takes into account all 24h of the forecast and the
validation setup contains a randomly selected portion of the
data to represent a true measure of performance.

According to several recent reviews on PV power fore-
casting [5]–[9], the field is dominated by ML approaches.
Although algorithms such as support vector regression or
random forests are also used, supervised DL is the most
frequently applied ML approach. The majority of applied DL
architectures include feed-forward neural networks (FFNNs),
and recurrent neural networks (RNNs) with different cell
types. RNN based models tend to perform better than FFNNs,
likely owing to their structure exploiting memory for time
series modelling [14]. However, to our best knowledge, none
of the reviews [5]–[9] nor recent individual models use the
concepts of S2S and attention mechanisms that are at the core
of the new model proposed in this article.

B. Supervised Deep Learning for Sequences

Deep learning has been employed, with a great success,
in many sequence-related fields – most notably in language
modelling and NLP. Major advances in performance have been
made by abandoning the idea of a one-block model in favor
of the encoder-decoder architecture. Before the popularization
of this architecture, models were very similar to the one-block
designs prevalent in current PV power forecasting literature.
As one-block FFNNs do not exhibit a strong, innate autore-
gressive bias, they are often outperformed by one-block RNNs.

Of the existing recurrent cells, the long short-term memory
cell (LSTM) proposed by Hochreiter and Schmidhuber in [14]
is the most common variant for high performing one-block
models. The two gates within the LSTM cell allow it to
develop contextual memory, making it better suited to extract
temporal information patterns from the presented data. Other
recurrent cell designs have been proposed and evaluated [15],
but so far they failed to challenge the general acceptance of
the LSTM.

The obvious drawback of one-block recurrent architectures
is their fixed input-output resolution. For many tasks, such
as speech recognition, the input frequency and the output
frequency need to be decoupled. And even if a temporal pro-
jection layer is used, the performance of one-block recurrent
models suffers.

This led to the proposal of the sequence to sequence (S2S)
model by Sutskever et al. [2]. It consist of two blocks:
one LSTM encoder and one LSTM decoder. The first block
encodes the input signal and transfers its final LSTM hidden
states to the decoder as a context vector. This allows to collect
valuable information from the input sequence, such that the
decoder receives only useful features. The decoder then unrolls
the output in self-recurrent fashion, feeding its output at time
step t back as input at time step t + 1. This architectural
distinction between feature extraction and output synthesis
proves to be helpful beyond the decoupling of the input and
output time resolutions.

Bahdanau et al. [3] as well as Luong et al. [4] both note
that S2S has a potential information bottleneck: the decoder
cannot access the history of states of the encoder, only the very
last pair. To alleviate this, both works propose to use attention
mechanism as an additional context generator.

Attention context of a query Q regarding a key K and a
value V can be computed as follows:

score(Q,K) =
(QWQ)× (KWK)ᵀ√

dK
, (1)

A(Q,K, V ) = softmax(score(Q,K))× (VWV ), (2)

where dK is the length of key K, and WQ, WK , WV

are transformations (W denotes a projection into a fixed
dimensionality, for example via linearly activated feedforward
layer). score(Q,K) represents the importance of a feature in
Q with respect to K. This indicates to which feature the
network should pay more attention. The normalization by√
dK is performed to prevent exceedingly large scores that

could cause softmax instabilities [16]. A is the alignment
matrix that represents useful context.

Both [3] and [4] show significant improvements over the
state of the art in machine translation through the use of
attention. These performance gains are mainly attributed to
recovered useful context that S2S models otherwise would
have difficulties to develop.

C. Evaluating Forecast Accuracy

Quality of forecasting models is usually quantified using
direct, possibly normalized, error measures. Normalized error
measures are preferable, since they provide better comparison
between results independent of the size of the PV installa-
tion [5]. Common direct error measures are (normalized) root
mean square error (n)RMSE, (normalized) mean error (n)ME
for point forecasts, and the continuous ranked probability score
CRPS for probabilistic forecasts. For a forecast horizon of T
steps t = 1, . . . , T over a target variable with amplitude Pmax,



given a forecast F and real behavior P , nME and nRMSE
are calculated as follows

nME =
1

TPmax

∑
t

|F (t)− P (t)|, (3)

nRMSE =
1

TPmax

√∑
t

(
F (t)− P (t)

)2
. (4)

If F (t) and/or P (t) are given as probability distributions,
the expected values E(F (t)) and E(P (t)) are substituted.
Within this work, F (t) and P (t) are represented as binned
probability distributions over imax bins. Within the rest of this
article, i is omitted in notation unless strictly necessary. To
calculate CRPS for such F (t, i) and P (t, i), their probability
density functions (pdf) are first converted to cumulative density
functions (cdf) and then compared as follows

CRPS =
1

imaxT

∑
t

∑
i

(
Fcdf(t, i)− Pcdf(t, i)

)2
. (5)

The best values of nRMSE reported in the recent re-
views [5]–[9] are around 7%. However, no single set of
uniformly adapted metrics exists. As performance is reported
on specific data and PV power production exhibits both local
and temporal patterns, direct error measurements are not
robust. In order to limit local sensitivity, many reviews argue
for the use of forecast skill score based on nRMSE of the
model compared to the persistent forecast [6] as the preferred
performance metric

SnRMSE = 1−
(

nRMSEmodel

nRMSEpersistence

)
. (6)

The persistent forecast can be defined as the most recent
window of the target variable with the same length as the
forecast, but without overlap. For a 24h ahead window, this
would correspond to the behavior of P−23...0. The best models
documented in the literature exhibit SnRMSE of 42.5% on indi-
vidual models and 46% on an ensemble [17]. This article uses
nRMSE, nME, CRPS and SnRMSE, as performance metrics
for model evaluation. SnRMSE is also basis for comparison
with other works.

III. PROPOSED MODEL

Instead of one-block models traditionally used for PV power
forecasting, we propose to adopt the encoder-decoder approach
that previously led to massive improvements of the state of
the art in NLP and related fields. Both Bahdanau et al. [3]
and Luong et al. [4] employ attention in encoder-decoder
models to maximize the use of available context and improve
performance in language related fields. It stands to reason that
similar improvement can be expected for forecasting problems.

The encoder-decoder model comes with the benefit of
keeping autoregressive bias of recurrent cells while decoupling
the input and output frequencies. The high temporal resolution
of data provides an opportunity to create more expressive
probabilistic targets. The recurrence of the model allows

Fig. 1. Proposed model S2S-Attn

efficient leveraging of these targets for improved accuracy, and
the attention mechanism provides additional useful context.

To test these hypotheses, we develop an LSTM-based
encoder-decoder model with attention as additional context
generator. The signal flow of the proposed model is depicted
in Fig. 1 and detailed in the following paragraphs.

The encoder consist of n stacked LSTM layers. The input
of the encoder is a sliding window t−SW...0 of length SW up
to the current timestep t0. It includes values of NWP forecast
and historical PV power consolidated to the same sampling
frequency.

After the encoder processes the SW input, it passes its final
states to the decoder as new initial states. The output of the
encoder serves as value and key for all attention mechanisms
of the decoder.

The decoder features the same LSTM configuration with the
addition of the attention layers. It first performs attention on its
input concatenated with the hidden states of the first LSTM
layer, then concatenates the resulting context with the input
signal, and feeds it into the first LSTM layer. Afterward, there
are attention layers preceding the consequent LSTM layers.
These layers attend to the hidden states of the corresponding
LSTM layer as query and encoder outputs as value, similar
to [4]. The output of attention is concatenated with the output
of the previous LSTM layer and passed to the next.

The model attempts to learn the underlying distribution
Ptrue(t) that generates the actual values of PV power, inde-
pendent of the forecast format, P (t) or E(P (t)). Therefore,
if a sufficient number of values are available to construct
an approximation P (t) ≈ Ptrue(t), it is beneficial to train



with P (t) as target because it is closer to the modeled
behavior. To avoid bias in constructing such P (t), we chose
a binned probability distribution of the output variable over
each time interval. Although all models benefit from targets
that are closer to the actual behavior in general, the encoder-
decoder models benefit further due to their self-recurrence.
They perform a rolling forecast, instead of forecasting in
one step as in the case of one-block models. One way to
leverage this improved information propagation is to learn a
more expressive, probabilistic forecast. This allows for more
information about past forecast steps to pass on to the next
forecast step, freeing up parameters in the model’s memory.

To accommodate the probabilistic forecast, the output of the
decoder is projected into a binned probability distribution F (t)
by a projection layer that features a softmax operator. In the
first decoder step, to forecast F (1), the input is the available
P (0). This stands in contrast to similar models for language
oriented applications, where the first input is usually a start-
of-sentence token. The decoder is trained with teacher forcing,
meaning the input received to learn how to forecast F (t) is
P (t− 1) rather than F (t− 1). During evaluation, the decoder
is fully self-recurrent and predicts F (t) based on F (t − 1).
This has been established as the best practice to speed up
convergence for encoder-decoder models in language-related
fields.

Since the goal of the model is to approximate the probability
distribution of Ptrue(t) but only an imperfect, observed P (t)
is available, the Kullback–Leibler (KL) divergence emerges as
a natural choice of loss function. The KL divergence between
two binned probability distributions with bins i, forecast
F (t, i) and true signal P (t, i), can be calculated as

KL(F, P ) =
∑
t

∑
i

−P (t, i) ln

(
F (t, i)

P (t, i)

)
. (7)

IV. MODEL EVALUATION

In summary, previous sections formulate two main hypothe-
ses:

1) The proposed model can outperform common one-block
models used to forecast PV power and achieve or surpass
state of the art performance in terms of the established
error measures.

2) Performance improvements stem from predicting P (t)
instead of E(P (t)) on one hand, and better context
extraction through the encoder-decoder architecture with
attention and self-recurrence on the other.

A. Experiment Design

The first claim is evaluated by testing the proposed model,
S2S-Attn, against a set of benchmark models. The second claim
is quantified by training 2 types of each model: one trained to
directly forecast E(P (t)) over the target time interval, denoted
model-E, and one trained to forecast P (t), denoted model-pdf.
To further assess the impact of the attention mechanism we
also train an attention-less but parameter-equal version of the
proposed network, S2S. In summary, the evaluated models are:

• Persistence: the persistent forecast model as probabilistic
model, using P (−23...0) as F (1..24). This model is used
to calculate SnRMSE and enable comparison with other
published models.

• FFNN-pdf, FFNN-E: probabilistic and expected value ver-
sions of a one block FFNN model.

• LSTM-pdf, LSTM-E: probabilistic and expected value ver-
sions of a one-block LSTM model.

• S2S-pdf, S2S-E: probabilistic and expected value versions
of a sequence to sequence model without attention.

• S2S-Attn-pdf, S2S-Attn-E: probabilistic and expected value
versions of the proposed sequence to sequence model
with attention.

The PV power data used in the experiments has been pro-
vided by Landmark Homes. It contains PV power generation
values collected with 1 minute resolution at a net zero house
in Edmonton between January 2016 and December 2017. The
NWP data is a simulation equivalent to the HRRR model,
with hourly resolution. It is limited to variables common in PV
power forecasting literature: ambient temperature, atmospheric
pressure, solar irradiation, wind speed, and relative humidity.
The data has been randomly divided into 70%-15%-15% splits
for training, testing and validation. The forecast intervals from
different sets that overlap are discarded.

Each model is trained to perform hourly forecasts up to
24 hours ahead. For -pdf models, each hour is a probability
distribution with 50 bins from 0 to maximum rated power of
the PV installation, while for -E models it is the normalized
expected PV power. We attempt to isolate architectural per-
formance influences by keeping the number of parameters,
hyperparameter settings and received input data consistent.
Since one-block models cannot process datasteams with dif-
ferent resolution without significant architectural change, we
consolidate the two data streams (NWP and PV historical data)
to one data stream with 15 min resolution by interpolation and
averaging, respectively. For each sample, every model receives
a 5-day length equivalent sliding window from this data stream
as input. For simplicity the number of units per layer in each
model is kept constant. Each S2S model has a 2-layer encoder
and a 2-layer decoder. Each LSTM and FFNN one-block model
is 2 layers deep and includes a temporal transformation layer
to achieve the required output size. More detailed information
on benchmark model design and number of parameters can be
found in Appendix A. The training procedure is described in
Appendix B.

As explained in the background section, several error mea-
sures (nRMSE, nME, CRPS and SnRMSE) are employed to
provide a detailed overview of model performance. Since some
reviewed studies do not employ a separate test set, we report
both validation and test performance metrics for clarity. This
also allows an estimation of the generalization gap between
the development set used to validate and stop training, and the
previously unseen set used to perform a true generalization
test.



TABLE I
MODEL PERFORMANCE COMPARISON

nRMSE nME CRPS SnRMSE SCRPS

Model Val Test Val Test Val Test Val Test Val Test
Persistence 0.145 0.133 0.063 0.052 2.285 1.944 - - - -
FFNN-E 0.078 0.083 0.054 0.057 - - 0.464 0.376 - -
FFNN-pdf 0.072 0.074 0.041 0.040 1.008 1.032 0.501 0.446 0.559 0.469
LSTM-E 0.073 0.080 0.049 0.054 - - 0.496 0.395 - -
LSTM-pdf 0.080 0.087 0.045 0.047 1.166 1.386 0.450 0.344 0.490 0.287
S2S-E 0.089 0.100 0.058 0.065 - - 0.388 0.249 - -
S2S-pdf 0.068 0.072 0.039 0.039 0.938 1.003 0.529 0.456 0.589 0.484
S2S-Attn-E 0.119 0.121 0.091 0.094 - - 0.184 0.089 - -
S2S-Attn-pdf 0.067 0.069 0.039 0.038 0.917 0.937 0.536 0.481 0.599 0.518

B. Discussion

As can be seen from Table I, according to the test set
performance, the proposed S2S-Attn-pdf model outperforms
all baseline models (SnRMSE = 48.1%). The second best
performance on the test set is achieved by model S2S-pdf
(SnRMSE = 45.6%). This confirms the first hypothesis that
encoder-decoder models are better suited for a setup with high
resolution data. Comparing validation and test performance,
S2S-Attn-pdf exhibits a smaller generalization gap then S2S-
pdf. This is likely due to the ability of attention to aid
generalization through added context.

Another interesting observation is that performance gains
from performing probabilistic forecasts are obvious and strong
for the tested encoder-decoder models S2S-Attn and S2S. This
is not the case for one-block models whose results are less
conclusive: model FFNN-pdf outperforms FFNN-E, while LSTM-
E outperforms LSTM-pdf for the specific set of hyperparameters
listed in the appendix. Thus, it appears that the performance
improvement of the encoder-decoder models is not only due
to the more expressive, probabilistic target, as the -pdf vari-
ants of the one-block models are not consistently affected
in the same way. Conversely, the performance improvement
cannot solely be attributed to self-recurrence of encoder-
decoder models, as S2S-Attn-E and S2S-E significantly under
perform. The performance of S2S-Attn-pdf and S2S-pdf therefore
stems from the combination of self-recurrence and rich output
representation. Latter enables efficient utilization of the former
and is especially relevant for F (1), as the probabilistic input
P (0) conveys more information about the state of the system at
t = 0 than E(P (0)). The same argumentation can be applied to
the attention mechanism. When compared to model S2S-Attn-E,
the probabilistic output of S2S-Attn-pdf provides significantly
more features to the first layer’s attention mechanism. This
allows to construct better attention-based context and results in
an additional boost of performance. This validates the second
hypothesis from the beginning of this section.

There is no universally agreed upon benchmark dataset for
PV forecasting and many authors use custom datasets for
experiments. Additionally, our experimental setup necessitates
the use of a custom dataset to demonstrate efficient utilization
of data with high temporal resolution. Although the proposed
model S2S-Attn-pdf is well within the range of state of the art

methods concerning the reported direct metrics, comparison
based on such metrics is unreliable given the circumstance.
Many sources argue that using nRMSE based Skill compared
to a persistent baseline largely alleviates dataset dependency.
From reviewed works, the highest reported values of SnRMSE

are between 42.5-46% [6], [17]. This is significantly lower
than the skill of the proposed model S2S-Attn-pdf with SnRMSE

of 53.6% and 48.1% for validation and test, respectively.
In terms of SCRPS the proposed model also features the largest
relative increase of this metric (51.8%) with respect to other
models evaluated by van der Meer and Munkhammar [5].
However only one work [18] reports a CRPS improvement
over persistence in a scenario similar to that considered in this
study.

Based on all evaluation criteria, we conclude that the
proposed model performs at least at and possibly above the
state of the art for (residential) PV power forecasting.

V. CONCLUSION

This article presents motivation for using encoder-decoder
models with attention for PV power forecasting. It draws
analogy between the state of the art of PV forecasting and
the state of the art of NLP tasks before the introduction of
these concepts. Examining the flow of information in modern
network architectures, we argue that encoder-decoder models
are able to leverage high temporal resolution data better
than conventional one-block models through two mechanisms:
temporal decoupling of encoder and decoder; and decoder self-
recurrence.

To test these hypotheses, we develop and train a sequence
to sequence model with attention to perform a probabilistic,
binned forecast of PV power production with hourly resolu-
tion, up to a day ahead. The input 5-day sliding window data
consist of interpolated NWP forecasts and averaged historical
PV power data, both with 15 minute resolution. Performance
of this model is compared to parameter equivalent sequence
to sequence model without attention, to one-block LSTM, and
to one-block FFNN. Analogous models that forecast only the
expected value are considered as well.

The results suggest that the self-recurrence of the decoder
efficiently leverages more expressive, probabilistic targets
resulting in a significant performance increase. They also
indicate that the temporal decoupling between encoder and



decoder leads to a better utilization of the available data. Sim-
ilarly to models developed in the language processing domain,
the proposed model with attention outperforms the attention-
less model since it can extract the relevant information from
the encoder with a higher efficiency.

Obtained results are compared to other published models
based on forecast skill with respect to persistence, an indirect
performance measure, well established in the field of PV
power forecasting. The proposed sequence to sequence model
with attention attains SnRMSE score of 48.1% on the test set,
outperforming the previously published best skill scores for
day-ahead forecasting of 42.5-46% [6], [17] by a significant
margin.

Possible directions for future work include architectural
adjustments of the information flow of the encoder-decoder to
further specialize the model for forecasting tasks. In addition,
it may be possible to adapt other, newer state of the art DL
techniques such as self-attention. Finally, secondary experi-
ments using additional data, possibly from different domains,
may further strengthen the validity of results reported in this
contribution.
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APPENDIX

A. Model design

The selected benchmark models include a one-block FFNN, a
one-block LSTM (Fig. 2), and a classic encoder-decoder model
S2S (Fig. 3). The FFNN model is constructed similarly to one-
block LSTM, but with feedforward layers instead of LSTM.
One-block models feature a temporal transformation layer. It
projects the output of the last layer of the network into the
required output shape. In this article, the transformation is a
feedforward layer. It reduces the number of timesteps to 24 as
per the setup and then transforms the output to the shape of
E(P (t)) or (P (t)).

In order to keep the model size equivalent for all models,
the number of units was changed. However, for simplicity, all
layers in a given model have the same number of units. Table II
enumerates the parameters used for model evaluation.

TABLE II
MODEL ARCHITECTURE

Model Number of units per layer Number of parameters
FFNN-E 640 ~428k
FFNN-pdf 616 ~428k
LSTM-E 184 ~425k
LSTM-pdf 184 ~434k
S2S-E 132 ~425k
S2S-pdf 128 ~431k
S2S-Attn-E 115 ~441k
S2S-Attn-pdf 110 ~423k

B. Training procedure

All models were trained using stochastic gradient descent
with a learning rate of 0.003 and nesterov momentum of 0.75.
The batch size was 128 and early stopping after 15 epochs of
no improvement of nRMSE was used.

The models forecasting E(P (t)) were trained using mean
squared error (MSE) as a loss function

MSE =
1

T

∑
t

(F (t)− E(P (t)))2. (8)

while E(P (t)) ranges from 0 to 1.

Fig. 2. One-block LSTM model

Fig. 3. Encoder-decoder model




