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Abstract—In this paper, we introduce a novel interpreting
framework that learns an interpretable model based on an
ontology-based sampling technique to explain agnostic prediction
models. Different from existing approaches, our algorithm con-
siders contextual correlation among words, described in domain
knowledge ontologies, to generate semantic explanations. To
narrow down the search space for explanations, which is a
major problem of long and complicated text data, we design a
learnable anchor algorithm, to better extract explanations locally.
A set of regulations is further introduced, regarding combining
learned interpretable representations with anchors to generate
comprehensible semantic explanations. An extensive experiment
conducted on two real-world datasets shows that our approach
generates more precise and insightful explanations compared
with baseline approaches.

Index Terms—ontology, interpretable machine learning, natu-
ral language processing, anchor, information extraction

I. INTRODUCTION

In critical scenarios, such as clinical practices, having the
ability to interpret machine learning (ML) model outcomes
is significant to reduce the error rate and improve the trust-
worthiness of ML-based systems [1, 2]. To achieve this,
typical approaches, called Interpretable ML (IML), are to
train additional interpretable models to generate explanations,
which usually are crucial features (i.e., important terms, in text
analysis [3, 4] or super-pixels, in image processing [5, 6]),
for each predicted outcome. However, most of existing IML
algorithms usually treat input features independently, without
considering their semantic correlations, especially in natural
language processing. As a result, generated explanations com-
monly are fragmented, incomplete, and difficult to understand.

Addressing this problem is a non-trivial task, since: (1) It
is difficult to capture semantic correlations among features,
which can be contextually rich and dynamic; (2) There is
still a lack of scientific study on how to integrate semantic
correlations among features into IML to generate semantic
explanations, which are concise, complete, and easy to un-
derstand; and (3) The search space for semantic explanations
can be large and complicated, given noisy and poor data. That
results in a limited understanding of how to define semantic
explanations, and effectively and efficiently identify them.

In literature, ontology, which encodes domain knowledge,
can be used to capture semantic correlations among input
features, such as entities, terms, phrases, concepts, etc. [7, 8].
However, there is an unexplored gap regarding how to guide

the learning process of an IML model based on ontol-
ogy. Straightforwardly matching ontology and explaining data
points, by randomly sampling co-occurring terms and concepts
in conventional approaches, e.g., LIME [4], may not generate
semantic explanations, since contextual information in the data
is usually rich and complicated compared with the ontology.
In addition, building an ontology that can sufficiently capture
contextual information in the data is costly. Meanwhile, the
traditional concept of anchor texts [9] can be used to narrow
down the search space, by pinpointing generally important
texts. However, the approach was not designed for each single
and independent data point, i.e., at local level.

Our contributions. To synergistically overcome these chal-
lenging issues, we propose a novel Ontology-based IML
(OnML) to generate semantic explanations, by intergrating
domain knowledge encoded in ontology and information ex-
traction techniques into IML. In this paper, we consider a
text classification model, in which text data is classified into
different categories. Then, we learn a linear interpretable
model by approximating the predictive model based on data
sampled around the prediction outcome.

In order to achieve our goals, we first present a new concept
of ontology-based tuples, each of which essentially is a set of
correlated terms, words, and concepts semantically encoded
and co-existed in the ontology and textual data. Departing from
existing approaches, we identify and integrate ontology-based
tuples into a new sampling approach, in which the semantic
correlations among terms, words, and concepts are sampled
and captured, instead of utilizing each of them independently.

Second, we propose a new concept of learnable anchor
texts, to narrow down the search space for explanations. A
learnable anchor text essentially is a contextual phrase, which
can be expanded by adding nearby terms. For instance, anchors
can be started with a predefined seed term having negative
meanings, e.g., “no,” “not,” “illegal,” and then be expanded
to neighboring texts in order to effectively capture negative
experiences and events, e.g., “not get any help.” Anchors,
which have the highest importance scores measuring their
impacts upon the model outcome, will be chosen.

Third, we introduce a set of regulations to combine
ontology-based tuples, anchor texts, and triplexes extracted
from the text, to generate semantic explanations. Each expla-
nation is assigned an importance score. To our knowledge,
OnML establishes the first connection among domain knowl-
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edge ontology, IML, and learnable anchor texts. Such a mech-
anism will greatly extend the applicability of ML, by fortifying
the models in both interpretability and trustworthiness.

Finally, extensive experiments conducted on two real-word
datasets in critical applications, including drug abuse in the
Twitter-sphere [10] and consumer complaint analysis1, to
quantitatively and qualitatively evaluate our OnML, show
that our algorithm generates concise, complete, and easy-to-
understand explanations, compared with existing mechanisms.

II. BACKGROUND AND PROBLEM DEFINITION

In this section, we revisit IML, ontology-based approaches,
and information extraction algorithms, which are often used
to generate explanations. We further discuss the relation to
previous frameworks and introduce our problem definition.

Let D be a database that consists of N samples, each of
which is a sample x ∈ Rd associated with its label y. Each y
is a one-hot vector of K categories y = {y1, y2, . . . , yK}. A
classifier outputs class scores f : Rd → RK that maps an input
x to a vector of scores f(x) = {f1(x), f2(x), . . . , fK(x)}
s.t. ∀k ∈ [1,K] : fk(x) ∈ [0, 1] and

∑K
k=1 fk(x) = 1.

The highest-score class is selected as the predicted label for
the sample. By minimizing a loss function L(f(x), y) that
penalizes a mismatching between the prediction f(x) and the
original value y, an optimal classifier is selected.

Interpretable Machine Learning. Let us briefly revisit
IML, starting with the definition of interpretable model. Given
an interpretable model g, which provides insights and quali-
tative understanding about the prediction model f given an
input x, there are two important criteria in learning g: 1) local
fidelity, which implies the ability of interpretable models to
approximate the prediction model in a vicinity of the input,
and 2) interpretability, which is the sufficiently low complexity
of interpretable models that make humans easy to understand
the explanations. In textual data, the complexity, denoted as
T (g), usually is the number of important words [3, 4], based
upon that users can easily handle to evaluate the generated
explanations.

Let z be a sample of x, where z is generated by randomly
selecting or removing features/words in x. φx(z) is a similarity
function to measure the proximity between x and z. Given a
d′-dimensional binary vector z′ ∈ {0, 1}d′

, z′i = 1 indicates
that the feature i-th (∈ x) is present in z, and vice-versa.

To achieve the interpretability and local fidelity, Ribeiro
et al. [4] minimize a loss function L(f, g, φx), with a low
complexity T (g), by solving the following problem:

g∗ = arg min
g
L(f, g, φx) + T (g) (1)

where L(f, g, φx) =
∑

z φx(z)(f(z) − g(z′))2, φx(z) =
exp(−D(x, z)2/σ2) is an exponential kernel with D(x, z) is
a distance function (e.g., cosine distance for textual data) with
a width σ, and g(z′) = wgz

′.
To obtain the data z for learning g in Eq. 1, sampling ap-

proaches are employed. In LIME [4], the authors draw nonzero

1https://www.consumerfinance.gov/data-research/consumer-complaints/

Fig. 1: A flow chart of the OnML approach.

Fig. 2: Drug abuse ontology.

elements of the original data x uniformly at random. Similar
to this approach, a number of works follow [11, 12, 13].
Apart from the randomization, model decomposition is another
line of learning g [1, 3], in which the prediction f(x) is
decomposed on individual features to learn the effect of each
feature on the outcome. These existing randomization and
decomposition approaches treat features independently; there-
fore, they cannot capture correlations among features. This
may not be practical in real-world scenarios, since features
usually are highly and semantically correlated.

Ontology-based Approaches. To capture semantic corre-
lations among input features and ontology can be applied.
Ontology is used in [14] to filter and rank concepts from
selected data points to conduct informative explanations. The
explanations are derived in ontological forms. For example,
the information, “a 30 year-old individual, with an operation
occurred in 1989,” can be conveyed by the representation,
“TheSilentGeneration u OperationIn1980s.” (TheSilentGener-
ation denotes people in the age range of 30-39.) However,
building a rich contextual ontology is expensive, so typically
ontology only captures a limited number of core concepts and
their correlations. This is the reason why ontological forms
cannot capture all common sense knowledge in the textual
information. In reality, humans generally use natural languages
in a variety of text presentations. Therefore, an appropriate
combination of a single-form ontology with other approaches
to generate semantic explanations is necessary.

In [8], Confalonieri et al. use ontology to learn an under-
standable decision tree, which is an approximation of a neural
network classifier. Explanations are in a non-syntactic form,
and they are not designed to explain a single and independent
data point. Different from [8], we aim at generating semantic
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explanations for each input x. In this paper, generating seman-
tic explanations is defined as a process of mapping a text to
a representation of important information in a syntactic and
understandable form.

Information Extraction. Apart from IML, information
extraction (IE) is another direction to capture contextual
information semantically. The first Open IE algorithm is
TextRunner [15], which identifies arbitrary relation phrases
in English sentences by automatically labeling data using
heuristics for training the extractor. Following [15], a number
of Open IE [16, 17, 18] were introduced. Unfortunately,
these approaches ignore the context. OLLIE [19] includes
contextual information; and extracts relations mediated by
nouns, adjectives, and verbs; and outputs triplexes (subject,
predicate, object). Compared to Open IE approaches, our
algorithm mainly focuses on generating semantic explanations
associated with the prediction label.

III. ONTOLOGY-BASED INTERPRETABLE MACHINE
LEARNING FOR TEXTUAL DATA

In this section, we formally present our proposed OnML
framework (Fig. 1). Alg. 1 presents the main steps of our
approach. Given an input x, an ontology O, and a set of
all concepts C in O, we first present the notion of ontology-
based tuples (Line 3), which will be used in an ontology-based
sampling technique to learn the interpretable model g (Lines 4-
6). Next, we learn potential anchor texts using the input x and
the model f(x) (Line 7). Meanwhile, OLIIE [19] is applied to
extract triplexes, which have high confident scores, in x (Line
8). After learning g, learning anchor texts A, and extracting
triplexes T , we introduce a set of regulations to combine them
together to generate semantic explanations (Line 9). Let us first
present the notion of ontology-based tuples as follows.

A. Ontology-based Tuples

Given concepts A and B, A 7→ B is used to indicate that
A has a directed connection to B. In considerably correlated
domains, such as text data, it is observed that 1) words
appeared near to each other in a sentence have the same
contextual information, and 2) different sentences usually have
different contextual information. To encode the observations,
we introduce a contextual constraint, as follows:

λxk
(xl) ≤ γ (2)

where xk and xl are two words in x, γ is a predefined thresh-
old, and λxk

(xl) measures the distance between the positions
of xk and xl in x. In text data, if xk and xl belong to two
sentences, they are considered to be violating the contextual
constraint. Intuitively, the constraint is used to connect words
1) that appear near to each other in a sentence (contextual
correlated) and 2) that belong to connected concepts in the
ontology (conceptual correlated). If there is no contextual
constraint, there can be mismatched information between the
domain knowledge and the explanation extracted in the text.

Definition 1. Ontology-based tuple. Given xk and xl in x,
(xk, xl) is called an ontology-based tuple, if and only if: (1)

Algorithm 1 OnML approach
1: Input: Input x; ontology O, and user-predefined anchor A0

2: Classify x by a prediction model f : Rd → RK

3: Find ontology-based tuples (xi, xj) in x based on concepts and
relations in O

4: Sample x, based on ontology-based tuples found by our sampling
technique to obtain sampled data z ∈ Z

5: Generate vectors of predictive scores f(z) with z ∈ Z
6: Learn an interpretable model g based on f(z) and g(z′) by Eq. 1
7: Learn anchor text by our anchor learning algorithm (Alg. 2)
8: Extract triplexes in x using an existing Open IE technique
9: Combine ontology-based tuples, learned anchors, and extracted

triplexes by our proposed regulations
10: Output: Semantic explanation E

∃A,B ∈ C s.t. xk ∈ A and xl ∈ B; (2) A 7→ B; and (3)
λxk

(xl) ≤ γ.

Since ontology has directed connections among its con-
cepts, ontology-based tuples are asymmetric, i.e., (xk, xl) and
(xl, xk) are different. For the sake of clarity without affecting
the generality of the approach, we use a drug abuse ontology
as an example (Fig. 2). Given the drug abuse ontology and x as
“She uses orange juice and does not like weed. She knows that
smoke causes addiction and headache.”, list of ontology-based
words can be found {use, weed, smoke, addiction, headache}.
These words are in “Abuse Behavior” (use and smoke), “Drug”
(weed), “Side Effect” (addiction), and “Symptom” (headache)
concepts. Following the aforementioned conditions (Eq. 2 with
γ = 3), two ontology-based tuples are found, which are
(smoke, addiction) and (smoke, headache). In the meantime,
(addiction, headache) and (weed, smoke) are not ontology-
based tuples, since there is no directed connection between
the “Side Effect” concept and the “Symptom” concept, and
“weed” and “smoke” are in different sentences. By using the
contextual constraint, we can eliminate “use weed,” which is
contextually incorrect, from the explanation.

B. Ontology-based Sampling Technique

To integrate ontology-based tuples into learning g, we
introduce a novel ontology-based sampling technique. To learn
the local behavior of f in its vicinity (Eq. 1), we approximate
L(f, g, φx) by drawing samples based on x, with the proximity
indicated by φx. A sample z can be sampled as:

z =
(
∪xi∈x,i6=k,i 6=l R(xi)

)
∪R({xk, xl}) (3)

where R(xi) and R({xk, xl}) are probabilities randomly
drawn for each word xi ∈ x(i 6= k, l) and words xk, xl ∈ x
together, respectively. If R is greater than a predefined thresh-
old, then the word(s) will be included in z.

In our sampling process, xk and xl, i.e., an ontology-based
tuple, are sampled together as a single element. This aims to
integrate the semantic correlation between xk and xl, captured
in an ontology-based tuple into the sampling process. In fact,
we are sampling the semantic correlation, but not sampling
each word/feature xk or xl independently. This enables us to
measure the impact of this semantic correlation on f(x). In
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Algorithm 2 Anchors learning algorithm
1: Input: Input x; prediction model f ; number of sentences in x,

denoted as M ; user-predefined anchors A0

2: A ∅ (A : set of anchors for x)
3: for i ∈M do
4: if any A0 appears in the sentence i then
5: Denote DA as a set of ordered words appearing after A0

in the sentence i in x
6: An ∅ (An is a set of candidate anchors)
7: Fn ∅ (Fn is a set of importance scores, associated with

each candidate anchor)
8: for xj ∈ DA do
9: An A0 ∪ xj ; A0 An; Fn ← Fn ∪ IC(An)

10: Choose the best anchor for sentence i: Ai =
argmaxAn Fn

11: else
12: Ai ∅
13: A A ∪Ai

14: Output: A

addition, words, which are not in any ontology-based tuple, are
sampled independently. After sampling x (Eq. 3), we obtain
the dataset Z that consists of sampled data points z associated
with its label f(z). Z is used to learn g∗ by solving Eq. 1.

C. Learnable Anchor Text

Before presenting our anchor mechanism, we introduce an
importance score notion, which will be used to choose the best
anchor and calculate the importance of generated explanations.

1) Importance Score: To get insights into the importance
of generated explanations and their impacts upon the model
outcome, we calculate an importance score (IC) for each
explanation. Intuitively, the higher importance score, the more
important the explanation is. IC is calculated as:

IC(r) = c̄r

(
f(x)− f(x/r)

)
(4)

where x/r is the original text x excluding words in the
explanation r and c̄r is average coefficients of g∗ associated
with all words in r.

2) Anchor Text Learning Mechanism: It is challenging
to work with long and poor data, e.g., large number of
words, or misspelled text, since the contextual information
is generally rich and complicated. Building an ontology to
adequately represent such data is expensive, and insufficient
in many cases. That results in a large undercovered search
space for explanations. To address this problem, we introduce a
learnable anchor mechanism to narrow down the search space.

The learning anchor technique is presented in Alg. 2. The
anchor is initialized with an empty set (Line 2). A set of user-
predefined anchors A0 is provided, which consists of starting-
words that are further expanded by incrementally adding words
to the end of the sentence. Then, the importance score of each
candidate anchor is calculated, following Eq. 4. The top-1
anchor A, which has the highest important score, for each
sentence are then chosen.

D. Generating Semantic Explanations

We further apply OLLIE [19] to extract triplexes T (subject,
predicate, and object) to identify the syntactic structure in a
sentence, which can shape our explanations in a readable form.
To generate semantic explanations E , we introduce a set of
regulations to combine g∗, A, and T together:
1) E ⊆ Dx with Dx is a set of all words in x.
2) If there is no ontology-based tuple found, E will only consist
of the learned anchor texts.
3) In a sentence, if there are two or more ontology-based
tuples, we introduce four rules to merge them together:

• Simplification:
– Given (xk, xl) and (xk, xm), if xl and xm are in the

same concept, then the ontology-based explanation is
{xk, xl and/or xm}.

– Given (xk, xm) and (xl, xm), if xk and xl are in the
same concept, then the ontology-based explanation is
{xk and/or xl, xm}.

– Given (xk, xl) and (xl, xm), then the ontology-based
explanation is {xk, xl, xm}.

• Union: Given (xk, xl), (xk, xm), (xl, xm), and
{xk, xl, xm}, the ontology-based explanation is
{xk, xl, xm}.

• Adding Causal words: Semantic explanation can be in the
form of a causal relation. Thus, if a causal word, e.g., “be-
cause,” “since,” “therefore,” “while,” “whereas,” “thus,”
“thereby,” “meanwhile, “however,” “hence,” “otherwise,”
“consequently,” “when,” “whenever” appears between
any words in ontology-based tuples/explanations, we add
the word to the explanation, following its position in x.

• Combining with anchor texts A and triplexes T : After
having ontology-based explanations, we combine them
with A and T based on their positions in x. Then, the
semantic explanation is generated from the beginning
towards the end of all positions of words found in the
ontology-based explanations, A, and T . For example,
in the sentences, “We were filling out all the forms in
the application. However, there is a letter in saying loss
mitigation application denied for not sending information
to us.”, after the learning process, we obtain: 1) ontology-
based explanation is (loss, application); 2) anchor text
is “not sending information;” and 3) triple is “a letter;
denied; mitigation application.” The explanation E is “a
letter in saying loss mitigation application denied for not
sending information.”

4) If different ontology-based tuples are in different sentences
in x, due to the contextual constraint in Eq. 2, the explanation
for each sentence follows the 3rd regulation.

It is worthy noting that we use aforementioned regulations
to combine ontology-based tuples to be a longer ontological
term. This makes the ontology used in a much better represen-
tation rather than independent and direct connections A 7→ B.
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Fig. 3: Visualization of drug abuse (top) and consumer complaint (bottom) experiments.

IV. EXPERIMENT

We have conducted extensive experiments on two real-
world datasets, including drug abuse (Twitter-sphere [10])
and consumer complaint analysis from Consumer Financial
Protection Bureau1.

A. Baseline Approaches

Our OnML approach is evaluated in comparison with tradi-
tional approaches: (1) an interpretable model-agnostic explana-
tion, i.e., LIME [4]; and (2) information extraction, i.e., OLLIE
[19]. LIME is one of the state-of-the-art and well-applied
approaches in IML, in which the predictions of any model are
explained in a local region near the sample being explained.
There are other algorithms sharing the same spirit as LIME,
in terms of generating explanations [6, 20, 21, 22, 23, 24]. For
the sake of clarity, we use LIME as a representative baseline
regarding this line of research.

The key differences among OnML, OLLIE, and LIME are
that OnML leverages domain knowledge to tie the expla-

nations up to the predicted label and considers correlations
among words in textual data to generate semantic explanations.
Meanwhile, OLLIE focuses more on grammatical analysis
to extract triples from the text. LIME generates fragmented
interpretable components by learning a linear interpretable
model locally around the prediction outcome and weight these
components using coefficients of the interpretable model. In
LIME and OLLIE, domain knowledge is not used.

B. Datasets and Domain Ontologies

To validate the proposed method, we have developed two
different domain ontologies, which are drug abuse ontology
(Fig. 2) and consumer complaint ontology (in the Appendix)
These ontologies were constructed for certain domains (e.g.,
drug abuse and consumer complaint) since it is necessary to
capture specific semantic and causal relations among com-
ponents. As default in Protégé [25], each arrow represented
by its color demonstrates a certain type of causal relation in
which its tail represents a domain and its head represents a
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range of the relation. For example, in the drug abuse ontology
(Fig.2), purple arrow is for “is involved with” with domain
is “Drug” and range is “Abuse Behavior” while green arrows
are for “suffer from”. These ontologies were semi-manually
generated, in which concepts were grouped and collected from
the dataset by K-means clustering algorithm [26], and then
judged by humans to reduce inappropriate concepts.

1) Drug Abuse Dataset: We will use the term “drug abuse”
in the wider sense, including abuse and use of Schedule 1
drugs that are illegal and have no medical use (e.g. legal
painkiller and weed) or illegally (e.g. getting drugs without
prescription or even from blackmarket); and misuse of Sched-
ule 2 drugs, which have medical uses, yet have a potential for
severe addiction, and which can be life-threatening [27]. The
drug abuse ontology captures different concepts collected from
drug abuse tweets, grouped by K-means clustering algorithm,
and then finalized by our team experts. Main concepts of the
drug abuse ontology (DrugAO) (Fig. 2) capture correlation
among key concepts, including abuse behaviors, drug types,
drug sources, drug users, symptoms, side effects, and medical
condition when using drug. Abuse behaviors concept is about
behaviors of abusers, such as abuse, addict, blunt, etc. Drug
types consists of different types of legal and illegal drugs,
e.g., narcotics, cocaine, and weed. Drug sources is where
drug users, who are the main objects of the ontology, gets
drugs from. Symptoms and side effects are about different
negative short-term and long-term effects of drugs on users.
Medical condition contains terms about expression of disease
and illness caused by using drugs. In total, DrugAO has 506
drug-abuse related terms (including slang terms and street
names), and 18 relations.

The drug abuse dataset (Table I) consists of 9, 700 tweets
labelled by [10] with a high agreement score. Among them,
3, 043 tweets are drug abuse tweets, labeled positive and the
rest are non drug abuse tweets, labeled negative.

2) Consumer Complaint Dataset: A consumer complaint
is defined, here, as a complaint about a range of consumer fi-
nancial products and services, sent to companies for response.
In complaints, consumers typically talk about their mortgage-
related issues, such as: (1) Applying for a mortgage or
refinancing an existing mortgage (application, credit decision,
underwriting); (2) Closing on a mortgage (closing process,
confusing or missing disclosures, cost); (3) Trouble during
payment process (loan servicing, payment processing, escrow
accounts); (4) Struggling to pay mortgage (loan modification,
behind on payments, foreclosure); (5) Problem with credit
report or credit score; (6) Problem with fraud alerts or se-
curity freezes, credit monitoring or identity theft protection
services; and (7) Incorrect information on consumer’s report
or improper use of consumer’s report. Main concepts of the
consumer complaint ontology (ConsO) (Fig. 4) encode the re-
lation among different entities related to consumer complaint:
for instance, who is complaining; what happened to make
consumers unhappy and then complaint; etc. There are six
major concepts in ConsO, which are thing in role, complaint,
event, event outcome, property, and product. Thing in role is

Fig. 4: Consumer complaint ontology.

people and organizations related to complaint, such as buyers,
investors, dealers, et,. Event and event outcome are about nega-
tive events happened that cause consumer complaints. Property
is things belonging to consumers and product is substances of
some parties (e.g., banks) offering to consumers. In total, we
have 572 finance and product-related terms and 9 relations
covered in our ontology. The consumer complaint dataset
consists of 13, 965 mortgage-related complaints, labeled with
16 categories. These complaints were used for learning a
model to predict the issue regarding each complaint.

C. Experimental Settings

Our experiment focuses on validating whether: (1) Our
OnML approach can be applied on different agnostic pre-
dictive models; and (2) Our approach can generate better
explanations, compared with baseline approaches, in both
quantitative and qualitative measures. Our ontologies, code,
and data are available on Github2.

To achieve our goal, we carry out our evaluation through
three approaches. First, by employing SVM and LSTM, we
aim to illustrate that OnML works well with different agnostic
predictive models. Second, we leverage the word deleting
approach [28] as an quantitative evaluation. Third, we apply
qualitative evaluation with Amazon Mechanical Turk (AMT).

1) Model Configurations: In the drug abuse dataset, tweets
were vectorized by TF-IDF [29] and then classified by a linear
kernel SVM model. We achieved 83.6% accuracy. Tweets are
short, i.e., the average and maximum numbers of words in a
tweet are 12 and 37 (Table I). Therefore, it is not necessary
to apply the anchor learning algorithm, which is designed to
tighten down the search space for long text data.

In the consumer complaint dataset, Word2vec [30] is applied
for feature vectorization. Then, a Long short-term memory
(LSTM) [31] is trained as a prediction model. In LSTM, we
used an embedding input layer with d = 300, one hidden
layer of 64 hidden neurons, and a softmax output layer with
16 outputs. An efficient ADAM [32] optimization algorithm
with learning rate 0.01 was employed to train LSTM. For the
prediction model, we achieved 53% accuracy. We registered
that this is a reliable performance, since the 16 categories are
densely correlated resulting in a lower prediction accuracy

2https://github.com/PhungLai728/OnML
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TABLE I: Data statistical analysis.

Statistics
Dataset Drug abuse Consumer

complaint

# of samples 9,700 13,965
# of categories 2 16
Max # of words/sentence 37 4,893
Mean # of words/sentence 12 285

TABLE II: AC and SC in drug abuse.

Accuracy changes (%) Score changes (%)

LIME 15.04 26.98
OLLIE 15.47 23.52
OnML 25.52 33.48

[33]. Another reason for the low accuracy is the limited
number of samples. We will collect more data in the future.

For sufficiently learning anchors in consumer complaints,
we have chosen a set of negative terms as user-predefined
anchors A0 = {not, no, illegal, against, without}. Importance
scores in LIME are weights of the linear interpretable model.
With OLLIE, importance scores of extracted triplexes are
calculated in the same way as in our method (as shown in
Eq. 4). LIME and OLLIE settings are used as default in [4, 19].
We only show OLLIE rules which have the confidence score
greater than 0.7 and top-5 words from LIME. The contextual
constraint γ in Eq. 2 is 3 for drug abuse and 10 for consumer
complaint dataset. The pre-defined threshold in Eq. 3 is 0.5.

To be fair, we also combined the learned anchors to the
results of OLLIE. In addition, another variation of our algo-
rithm is to combine ontology-based terms and anchors, called
Ontology algorithm. This is further used to comprehensively
evaluate our proposed approach.

2) Quantitative Evaluation: We use the word deleting ap-
proach [28], which deletes a sequence of words from a text and
then re-classifies the text with missing words. By differences
between the original text and the missing text, we examine
the importance of the explanation to the prediction. Accuracy
changes (AC) and prediction score changes (SC) are as:

AC = Original accuracy−
∑|test|

i=1 Updating accuracy
|test|

SC =

∑|test|
i=1 IC(top-k explanations of i-th sample)

|test|
where the higher values of AC and SC indicate the more
important explanations derived.

In our experiment, we deleted the top-k highest importance
score explanations in OnML and OLLIE approaches and the
top-m highest weighted words in LIME. To be fair, m is the
number of words in the k-deleted explanations in OnML. In
drug abuse, k = 1 since the tweet is typically short, and
so there are not many explanations generated. In consumer
complaint classifying, k ∈ {1, 2, 3}.

3) Qualitative Evaluation: We recruit human subjects on
Amazon Mechanical Turk (AMT). This is a common means of
evaluation for the needs of qualitative investigation by humans

Fig. 5: AMT experiment results.

Fig. 6: Average score changes in consumer complaint.

[6, 34]. Detailed guidance for each experiment is provided to
users before they conduct the task.

We asked AMT workers to choose the best explanation by
seeing side-by-side explanation algorithms. On top of that,
we provided the original tweet/ complaint associated with
their labels and prediction results. The visualization showing
explanation results of the approaches is in Fig. 3. It is
important to note that, in our real experiment, to avoid bias,
name of each algorithm is hidden, and their positions in the
visualization are randomized.

We were recruiting 4 users/tweets in the drug abuse and
5 users/complaints in the consumer complaint experiment. To
quantify the voting results from AMT users, we use: (1) Count
the total number of votes, called normal count, i.e., the best
algorithm is chosen over all 1, 500 votes (5 users/complaint
× 300 complaints); and (2) Count the majority number of
votes, called majority count, i.e., the best algorithm for each
complaint is the algorithm of the largest number over 5 votes.

D. Experimental Results and Analysis

To evaluate the interpretability of each approach, 300 posi-
tive tweets and 300 complaints, randomly selected, were used.

1) Drug Abuse Explanation: As in Table II, the accuracy
is deducted significantly, and the predictive score changes the
most in OnML. In fact, the values of AC and SC are 25.52%
and 33.48% given OnML, compared with 15.47% and 23.52%
given OLIIE, and 15.04% and 26.98% given LIME. This
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demonstrates that the explanations generated by our algorithm
are more significant, compared with the ones generated by
baseline approaches. In the evaluation by humans using AMT
(Fig. 3), OnML clearly outperforms LIME and OLLIE. Text in
the tweet is generally short and can be represented by several
key words. Therefore, individual words learned by LIME
can be sufficient to generate more insightful explanations.
Meanwhile, OLLIE tends to extract all possible triplexes in
the text, which can be redundant and wordy explanations.

2) Consumer Complaint Explanation: The results on the
consumer complain dataset further strengthen our results.
Fig. 6 shows SC after deleting top-1, top-2, and top-3 ex-
planations from OnML, Ontology, and OLLIE, as well as
after deleting the most important words in LIME. In all
three cases, score changes in OnML have the highest values,
indicating that the explanations generated by OnML are the
most significant to the prediction. In the evaluation by humans
using AMT (Fig. 3), our OnML algorithm outperforms base-
line approaches. Ontology approach achieves higher results
than LIME and OLLIE. This shows the effectiveness of the
ontology-based approach. LIME does not consider semantic
correlations among words, resulting in a poor outcome.

3) Completeness and Concision: In Fig. 3 (top), OnML
generates “i smoking weed,” which provides concise and
complete information about why it is predicted as a drug
abuse tweet (smoking weed) and who was doing it (i) in a
syntactic form. Meanwhile, 1) LIME derives relevant words
to drug abuse (i.e., weed, smoking) without considering the
correlation among these words; and 2) OLLIE generates
lengthy and somewhat irrelevant explanations, e.g., “chinese
food; be eating on; a roof.” In Fig. 3 (bottom), OnML derived
semantic explanations for consumer complaints, which tell
us that consumers were facing issues in loan refinance, e.g.,
“called fha and they clain that fha does not review loans.”
Compared to OnML, Ontology generates laconic explanations,
e.g., “fha loan” that give no sense of why consumer com-
plaints. LIME provides a set of fragmented words and OLLIE
generates wordy explanations, which are difficult to follow.
More examples of explanation results are in the Appendix.

Our key observations are: (1) Combining ontology-based
tuples, learnable anchor texts, and information extraction can
generate complete, concise, and insightful explanations to
interpret the prediction model f ; and (2) Our OnML model
outperforms other baseline approaches in both the quantitative
and qualitative experiments, showing a promising result.

V. CONCLUSION

In this paper, we proposed a novel ontology-based IML
to generate semantic explanations, by integrating interpretable
models, ontologies, and information extraction techniques. A
new ontology-based sampling technique was introduced, to
encode semantic correlations among features/terms in learning
interpretable representations. An anchor learning algorithm
was designed to limit the search space of semantic expla-
nations. Then, a set of regulations for connecting learned
ontology-based tuples, anchor texts, and extracted triplexes is

introduced, to produce semantic explanations. Our approach
achieves a better performance, in terms of semantic explana-
tions, compared with baseline approaches, illustrating a better
interpretability into ML models and data. Our approach paves
an early brick on a new road towards gaining insights into
machine learning using domain knowledge.
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APPENDIX

The following figures are additional experiment results for
drug abuse and consumer complaint experiment.
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