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Abstract— In recent years, motor imagery has been used as a 

communication alternative in brain computer interface systems. 

In this paper an evaluation of five different types of feature 

extraction methods to recognize two motor imagery signals based 

on common spatial patterns (CSP), and time-frequency 

transformations are evaluated; CSP, continuous Wavelet 

transform (CWT), Stockwell transform (ST), and the following 

combinations CSP+CWT and CSP+ST. The classifier employed to 

recognize between right-hand, and left-hand was a support vector 

machine. The proposed methods were evaluated in two know 

datasets and compared with other state of the art methods. The 

best performance achieved with the proposed methods, 

considering a correct recognition rate, was 79.87% ± 10.73% and 

73.25% ± 08.04% with the datasets BCI Competition IV dataset 

2a and EEGdataset, showing better performances than the 

reported works. Besides, the CSP+SVM method requires a 

processing time of only 1.73 seconds which make it suitable for real 

time applications.  
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I. INTRODUCTION 

In recent years, research in brain computer interfaces, BCI, 
has highly increased. One of the more complex and challenged 
BCI systems are the one based on motor imagery, MI. An MI 
can be considered as a mental execution of a motor act without 
a physical performance [1]. The brain activity of a MI is 
captured by electrodes commonly using an 
electroencephalogram, EEG. This signal involves sensorimotor 
rhythms, as well as µ (7.5-12Hz) and β (12-30Hz) waves. The 
MI approach is preferred to other BCI approaches because, it 
does not require external stimulus to generate the BCI signals. 
That is, the BCI system does not need external devices or 
circuitry to produce the EEG signals.   

In a previous work [2] , the authors presented a methodology 
to classify MI related to feet and the right hand using statistical 
moments. The performance achieved was close to 90%. 
However, the proposed method cannot be implemented in real 
time. It just works off-line.  

According to [3] a MI presents an event-related 
desynchronization or ERD with a duration between 1500ms and 
2000ms. Therefore, to consider that a BCI system works in real 
time, the entire classification process, from data acquisition, 
processing, and MI assignation, needs to be less than 3 seconds. 

This is because in 3 seconds 2 ERD events can occur, data 
information from a MI is lost and the system is no longer 
considered in real time. 

Therefore, considering this restriction and the results of other 
works reported in the literature [4], [5], [6], [7], [8], it was 
considered to do a more complete analysis and evaluation of 
BCI methods to be able to design a new one that can be 
implemented for real time applications. This work describes the 
evaluation of 5 methods base on common spatial patterns (CSP), 
and time-frequency transformations. The CSP methods 
analyzed were the works reported in [9], [6], [10], [11]. The 
methods based on time-frequency, like Wavelet or Stockwell are 
reported in [4] and [12], respectively.  

The second contribution of this work is that as our 
knowledge, the CSP and the time-frequency approaches have 
been reported as separated methods, and they have not been 
reported as a fused method used in real time applications. The 
combination of spatial patterns and transformations in time-
frequency allows to extract features that, according to some 
evidence, can help to detect MI even from subjects whose MI 
are not so evident. Thus, this work proposes a new approach to 
classify MI signals by fusing CSP and time-frequency 
methodologies which can be used in real time applications. 

The paper is organized as follows. General information of 
the EEG signal processing is described in section II. Section III 
presents the feature extraction stage. The classification stage is 
reported in Section IV, and the results and conclusions are 
presented in section V and VI, respectively. 

II. EEG SIGNAL PROCESSING 

The general scheme of the proposed methodology to 
recognize MI is illustrated in Fig. 1. This scheme involves six 
main stages: EEG signal extraction, signal preprocessing, epoch 
extraction, data augmentation, feature extraction, and 
classification. The explanation of each one of these stages is 
provided in the next sections.  

A. EEG signal extraction 

The EEG signals are obtained from the following databases. 

1) BCI Competition IV dataset 2a  
The database BCI Competition IV dataset 2a [13] was 

selected because it is broadly used in other works reported in the 
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literature, and it provides a good mean of performance 
comparison. This dataset includes the next characteristics: 

• 4 MI (left-hand, right-hand, both feet, and tongue 
motion). 

• 9 subjects perform a training session and a test session. 

• 288 essays for session, 72 essays for class. 

• The EEG signals were registered with 22 Ag/AgCl 
electrodes, therefore the number of channels nCh = 22.  

• The sampling frequency Fs = 250 Hz. A 0.5 Hz to 100 
Hz band pass filter was applied. 

 

Fig. 1. General scheme of the proposed methodology to recognize MI. 

2) EEGdataset 
The dataset EEGdataset was obtained from [14]. It was 

selected because it includes many subjects. It is one of the most 
up to date datasets (2017) and presents the following 
characteristics:   

• 2 MI (left-hand, and right-hand). 

• 52 subjects. 

• One session with 100 to 120 essays for each class. 

• The EEG signals were registered with 64 Ag/AgCl 
electrodes, therefore nCh = 64. 

• The sampling frequency Fs = 512 Hz. 

• Raw data. 

B. Preprocessing 

Let 𝑋𝑟𝑎𝑤𝐶ℎ(𝑛) ∈ ℝ𝑛𝐶ℎ×𝑁  be the discrete signal which 
contains N raw data of and EEG channel Ch, obtained with a 
sampling frequency Fs, from each subject and from each one of 
the datasets.  In the case of the BCI Competition IV dataset 2a 
only the left, and right-hand MI signals were considered.  

The signal 𝑋𝑟𝑎𝑤𝐶ℎ(𝑛) was filtered with a fifth order band-
pass IIR Butterworth digital filter, with cut frequencies 
corresponding to the frequencies of the waves mu and beta, 
7.5Hz to 30Hz. This filter allows a monotonic response in the 
band pass up to the cut frequency, and the magnitude of the raw 
data is not modified. The difference equation of the filter is   
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( ) ( ) ( )Ch Ch Ch

i i

i i

Xfilt n b Xraw n i a Xfilt n i
= =

= − − −    (1) 

where a and b are the coefficients of the filter and 𝑋𝑓𝑖𝑙𝑡𝐶ℎ(𝑛) ∈
ℝ𝑛𝐶ℎ×𝑁 is the input EEG signal of each Chanel Ch for subject 
for dataset.  

C. Epochs extraction 

This stage consists on extraction p epochs for each MI class 
of each session to reduce the data dimensionality, and to extract 
the relevant information of the filtered signal. An epoch is 
defined as 
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where k is the data index in the epoch 𝑥𝑒𝑝
𝐶ℎ of the channel Ch and 

𝑞𝑒𝑝  refers to the initial sample of the MI in the epoch ep. 

Therefore, there are p epochs of two seconds (2Fs samples) of 
each channel Ch of each MI.  

At the first instance inc=45 (number of samples that 
correspond to 80ms at Fs=250Hz), because it is intended to 
obtain an epoch going from 180ms after the beginning of the MI 
( 𝑞𝑒𝑝 + 𝑖𝑛𝑐 ) to 2180ms ( 𝑞𝑒𝑝 + 2𝐹𝑠 + 𝑖𝑛𝑐 ). This interval is 

selected due to the fact that an MI presents a ERD with a 
duration of 1500ms to 2000ms [3], and thus assuring to obtain 
an adequate information to analyze the type of MI.  

D. Data augmentation 

In order to represent better each MI class, it is necessary to 
increment the number of samples in the EEG signal under 
analysis[15]. Data augmentation is achieved by overlapping 
windows of 80ms in 80ms that involve the MI event under 
screening.  In this way the most important information with only 
a few modifications is preserved [16]. Therefore, inc takes 
different values in (2) 

 ( )( )45 20 0,1,2,...,9     inc l l= + =   (3) 

inc takes 10 different values from 45 (180ms) to 225 (900ms), 
by the increments of 20 samples every 80ms. This results in the 
generation of 10 epochs per essay instead one epoch per essay. 
The first epoch will cover the interval in the MI event form 
180ms to 2210ms and the last one from 900ms to 2900ms. These 
data were divided into two sets: 8p epochs of MI that represent 
80% of the simples were employed for training, and the other 
20% for validation.  

III. FEATURE EXTRACTION 

This section presents the five methods used for feature 
extraction that were tested in this work: CSP, continuous 
Wavelet transform (CWT), Stockwell transform (ST), and the 
following combinations CSP+CWT and CSP+ST. In the next 



paragraphs each feature extraction method is explained and the 
classifier to recognize right and left-hand MI recognition using 
the previous features will be analyzed. 

A. Method 1: CSP 

By using CSP we try to do a linear transformation which 
projects a multichannel EEG signal into a subspace of lower 
dimension. This process allows to use information from both 
classes and eliminate redundant information. The CSP are 
generated by considering two MI classes: right and left-hand, 
denoted as  

  ,izq derC c c=   (4) 

The normalized covariance matrix of each class is obtained 
by  
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where trace() indicates the trace of the input matrix, considering 
8p epochs of each MI to obtain the normalized covariance of 
each class in the training stage. 

Then, the spatial covariance, which allows the best 
discrimination of classes is computed  

 T
der izqCov Cov Cov UDU= + =   (6) 

here U is the eigenvector array of Cov and D is the diagonal 
matrix with the eigenvalues of Cov, sorted in descending order.  
The next step is to obtain the whitening transformation matrix  

 1/2 TP D U−=   (7) 

This process allows to normalize D to one, generating a 
space where the data variances that will be filtered with the 

spatial filter assume values in [0,1]. Besides, if 𝐶𝑜𝑣̅̅ ̅̅ ̅
𝑑𝑒𝑟  and 

𝐶𝑜𝑣̅̅ ̅̅ ̅
𝑖𝑧𝑞 are transformed as 
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then 𝐺𝑑𝑒𝑟  and 𝐺𝑖𝑧𝑞  will share common eigenvectors through the 

eigenvalues 1 and 2 
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and their sum is the identity matrix 

 1 2 I + =   (10) 

As a result, the eigenvectors with the largest eigenvalues for 
𝐺𝑑𝑒𝑟  correspond to the smallest eigenvalues for 𝐺𝑖𝑧𝑞 , and vice 

versa. Such that the spatial filter matrix is defined by  
   

    ;   T nCh nCh

CSP G CSPW U P W =    (11) 

In the resulting spatial filters, the rows correspond to the 
combined information of both classes of each channel employed 
to obtain the EEG signal. This information is arranged in 
descending order where the first row has the highest variance.  

The transformation of each epoch is by using the first row 
and the row nCh of the spatial filter  
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where fil represents each row used in the transformation. This 
produces a reduction of the data dimension and concatenate the 

two rows with higher variances to obtain the matrices 𝐙𝐶𝑆𝑃
𝑓𝑖𝑙 (𝑘). 

After the previous step, the logarithm of the variances is 
computed in order to reduce the variation among large values, 
and thus obtain a gaussian distribution [17], of each row fil of 

𝐙𝐶𝑆𝑃
𝑓𝑖𝑙 (𝑘) for each one of the epochs 
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here 𝑦𝐶𝑆𝑃
1  and 𝑦𝐶𝑆𝑃

2  correspond to the two extracted features for 

each one of the 8p MI. That is, Γ𝐶𝑆𝑃
𝑓𝑖𝑙

= (𝑦𝐶𝑆𝑃
1 , 𝑦𝐶𝑆𝑃

2 ), Γ𝐶𝑆𝑃
𝑓𝑖𝑙

∈
ℝ2×8𝑝  are the feature vectors for the support vector machine 
(SVM) classifier.  

B. Method 2: CWT 

This method involves the continuous Wavelet transform, 
using the Morlet wavelet. The CWT was applied on the channels 
C3 and C4 of each one of the 8p epochs   
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where 𝐙𝐶𝑊𝑇
𝐶ℎ,𝑆𝑐(𝑘) ∈ ℝ𝑆𝑐×2𝐹𝑠×8𝑝 . The coefficients used of the 

transform were obtained by sampling the CWT. Both the 

minimum and maximum scales of the CWT are determined 

automatically as a function of the energy distribution the CWT 

represented in a logarithmic scale [18]. Therefore, Sc is the 

number of frequency scales obtained from the transformation, 

where the band of 7.5Hz to 28Hz was selected because it 

includes the sensory motor rhythms. 
Next, it is proposed to use the average of the natural 

logarithms of the sum of the absolute values of  𝐙𝐶𝑊𝑇
𝐶ℎ,𝐸𝑠(𝑘) of 

each channel to compare the energy of the CWT of the channels 
C3 and C4 
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here 𝑦𝐶𝑊𝑇
𝐶3  and 𝑦𝐶𝑊𝑇

𝐶4  represent the two characteristics obtained 

from each MI. That is Γ𝐶𝑊𝑇
𝐶ℎ = (𝑦𝐶𝑊𝑇

𝐶3 , 𝑦𝐶𝑊𝑇
𝐶4 ),  Γ𝐶𝑊𝑇

𝐶ℎ ∈ ℝ2×8𝑝 
are the input feature vectors for the SVM classifier. In this 
method and in the other methods, it was decided to use ln, 
instead log, because ln yields a higher discrimination between 
the data, and therefore a better recognition performance.     

C. Method 3: ST 

This third method uses the Stockwell transform, over the 
channels C3 and C4 of each one of the epochs, employing 
variable gaussian windows 

 ( ) ( ) ( ), STZ
Ch F Ch

ST epk abs x k=   (16) 



where 𝐙𝑆𝑇
𝐶ℎ,𝐹(𝑘) ∈ ℝ𝐹×2𝐹𝑠×8𝑝 and F are frequencies (from 1 to 

Fs Hz) obtained from the transformation, represented with a 
resolution of 1Hz, selecting the band 8Hz to 28Hz, because it 
contains the sensory motor signals. Unlike the CWT, in the ST 
transform the range of frequencies of 8Hz to 28Hz was used 
instead the band 7.5Hz to 28Hz, because the ST has a resolution 
of 1Hz, and the resolution of the CWT is a function of the 
resulting scales of the transform. 

     Next, the average of the natural logarithms was computed 

over the sum of absolute values of  𝐙𝑆𝑇
𝐶ℎ,𝐹(𝑘), for each channel 
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here 𝑦𝑆𝑇
𝐶3 and 𝑦𝑆𝑇

𝐶4 correspond to the two features extracted from 

each MI, that is, Γ𝑆𝑇
𝐶ℎ = (𝑦𝑆𝑇

𝐶3, 𝑦𝑆𝑇
𝐶4), Γ𝑆𝑇

𝐶ℎ ∈ ℝ2×8𝑝 which are the 
input feature vectors for the SVM. 

D. Method 4: CSP+CWT 

This method involves the combination of the features 
extracted with the CSP, and the CWT.  The CSP was used to 
automatically select the two rows of the filter 𝑊𝐶𝑆𝑃 that include 
information with the highest variance of both classes. CWT was 
used to process this information. Therefore, the CWT was 
obtained from the matrix yielded by the CSP    

 ( ) ( ) ( ),

_ CWTZ Z
fil Sc fil

CSP CWT CSPk abs k=   (18) 

where 𝐙𝐶𝑆𝑃_𝐶𝑊𝑇
𝑓𝑖𝑙,𝑆𝑐 (𝑘) ∈ ℝ𝑆𝑐×2𝐹𝑠×8𝑝  is the absolute value 

obtained from the selection of the combined information of both 
classes of the two selected channels by the CSP. 

According to [19], and  [20] a MI of the right-hand, will 
present more energy in the contralateral zone of the brain, left 
channels in this case, and a MI of the left-hand in the right 
channels. Assuming this information, the figures shown in Fig. 
2 can be analyzed as follows. 

 

a) CWT of the MI of the left-hand using channel 1. 

        

b) CWT of the MI of the left-hand using channel 2. 

Fig. 2. Example of the CWT of the MI of the left hand. 

Fig. 2 illustrates the CWT of the dataset EEGdataset of 
subject 14. The channels shown correspond to the channels 
selected with the CSP filters. Channel 1 correspond to the left 
side and channel 2 to the right. The graph axes correspond to the 
frequencies of the sensory motor frequencies in two second of 
samples. It can be observed the distribution of energy present in 
the CWT of the MI of the left hand. This distribution shows a 
higher uniform energy in the second channel, which is expected 
for this MI. 

The case of the MI of the right-hand is presented in Fig. 3. 
In this case as commented before the energy distribution is 
contrary to the left hand, and it appears in channel 1. 

 

a) CWT of the MI of the right-hand using channel 1. 

        

b) CWT of the MI of the right-hand using channel 2. 

Fig. 3. Example of the CWT of the MI of the right-hand. 

E. Method 5: CSP+ST 

This method is like method 4, but instead using the CWT, it 
was employed the ST. The CSP filters select the best channels, 
and the ST is used to analyze and select the time-frequency 
features 

 ( ) ( ) ( ),

_ STZ Z
fil F fil

CSP ST CSPk abs k=   (19) 

here 𝐙𝐶𝑆𝑃_𝑆𝑇
𝑓𝑖𝑙,𝐹 (𝑘) ∈ ℝ𝐹×2𝐹𝑠×8𝑝  is the absolute value obtained 

from the selection of the combined information of both classes 
of the two selected channels by the CSP. 

IV. CLASSIFIER 

The SVM allows to find a discriminant hyperplane between 
classes by maximizing the margins between the classes. The 
hyperplane may be represented by  
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where 𝑊𝑆𝑉𝑀  is the weight vector, Γ are the input data, and 
𝑊0_𝑆𝑉𝑀  is a scalar to adjust the hyperplane off-set. The SVM 

methodology intents to optimize the margin between the two 
classes. The samples that correspond to this optimization are 
termed support vectors. The optimization problem can be stated 
as  
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Such that Υ𝑖[𝑊𝑆𝑉𝑀
𝑇 Γ𝑖 + 𝑊0_𝑆𝑉𝑀] ≥ 1 − 𝜉𝑖 for 𝜉𝑖 ≥ 0 and                    

𝑖 = (1, … , 𝑛).  Where Υ ∈ {+1, −1} denotes the class label, ξ is 
a slack factor that allows to the inequality restriction to be 
transformed into an equality, and ι are the Lagrange factors. A 
radial base kernel was used in all the methodologies  
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𝑦𝛿 , 𝑦𝜐 are n-dimensional vectors that represent the observations 
δ and υ in Γ, modifying (20) into 

 ( ) 0_

T

SVM SVMW W = +   (23) 

Therefore, by substituting (22) into (23) we obtain the SVM 
classification function with the kernel with radial base radial  

 ( ) ( )2

0 _expT

SVM SVMW y y W  = − − +   (24) 

It can be observed from (24) that only two features are used. 
This model was selected and tested because we intended to use 
a simple computational classifier, in order to achieve to try to 
design a real time BCI.  

V. RESULTS 

The performances of the proposed methods using the SVM 
as the classifier were obtained by using the provided Ground 
Truth in the datasets, and the metric of correct classification 
considering the average performance over all the experiments.  

Table I shows the performances for training and validation 
using the different methods to extract features of the MI signals. 
CSP2 indicates the use of two rows of the projection matrix, and 
SVM is the classifier. The dataset evaluated is BCI Competition 
IV dataset 2a. Table II presents the results for the dataset 
EEGdataset.  

TABLE I.  PERFORMANCE FOR THE DATASET BCI COMPETITION IV 

DATASET 2A. 

Method 

\Evaluation 
Training Validation Average 

CSP2+SVM 
80.16% ± 

10.56% 

79.57% ± 

10.89% 

79.87% ± 

10.73% 

CWT+SVM 
64.39% ± 

07.46% 

64.43% ± 

07.32% 

64.41% ± 

07.39% 

ST+SVM 
64.46% ± 

07.91% 

62.50% ± 

07.75% 

63.48% ± 

07.83% 

CSP2+CWT+SVM 
79.82% ± 

11.27% 

77.93% ± 

12.88% 

78.87% ± 

12.08% 

CSP2+ST+SVM 
78.07% ± 

11.36% 

76.93% ± 

13.08% 

77.50% ± 

12.22% 

These results can be compared directly with the average 
performance of 67.46% ±13.17% of the work reported in [14] 
that employs CSP for feature extraction, and a Fisher linear 
discriminant classifier. Besides, the authors in [14] mentioned in 
their work that the subjects 29 and 34 were discarded because 
their signal were correlated with electromyographic signals in 
most of their 90% essays, producing higher energy in the 
frequency band of 50Hz to 250Hz. During their MI events.  

TABLE II.  PERFORMANCE FOR THE DATASET EEGDATASET 

Method 

\Evaluation 
Training Validation Average 

CSP2+SVM 
73.66% ± 

07.60% 

72.83% ± 

08.48% 

73.25% ± 

08.04% 

CWT+SVM 
66.94% ± 

05.31% 

65.56% ± 

05.97% 

66.25% ± 

05.64% 

ST+SVM 
65.94% ± 

05.76% 

64.42% ± 

07.22% 

65.18% ± 

06.49% 

CSP2+CWT+SVM 
73.87% ± 

07.65% 

72.49% ± 

07.97% 

73.18% ± 

07.81% 

CSP2+ST+SVM 
72.53% ± 

07.37% 

70.89% ± 

07.93% 

71.71% ± 

07.65% 

Unlike the work presented in [14], we decided to include the 
subjects 29 and 34 because our analysis is based on CSP and 
time frequency features, which allows that even if there is a 
correlation with other type of signals, the brain activity is 
present, and our model will be able to determine the correct 
features to distinguish  between the left and right-hand MIs. 

Table III shows the training and validation results for the 
subject 29 of the dataset EEGdataset using our different 
proposed methods. The evaluation for the subject 34 is shown in 
Tab. IV. 

TABLE III.  PERFORMANCE OF THE SUBJECT 29 OF THE DATASET 

EEGDATASET OBTAINED WITH OUR PROPOSED METHODS 

Subject 29 of EEGdataset 

Method 

\Evaluation 
Training Validation Average 

CSP2+SVM 63.25% 63.00% 63.13% 

CWT+SVM 64.81% 67.25% 66.03% 

ST+SVM 64.19% 59.25% 61.72% 

CSP2+CWT+SVM 61.06% 64.75% 62.91% 

CSP2+ST+SVM 64.31% 65.00% 64.66% 

TABLE IV.  PERFORMANCE OF THE SUBJECT 34 OF THE DATASET 

EEGDATASET OBTAINED WITH OUR PROPOSED METHODS 

Subject 34 of EEGdataset 

Method 

\Evaluation 
Training Validation Average 

CSP2+SVM 65.81% 63.00% 64.41% 

CWT+SVM 65.69% 60.25% 62.97% 

ST+SVM 59.25% 58.00% 58.63% 

CSP2+CWT+SVM 63.88% 62.50% 63.19% 

CSP2+ST+SVM 65.63% 67.25% 66.44% 

From the previous tables, it can be noticed that the average 
performance of the subject 29 was 66.03% using the method 
CWT+SVM and the performance of the subject 34 was 66.44% 
with CSP2+ST+SVM. These results compared with the results 
reported in  [14], indicate that our proposed methodology can be 
used in cases where other methods are not able to produce 
acceptable results.   

A more complete comparison of our proposed methods 
against other works reported in the literature are shown in Table 
V. The table provides information regarding; feature extraction 
methods, type of classifier, number of MI to recognize, number 
of subjects evaluated, performances, and the year of the work.  



TABLE V.  PERFORMANCE COMPARISON OF THE PROPOSED METHODS WITH OTHER STATE OF THE ART METHODS 

Feature 

extraction 
Classifier 

No. of 

MIs 

No. of 

subjects 
Performance Database 

Approx. 

Processing 

time (sec) 

Computer system Ref. Year 

FFT - WPD 
Deep learning 

based on 

RBM 

2 MIs 9 84% ± 11.93% 
BCI Competition 

IV dataset 2b 
3.43 

Dual core processor i7-3700 / 

3.40GHz / 12 GB RAM 
[21] 2017 

CSP 
Fisher linear 

discriminant 
2 MIs 52 67.46 ± 13.17% EEGdataset 2 - [17] 2017 

CSPO TWSVM 2 MIs 9 75.93% 
BCI Competition 

IV dataset 2a 
0.0256 

Windows 7 / Intel Core i3-4030U 
CPU (1.90 GHz) / 4 GB RAM 

[10] 2017 

CWT CNN 2 MIs 9 78.93 ± 6.83% 
BCI Competition 

IV dataset 2b 
- - [4] 2018 

PSD CNN 3 MIs 8 62.1 ± 15% Their own dataset - - [5] 2018 

CSP-LBP LDA 2 MIs 8 76.46% Their own dataset 2 
Windows 8 / Intel i3 Core / 

2.30GHz processor 
[11] 2019 

RCT ANN 2 MIs 1 84.40% 
BCI Competition II 

dataset III 
5.25 - [22] 2019 

TSGSP SVM 2 MIs 9 
82.51% ± 
12.24% 

BCI Competition 
IV dataset 2a 

17 
1.99 GHz CPU / i7-8550U /    16GB 

RAM 
[23] 2019 

JSTFD LDA 2 MIs 9 79.6% ± 14.7% 
BCI Competition 

IV dataset 2a 
17.11 

Intel® Xeon® CPU E5-2620 v4 @ 
2.10GHz processor / 64GB RAM 

[24] 2020 

CSP2 SVM 2 MIs 9 
79.87% ± 

10.73% 

BCI Competition 

IV dataset 2a 
1.73 

Windows 10 / Intel® Xeon® E5-

1620 v3 3.50GHz /16 GB RAM 
Our method 

CSP2 SVM 2 MIs 52 
73.25% ± 

08.04% 
EEGdataset 1.73 

 

The works of Table V were selected because they classify 
the same number of MIs (except [5]), use known databases and 
form part of the state of the art methods. 

The work described in [21] indicates that for each data 
training set, the preprocessing time, including the FFT takes 1.39 
seconds, feature extraction preparation takes 12.38 seconds, the 
training stage 98.84 seconds, and the testing stage 2.04 seconds.  
In the case of our proposed method CSP2+SVM, which is the 
method with the best results, the times are indicated next. 
Preprocessing time 1.65 seconds, feature extraction preparation 
1.1 seconds, training stage 0.86 seconds, and testing 0.08 
seconds. Therefore, considering the processing time plus the 
testing time (without considering the preparation time) the time 
reported in [21]  will be 3.43 seconds, which won’t be able to 
process the MI in real time. On the other hand, in the method 
CSP2+SVM will be able to process in real time because it takes 
only 1.73 seconds, approximately half the time of the method in 
[21].  

Considering the same reasoning, only the works described in 
[17] and [11] could be considered as a real time methods because 
they complete processing time in 2 seconds. The works 
presented in [22], [23] and [24] report high performances, 
however they report too high times to be considered real time 
systems, specially [23] and [24]. The evaluation of the method 
reported in  [22] was included in this Table V, because it presents 
the highest performance, however its processing time is high, 
and it was only tested with one subject. Unfortunately, the works 
reported in [4] and [5] did not provide they processing times. 

VI. CONCLUSIONS 

 This work reports a new methodology to recognize two 
types of MI, left and right-hand. The work proposed five 

different methods for feature extraction, based on common 
spatial patterns, and time frequency transforms: CSP2, CWT, ST, 
CSP2+CWT and CSP2+ST. The highest performance achieved 
was 79.87% with the dataset BCI Competition IV dataset 2a and 
73.25% with the dataset EEGdataset using CSP2 in combination 
with the SVM classifier. The method performs the recognition 
in 1.73 seconds, making it a competitive method for real time 
BCI.   

As the results have been favorable to implement this 
methodology in real time, a future work will be to generate a 
new database to includes more motor imageries to detect the 
visualizations of tongue and foot movement. Another future 
work is to implement a classifier based on deep neural networks 
aimed to improve the performance of MI recognition.  
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