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Abstract—When it comes to time series forecasting, lag in the
predicted sequence can be a predominant issue. Unfortunately,
this is often overlooked in most of the time series literature
as this does not contribute to a high prediction error (i.e.
MSE). However, it leads to a rather poor forecast in terms of
movement prediction in time series. In this article, we tackle
this basic problem with a novel trend driven mechanism. Trend,
defined as the inherent pattern of the data, is extracted here
and utilized next to perform a lag-free forecasting. We propose
a generic and light Dual Network Solution (DNS), where the
first network predicts the trend and the second network utilizes
that predicted trend along with its historical information to
capture the dynamical behavior of the time series efficiently. DNS
exhibits a substantially improved (≈ 10% better) performance
compared to more complex and resource-intensive state-of-the-
art algorithms in large scale regression problems. Apart from
the traditional Mean Squared Error (MSE), we also propose a
new Movement Prediction Metric or MPM (for detection of lag
in time series) as a new complementary performance metric to
evaluate the efficacy of DNS better.

Index Terms—Lag in time series prediction, Dual network
solution, Movement prediction, Lag free time series prediction

I. INTRODUCTION

Time series modelling and forecasting are one of the most

popular areas of research in the machine learning and data

science community for its wide applicability in various domains

across different sectors such as energy demand prediction,

weather forecasting, financial prediction, etc. This ever-growing

field of study has seen significant improvement over the past

decades. Starting from the statistical methods of regression

analysis to recent advents in machine learning algorithms have

propelled this research to a new high. However, across most

of this literature, a basic problem of lag difference (in the

predicted sequence) persists. Next, we discuss the problem

elaborately to highlight our motivation.

A. Problem Description : Lag in Time Series

A time series model utilizing historical data alone can

detect a change in the trend only after the historical data also

experiences the same change. Naturally, the change prediction is

late which leads to the problem of lag. To explain this problem

further we take an example case: wind speed 1 forecasting. The

1http://mesonet.agron.iastate.edu/request/awos/1min.php

prediction task is performed here with a Multi-Layer Perceptron

network or MLP (hidden node with sigmoid activations in the

single hidden layer) with only past values of the target sequence

as inputs and the actual vs prediction plot is provided in figure

1. From time instance 25 to 31 in figure 1b the trend is upward

which leads the MLP to predict an upward trend at point 31

(marked in the figure 1b) in spite of an actual downward trend.

This results in a predicted sequence with a distinct lag as seen

in the figure 1a and 1b.
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Fig. 1: Demonstration of Lag in Time Series Forecasting

The lag in the predicted sequence results in a ’close-by,

past value’ prediction hence it does not contribute to a high

prediction error such as MSE. Besides, MSE does not take

into account the movement direction of the prediction (as

the squared error ignores its sign), therefore it is unable to

detect lag. For instance, the wind forecast in figure 1a looks

like a good forecast however suffers from the lag problem.

Sometimes due to over-fitting of the historical values, the result

can be precisely a curve that mimics the real values almost
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perfectly, with just a little delay i.e. ’some time late’. For

further confirmation, it is sufficient to observe the curve in the

proximity of the local maximums ( i.e near point 31 in figure

1b). If we take another example of stock price prediction, a

lag of this nature can lead the forecast to predict an upwards

movement when the actual movement is already downwards,

thus possibly leading to a huge financial loss thereby further

affirming the significance of lag problem. This issue is very

common throughout most time series literature and to the

best of our knowledge has not been addressed properly yet as

discussed in the related work. Next, we present a brief review

of the relevant literature in the field of time series forecasting

(both classical and machine learning based methods).

B. Related Work

Time series forecasting is one of the most highly researched

areas for its widespread applications across varied domains.

Before the advent of machine learning, classical statistical

methods such as Auto-Regressive Moving Average (ARMA)

[1] were most popular. However, generally they assume linear

functional relationship for modeling the dynamic behavior

which is not always highly effective. Recently time series

research has immensely benefited from the advancements in

the area of recurrent neural networks.

Recurrent neural networks were initially proposed by [2].

Exploding and vanishing gradients were one of the major

problems of training RNNs with backpropagation [3] until

Long Short-Term Memory [4] was proposed. LSTM learns

both long and short term dependencies using gate activations.

A modification on LSTM referred to as the Gated Recurrent

Unit (GRU) [5] was recently proposed where input and forget

gates of LSTM are combined into an update gate. There have

been other researches which build on top of the basic LSTM

including Bidirectional RNN [6] which employs both past and

future information, Phased LSTM [7] where hidden states are

updated asynchronously, State Frequency Memory Network [8]

or SFM which separates dynamical patterns in the frequency

domain and offers a detailed analysis of temporal sequences.

However, these models perform poorly sometimes in short-term

time series problems [9].

There has been a plethora of researches in the area of so-

called shallow learning which addresses the problem of small

scale short-term time series forecasting more suitably. Fuzzy-

neural networks are popular for their uncertainty handling

capabilities and interpretability. Some of the recent works in

this field include [10], [11], [12], [13], [14], [15] etc. Recently

attention mechanism has seen a growing interest and the same is

adopted in the recurrent neural network as well i.e. in [16], [17]

local time-frequency features are captured along with global

long-term trend and fused to perform superior forecasting.

Real-world application-wise, prediction of a time series

movement is sometimes more beneficial hence desirable than

the prediction of actual values alone, as shown in [18], [19].

Most time series algorithms (as discussed above) generally

utilize historical data alone for the modeling purpose, making

them prone to the problem associated with lag i.e. poor

movement prediction. Few statistical works which focus on

trend extraction and prediction are [20], [21] . To the best of

our knowledge, only deep learning method directly focusing

on predicting trend is TreNet [22] where a hybrid of LSTM

and CNN is utilized. However this work does not provide an

absolute value forecast and concentrates solely on estimating

the trend, thus the issue of lag in the predicted sequence still

remains unexplored. Therefore, in this paper, a trend-driven

dual network solution or DNS is proposed to address the issue

of lag and the major contributions are,

• Trend Extraction & Utilization : Time series datasets

are often riddled with fluctuations stemming from noise

and seasonality. Hence, learning with historical data alone

often leads to overfitting causing lag (as discussed before).

To address this, first we extract the trend with two

proposed methodologies i.e. Moving Average Method and

Slope Difference Method. Then we utilize the extracted

trend as the target sequence (instead of the actual values

) in a supervised manner and learn to predict the trend.

The predicted trend drives the final forecast.

• Dual Network Solution : A novel Dual Network

Solution (DNS) is proposed here. The first network (Trend

Prediction Network) learns to map the exogenous input

features to the extracted trend. The predicted trend (from

the first network) along with its finite past instances are

passed on to the second (Temporal) network to learn the

intricate details of the system dynamics. Therefore, we

have a trend driven temporal network which is able to

provide an improved forecast (by ≈ 10% than its peers)

where the predicted curve follows the actual curve closely

without lag. An overview of DNS is provided in figure 2.

• New Performance Metric : Most of the error based

performance metrics (such as MSE) often fail to detect

the presence of lag in a time series forecast. Hence, we

propose a new Movement Prediction Metric (MPM) as

a complementary measurement to evaluate time series

models better. DNS shows both low MSE and high MPM.
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Fig. 2: Overview of the Dual Network Solution (DNS)



II. TREND EXTRACTION

We need to extract the trend to train the first network. Two

separate methods can be employed for this purpose,

A. Moving Average Method (MAM)

We employ the principle of moving average on the time

series sequence to get the trend. First, we set a window of size

W + 1. For each data point in the sequence, we consider the

W neighboring samples centering it and get their mean. This

process is done for all the data points in the sequence i.e. y(k)
and the trend yT (k) is,

yT (k) =
1

W + 1

W/2∑

i=−W/2

y(k + i) (1)

The average over the neighboring samples helps in smoothing

out the sequence hence we are able to get rid of noise and

frequent fluctuations from the time series and extract the trend

as shown figure 3. The bigger the window size the smoother

is the trend curve. For example, to extract the trend in figure

3 we have utilized a window size of 21 (i.e. W = 20).
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Fig. 3: Trend in wind dataset extracted with MAM

Instead of mean, a median should be utilized to extract the

trend if the time series data is prone to outliers.

B. Slope Difference Method (SDM)

The moving average method is offline in nature and requires

all the training samples to be present. Hence it is not suitable

in an online context hence the second method is proposed.

First, we compute the slope of the current trend. Starting

with y(k) and y(k + 1) we represent the trend at kth instance

with slope mT (k) =
y(k+1)−y(k)

(k+1)−k = y(k + 1) − y(k). Let us

imagine a new (k + i)th sample arrives and makes a slope of

m(k+ i) with the kth sample. If the new slope is significantly

different than mT (k) then we will conclude a change in trend

and reassign the latest slope made by (k + i)th sample as the

current trend and so on. To summarize,

mT (k + i) = m(k + i) if |m(k + i)−mT (k)| ≥ ε

= mT (k) if |m(k + i)−mT (k)| < ε
(2)

with ε as the threshold. From the slope defined in equation 2

the trend can be retrieved easily using,

yT (k + i) = mT (k).
(
(k + i)− i

)
+ y(k)

= mT (k).i+ y(k)
(3)

Figure 4 demonstrates an example of the extracted trend for the

same dataset using the slope difference method with ε = 0.01.

Next, we discuss in detail the proposed dual network solution

(DNS) as briefed in the outline.
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Fig. 4: Trend in wind dataset extracted with SDM

III. TREND PREDICTION NETWORK (N1)

The first network denoted with N1 is accountable for

mapping the input features (factors) to the extracted trend

(as shown in the last section). Let us denote the feature vector

as u(k) ∈ R
P where the number of input features are P and

k is the time instance. From previous section we already have

the trend associated with the data points i.e. yT (k). Unlike

regular time series model here we utilize the extracted trend

as the target sequence (i.e. yT (k) instead of y(k)) to train our

network N1 (which is feed-forward in principle). Thus the

network learns to predict the trend ŷT (k) from the exogenous

input vector,

ŷT (k) = f1
(
u(k)

)
(4)

Remark 1 : One of the major advantages of DNS lies in

the fact that any kind of neural network can be employed to

build the N1 platform (making DNS generic) as the primary

goal here is to approximate the function f1(.) in equation 4.

A. Network Structure and Update

For the experiments conducted in this study we have utilized

a radial basis function [23] network as N1, primarily for its

ease of implementation along with its well suitability in time

series modeling. Hence, N1 here is a 3 layer network, with P
input nodes, R hidden nodes and 1 output node which provides

weighted (w ∈ R
R) summation of the Gaussian activations

F ∈ R
R such that ŷT (k) = wT F. To train the network, a new

mini-batch variant of projection based learning or PBL [24]

method is proposed. First, we divide the training dataset into

smaller batches and compute the prediction errors. The sum

of the squared errors over a mini-batch (of size c) is used

as the cost function here i.e. J1 = 1
2

∑
c

(
yT (k)− ŷT (k)

)2
=

1
2

∑
c

(
yT (k) − wT F

)2
. Optimal weight w� is obtained when

the cost function is minimized or
dJ1(w)

dw w=w� = 0. Rearranging

we get,

w� = A−1B (5)



where, A ∈ R
RXR consists of arr∗ and B ∈ R

RX1 of br s.t.

arr∗ =
∑

c

Fr.Fr∗ , br =
∑

c

Fr.yT (6)

for r, r∗ = 1, 2, · · · , R. N1 learns from these this mini-batches

over multiple epochs to reach the optimal weights.

Remark 2 : A regular mini-batch gradient based backpropa-

gation can also be adopted to train N1. However, the proposed

mini-batch PBL method is adopted here, as it does not suffer

from the problems of exploding or vanishing gradients.

IV. TEMPORAL NETWORK (N2)

Generally historical values of the actual sequence are used

to model a time series, however using them alone often leads

to a ’close by past value’ prediction with lag. Hence in the

second network (N2) of the DNS, we utilize the predicted

trend instead, to obtain a lag-free forecast. N2 is temporal in

nature to capture the system dynamics deftly. It utilizes the

predicted trend ŷT (k) from N1 along with its past instances

(i.e. ŷT (k− 1), · · · ŷT (k− n) ) to perform the final prediction,

ŷ(k) = f2
(
ŷT (k), ŷT (k − 1), ŷT (k − 2) · · · ŷT (k − n))

)
(7)

here f2(.) is the nonlinear function representing the prediction

task and n is the number of past instances required in N2

to perform this function approximation. Thereby, N2 is also

independent of the underlying neural network platform.

Remark 3 : We feed the predicted trend ŷT (k) to N2

instead of the actual trend yT (k) because, during testing (or

application), the actual trend will not be available yet.

To design the temporal network, we need to determine the

required number of past instances n (from equation 7). A

Bayesian method of Past Dependency Estimation or PDE

inspired from recently published LEMON method [25], is

adopted here for this purpose. A quick overview of the same

is provided in figure 5. PDE should be considered as a pre-

processing step before N2 actually starts to learn.

A. Past Dependency Estimation (PDE)

To estimate the past dependency, first we train the network

N2 without any recurrence (i.e. predict ŷ(k) with only v(k) =
ŷT (k) as input) like a feed-forward network to provide it with

some initial knowledge using the first mini-batch of the data.

Once the network acquires a preliminary knowledge, the PDE

starts. Past dependency is computed from the next mini-batch.

Beginning with an initial memory of size M , N2 performs

its prediction task for each sample. Past prediction errors are

retained in the memory in a first-in-first-out manner so at

kth time instance the memory window will contain eM (k) =
[e0(k), e1(k) · · · eM−1(k)]

T where ej(k) = y(k)− ŷ(k− j) is

the prediction error if (k − j)th sample was employed alone

to perform the kth prediction task (for j = 0, 1 · · · (M − 1)).
The error vector eM (k) is utilized to compute the likelihood

of a correct prediction. Assuming a normal distribution for the

prediction errors (confirmed by Lilliefors test) with zero mean

(as the ideal prediction error should be zero) and the standard

deviation σ set from the variance in the error vector eM (k), the

likelihood of correct prediction of the kth sample output y(k)
utilizing only (k− j)th input v(k− j) i.e. P (y(k)|v(k− j) is

obtained from N (0, σ2) .

As the prior distribution is unknown, we start with a flat

(uniform) prior i.e. P (v(k−j)) = 1/M , compute the posteriors

P (v(k − j)|y(k)), and then update the priors with resultant

posteriors in a weighted recursive manner i.e.

P (v(k+1−j)) = αP (v(k−j))+(1−α)P (v(k−j)|y(k)) (8)

The posterior probability of v(k − j) i.e. P (v(k − j)|y(k))
represents the importance of v(k − j) in prediction of the kth

instance and the same is derived using Bayes’ formula,

P (v(k − j)|y(k)) = P (y(k)|v(k − j)).P (v(k − j))
∑M−1

j=0 [P (y(k)|v(k − j)).P (v(k − j))]
(9)

Then the posteriors of each past instances in the memory,

are averaged over all the samples in the second mini-batch,

PPavg(j) =
∑
c
P (v(k− j)|y(k))/c. A Pareto based approach

is utilized next to extract the past dependency measure from

the average posteriors. The Pareto principle or the 80-20 rule

states that the often 80% effects stem from 20% factors. Hence,

the past instances in the memory window constituting total

80% of the posterior probability (i.e. 0.8; as the sum of all the

posteriors is 1) will represent the past dependency,

IF
∑i

j=0 PPavg(j) ≤ 0.8 THEN n = i
Once the past dependency is estimated we can conclude that

N2 requires n number of past instances of the predicted trend

to approximate the function f2(.) for the final forecast.

For all samples in the batch,
for all instances in the memory

Likelihood
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Recursive Prior
Assignment
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Calculation

Average
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�

Fig. 5: Overview of Past Dependency Estimation Process

B. Network Structure and Update

Next, we feed a second RBF network with the predicted

trend along with n number of its past instances to build N2.

It learns the inherent dynamics of the time series from the

historical data using the mini-batch PBL method with cost

function J2 = 1/2
∑
c

(
y(k) − ŷ(k)

)2
. Thereby it is able to

provide an improved lag-free forecast driven by the trend.

Remark 4 : Traditionally the problem of past dependency

(i.e. setting the hyperparameter value of n in equation 7) is



addressed in an empirical manner hence we have employed the

pre-processing step of PDE to reduce handcrafting. The n we

obtain from PDE also helps in reducing over or under-fitting.

V. EXPERIMENTAL SETUP

In this study, an RBF network with 100 hidden nodes is

adopted to build the first network N1. A second RBF network

(also with 100 hidden nodes) is used to build N2. PDE process

(with M = 10 and α = 0.9) estimates the number of past

instances (of predicted trend) required i.e. n to design N2 from

the first two mini-batches (first one for preliminary knowledge,

next one for the PDE). A mini-batch size of (c = 50) is used

to train both N1 and N2 with the mini-batch PBL method over

100 epochs. We explore the effect of both MAM (with varying

window size W + 1) and SDM (with varying threshold ε) on

the final forecast. For the actual vs predicted curves (in figure

6,7,8) and performance comparison in table 5, we pick the

best performing ones between MAM and SDM.

A. Discussion on Hyperparameter Setting

The initial memory window M is the maximum number

of past samples to account during PDE hence the estimated

dependency will always be less than M i.e. n ≤ M . A smaller

or bigger memory window can lead to different measurements

of n (because of the distribution of the priors and posteriors in

the memory changes with its width). Here M = 10 provided

the best accuracy. The priors are updated with last posteriors

as shown in equation 8 and for that a prior regulating factor

α of 0.9 is used. A higher α is employed so that the prior

values do not turn too alike with the posteriors only after a

few samples. A Pareto inspired approach is adopted here to

estimate the past dependency where past instances accounting

for 80% of the posteriors are regarded as the measurement of

past dependency. A threshold of less or more than 80% can

also be utilized for the same however they might lead to under

or over-estimation.

B. Performance Metrics

MSE : As per standard practice in time series literature, we

utilize Mean Squared Error or MSE to compare the performance

of DNS with other state-of-the-art methods during testing. Mean

squared error is defined as the average of the squared prediction

errors,

MSE =
1

S

∑

S

(
y(k)− ŷ(k)

)2
(10)

with S as the number of samples. However, MSE cannot be

the sole indicator of performance as it often fails to trace lag

(as discussed in section 1.1). Hence, in addition we propose a

Movement Prediction Metric (MPM) as complementary.

Proposed MPM: MSE does not consider the direction

of prediction as it squares the error. Hence, we propose an

indicator which is not error based rather it looks only at the

prediction movement. If y(k+ 1) ≥ y(k) then it is considered

as a real upward movement and vice versa. If DNS prediction

: ŷ(k + 1) ≥ ŷ(k) then it is counted as a True Up prediction

or TU. Similarly True Down (TD), False Up (FU) and False

Down (FD) predictions can be counted and we can define the

Movement Prediction Metric (MPM) as,

MPM =
TU + TD

TU + FU + TD + FD
(11)

If there is lag present then the predicted curve will fail to track

the actual curve suitably in the presence of optimas, hence it

will lead to an overall low MPM value. For a highly overfitted

prediction mimicking the historical data as in figure 1a, the

MPM value hovers around 50%. Higher MPM value indicates

to an improved forecast without lag.

VI. EXPERIMENTAL RESULTS

First, we utilize the aforementioned wind dataset to demon-

strate the improved lag-free forecast with DNS. The efficacy of

MAM and SDM on the final prediction performance is explored

here. In the second category, we employ two real-world large

scale regression problems namely stock price and power

consumption prediction to show the superior performance

achieved with our method compared to other state-of-the-art

time series algorithms.

A. Demonstration of lag-free forecast

We collect wind speed data along with the directional

information for February 1, 2011, to February 28, 2011,

containing 600 samples from the Iowa (USA) Department

of Transport website. More details can be found in [26]. We

have used the directional information as the feature u(k) to

map the extracted trend in N1. PDE estimates n = 4.

Moving Average Method (MAM) : Different sizes of

windows (from small to large) are employed to extract the trend

and utilized in N1. Predicted trend along with its historical

data are utilized in N2. The corresponding MSE and MPM

are recorded in table I.

TABLE I: Performance with Moving Average Method

Window size (W + 1) MSE MPM (in %)
3 0.0064 74.10

5 0.0077 74.46
11 0.0086 74.10

21 0.0164 69.46

We see that a larger window size results in higher MSE,

however the decrease in the movement prediction is not very

drastic. A window size of 5 produced the best MPM ≈ 75%,

indicating an improved lag-free forecast.

Slope Difference Method (SDM) : Similarly we utilize

the slope difference method with varying thresholds to evaluate

its efficacy on the forecasting performance of the proposed

dual network system. The results are provided in table II.

TABLE II: Performance with Slope Difference Method

Difference Threshold (ε) MSE MPM (in %)
0.001 0.0059 78.03
0.005 0.0061 77.85

0.010 0.0064 77.67

0.050 0.0077 74.43



The extracted trend from SDM is not as smooth as the trend

extracted from MAM. The trend here follows the actual curve

more closely than MAM when the threshold is low. For the

wind problem, SDM provided a better MSE and MPM as shown

in table II. However with SDM, the result deteriorates faster

with higher value of the threshold ε as with high threshold

value, a lot of slope change information gets ignored (from

equation 2-3). In figure 6a we provide the actual vs predicted

plot for the best case from the use cases (i.e. SDM with

ε = 0.001) whereas figure 6b shows the lag-free improved

forecast achieved for the same in a zoomed format.
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Fig. 6: Wind Speed Prediction with DNS

B. Performance Comparison

In this section, we employ two different large scale time

series problems to show the superiority of the proposed DNS

compared to other state-of-the-art regression models.

1) Stock Price Prediction: The stock problem deals with

the prediction of daily opening stock prices with the previous

day’s information. We collect the stock data of 50 different

organizations (from ten different sectors) for a period of 2007-

2016. The dataset is downloaded directly from the Github

repository 2. We utilize 2007-2014 data for training, 2015 data

for validation and 2016 data for testing for each of these 50

cases. More details on the data are available in [27]. During

testing, test MSE is computed for each of these fifty stock time

series and their overall average is reported as the performance

index in table V.

To train the first network we have utilized previous day’s

high price, low price, close price and volume of sale as the

input features u(k) to map the trend (of next day’s opening).

3 past instances are utilized in N2 (from PDE) for the final

2https://github.com/z331565360/State-Frequency-Memory-stock-prediction

prediction. We pick one stock (Amazon) out of the 50 to

present the efficacy of the trend extraction methods in terms of

MSE (non-normalized) and movement prediction in table III.

A window size of 3 produced the best movement prediction

for Amazon stock price prediction. Sections of these actual vs.

predicted plots are provided in figure 7a and 7b.

TABLE III: Single step Amazon Stock Price Prediction

MAM Window (W + 1) Test MSE Test MPM in%
3 3.512 77.00
5 3.636 76.00

SDM Threshold (ε) Test MSE Test MPM in %
0.001 6.813 70.00

0.003 11.213 58.00

0 100 200 300 400 500 600 700 800 900 1000

Samples

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

No
rm

aliz
ed

 St
oc

k P
ric

e

Actual Data

Predicted Data

(a) Training plots for Amazon stock
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Fig. 7: Amazon Stock Price Prediction with DNS

2) Power Consumption Prediction: The power consumption

pattern in a household in France is predicted in this forecasting

problem. Part of the data is downloaded from UCI-ML reposi-

tory3 and it contains the details of electric power consumption

in one household for the year of 2010. The voltage sequence is

the target time series as per the standard practice. More details

on the problem and train-validation-test partition are in [16].

We utilize sub-meter readings and active power as external

features to map the trend. PDE estimates n = 5 for N2.

Performance of MAM and SDM on this single step ahead

prediction are provided in table IV. SDM with ε = 0.001
provides the best result here and the corresponding actual vs

predicted curves (for a section of the data) are provided in fig.

8a and 8b. Performance comparison is in table V.

Remark 5 : Stock price data often contains a higher amount

of volatility (thus frequent fluctuations) compared to the power

3https://archive.ics.uci.edu/ml/datasets/individual+household
+electric+power+consumption



TABLE IV: Single step Power Consumption Prediction

MAM Window (W + 1) Test MSE Test MPM in %)
3 0.223 92

5 0.461 90

SDM Threshold (ε) Test MSE Test MPM in %)
0.001 0.272 94
0.010 0.354 92
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Fig. 8: Power Consumption Prediction with DNS

consumption data. Hence MAM is more suitable here to extract

the trend. The past dependency measure is also lesser for the

stock problem, signifying a low reliance on long past which is

apt considering the swift changing nature of the stock market.

3) Baseline Methods for Comparison: For the purpose of

performance comparison, we resort to MSE as per the standard

practise in time series literature. We provide test MSE for short

term (1 step ahead), mid-term (3- step ahead) and long-term

(5-step ahead) predictions. The baselines are described briefly,

• Naive approach as the name suggests considers the

previous output as the prediction.

• ARIMA [1] is a well-known classical method of time

series prediction.

• Support Vector Regression (SVR) is the modified

version of support vector machine for regression. More

details on the design is availble in [31], [28].

• Artificial Neural Network (ANN) are popular in the

machine learning community for their data-driven learning

capabilities. In this study we utilize ANN from [29].

• Long Short Term Memory is a variant of recurrent

neural network mainly utilized for language modeling.

More details on the design are available in [4].

• State Frequency Memory (SFM) [8] separates dynami-

cal patterns in the frequency domain for detailed analysis.

• Attentive Neural Network [16] traces local time-

frequency features along with the long-term pattern.

• Convolutional Neural Network (CNN) are widely prac-

tised in the domain of computer vision and image

classification. Here it performs forecast with convolution

on wavelet transformed time series i.e. scalogram ([30]).

• Ensemble of CNN and LSTM as the name suggests,

fuses these two networks (LSTM and CNN) to perform

time series forecasting as introduced by [22].

• Radial Basis Function Network [23] employs Gaussian

activation in its hidden layer. A RBF (100 nodes) with

required past instances (estimated from PDE) of target as

input i.e. y(k−1), y(k−2) · · · y(k−n) is also employed.

The purpose of the last comparison is to emphasize on

the performance improvement achieved when the same RBF

network is utilized in the proposed dual network framework.

The detailed numerical results are provided in table V.

C. Numerical Analysis and Discussion

The advantages of the proposed dual network solution is

apparent from the numerical results reported in table V. The

results of the baseline methods are produced from recently

published [16] and we use the exact same train-validation-test

partition on the datasets to ensure fairness. From the table

V, we observe that proposed DNS consistently outperforms

the baseline and the state-of-the-arts methods by significant

margins (around 10% lesser MSE from the next best model).

The RBF network (100 hidden nodes) with past dependency

estimated performs second best among the competing methods,

however, it cannot attain a good movement prediction (MPM
≈ 48 − 52%). On the other hand with DNS the same RBF

network can provide a MPM ≈ 77−94% as shown in table III

and IV. This further indicates to an overall improved lag-free

forecast attained by the same network when adopting DNS.

The superior performance of DNS can be attributed to the

followings,

• N1 maps external features to the extracted trend (with

MAM or SDM) which allows DNS to predict a sudden

change in trend direction even when the consecutive past

movements have been similar in nature thus high MPM
is achieved (table III and IV).

• N2 utilizes the predicted trend from N1 to drive the

forecast. Thereby the predicted curve follows the actual

curve closely in a lag-less manner hence, DNS achieves

lower MSE than its peers.

• PDE helps to reduce unwanted under or over-fitting (like

utilization of less or more past instances than required

can lead to those).

• DNS is advantageous in terms of computational cost as

well. Compared to the resource-heavy deep networks (i.e.

LSTM, CNN, CNN-LSTM), DNS only learns 200 weights

(N1+N2) over 100 epochs.

Remark 6 : We run the experiments with DNS over 10

independent trials and provide the average MSE in table V



TABLE V: Performance comparison of DNS with baseline methods

Model Stock MSE Power MSE
1 step 3 step 5 step 1 step 3 step 5 step

Naive 5.62 17.46 28.78 0.42 1.22 1.67
ARIMA [1] 5.70 19.97 34.33 0.42 1.19 1.60
SVR [28] 5.58 17.68 28.69 0.42 1.15 1.55
ANN [29] 5.60 17.63 28.69 0.41 1.16 1.61
LSTM [4] 5.60 17.27 28.59 0.40 1.14 1.59
CNN [30] 5.65 17.21 28.29 0.42 1.14 1.54

State Frequency Memory [8] 5.57 17.00 28.90 - - -
Attentive Neural Network [16] 5.57 17.00 28.22 0.40 1.13 1.54
Ensemble CNN & LSTM [22] 5.61 17.32 28.46 0.41 1.13 1.56

RBF[23] with required past instances 5.27 16.54 27.45 0.33 0.92 1.52
Dual Network Solution (DNS) 4.56 14.33 24.16 0.27 0.81 1.48

to ensure reproducibility. The standard deviation between the

runs is a nominal 5% of the mean MSE.

CONCLUSION

A regular time series model can detect a change in the trend

only when the historical data has also gone through the same,

hence the prediction is always late leading to the problem

of lag. In this paper, we have presented a solution where

external features are employed to predict the trend behavior.

The predicted trend is then utilized to drive the forecast closely

with the target sequence in a lag less manner. Thus the Dual

Network Solution provides a better forecast both in terms of

low MSE and better movement prediction (high MPM) when

compared to other methodologies. In the future, we plan to build

a self-evolving DNS to handle online time series forecasting.
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