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Abstract—Online communities have become increasingly popu-
lar sources of information for both users and organisations. Every
day thousands of users ask questions on these platforms, yet this
knowledge-sharing process is not very studied. In this paper we
aim to fill this knowledge-gap, by providing a general framework
for studying the knowledge-sharing processes in such online
communities. Specifically, we provide a three-step algorithm,
that can create process models from interleaved and unlabelled
conversations. We provide an instantiation of our framework, and
conduct several experiments to evaluate its performance using the
process mining tool Disco. From these experiments we show that
it is possible to gain meaningful insights from the conversations
on online communities using process mining techniques.

Index Terms—Process Mining, Information-seeking Conversa-
tions, Classification

I. INTRODUCTION

Over the last decades the increasing accessibility to the
Internet has been a huge factor to the disruption of tradi-
tional letter communication. With the advancement of this
technology, people can now obtain important information in
a heartbeat, without need of heavy encyclopedia or other
physical writings. The type of conversations in which a person
is reaching out to another one to gather knowledge on a certain
topic is referred to as information-seeking conversations. In
the scope of this research, a message stream, is a series of
messages, where the first message will be an information-
seeking request which is typically eventually followed by a
fulfillment of such request.

Today, an information-seeking utterance, is not only aimed
at people, but other sources of information too. An emerging
phenomenon within discussion platforms concerns the growing
diffusion of chatbots. Statistics and predictions report1 that,
by 2020, 80% of enterprises will use chatbots and, by 2022,
banks can automate up to 90% of their customer interaction
using chatbots. Nowadays, these bots are typically used to
answer simple common questions from users. However when
users request information, which require multiple rounds of
conversation (referred to as a multi turn conversation), the
chatbots are lacking structural sense2.

1See, for example, https://chatbotsmagazine.com/chatbot-a487afec05b (ac-
cessed in Jan 2020), where statistics about chatbots diffusion and challenges
are reported.

Today, an information-seeking utterance, is not only aimed
at people, but other sources of information too. An emerging
phenomenon within discussion platforms concerns the growing
diffusion of chatbots. Statistics and predictions report2 that,
by 2020, 80% of enterprises will use chatbots and, by 2022,
banks can automate up to 90% of their customer interaction
using chatbots. Nowadays, these bots are typically used to
answer simple common questions from users. However when
users request information, which require multiple rounds of
conversation (usually referred to as a multi turn conversation),
the chatbots are lacking structural sense2. Conversational pro-
cess mining, has the potential to give these chatbots structural
sense, and improve their capabilities. We envision, that the
framework outlined in this paper, will aid the future develop-
ment of chatbots, as well as future research of conversational
process mining.

Our research reveals how the structure varies between online
communities. Understanding and being able to uncover struc-
tural patterns of human-to-human conversations from different
online communities, will reveal crucial information towards
the improvement of communications with chatbots.

In this paper, we present a general framework, along with
a corresponding instantiation, that enables analysts to extract
process models from interleaved and unlabelled conversations
observed in online communities using process mining (specif-
ically, control-flow discovery) techniques [1].

The framework consists of three steps: the first is called
disentanglement and it maps every message to its correspond-
ing conceptual conversation. This is a necessary step since
multiple conversations can be interleaved and progressing
at the same time. The succeeding step performs utterance
classification, to assign to each message a label referring to the
purpose of the message itself. The last step of the framework
associates a set of topic-labels to each message. The output
of this framework, is a structured and labelled log of the
conversation, where each message is mapped to its utterance,
to the conversation it belongs to, and to the set of topics under
discussion. Therefore, the log structurally enables the analysis
with process mining techniques [1]. In this paper we instantiate

2See, for example, https://chatbotsmagazine.com/chatbot-a487afec05b (ac-
cessed in Apr 2020), where statistics about chatbots diffusion and challenges
are reported.
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Fig. 1. The sub-problems required to perform process mining from conver-
sational data.

the proposed framework, and use it on two real-world datasets,
and a synthetic one, with the aim of proving its potential.

The rest of the paper is structured as follows. In Section II
we introduce related work within utterance classification,
message thread disentanglement and process mining of conver-
sations. In Section III we describe our research questions and
conceptually describe our proposed framework. In Section V
we present our experiments and results. Section VI and VII
present the discussion and conclusion.

II. RELATED WORK

In this paper we present a process mining based framework
for analyzing information-seeking conversations. In order to
automatically analyze data with process mining it is necessary
that each data point is structured according to a precise
schema [1] (i.e., each data point has to contain, at least,
the activity performed, the process instance the activity refers
to, and a timestamp). Therefore, to automatically go from a
conversation dataset (where each message contains at least
user-id, timestamp and text of the message) to a process
mining-capable one, some pre-processing is required. During
this phase, we address the following two problems, cf. Fig. 1:
the message-stream disentanglement, i.e., identification of
conversation threads within a single stream of messages; and
utterance classification, i.e., abstracting a specific message
to the “activity” it refers to. In the rest of this section
related works referring to each individual sub-problem will
be discussed.

A. Process mining from conversational data

Generally, there is relatively limited research done in ana-
lyzing conversations using process mining techniques. More-
over, none of the techniques available in the literature is
capable of a fully automated process mining analysis from
both structured and unstructured conversational data.

Vakulenko et al. [2] used conformance checking [3] to eval-
uate a new model of information-seeking behaviour. Specif-
ically, they represented their new behavioral model using a
Petri net created from labelled and structured datasets and then
used standard conformance checking techniques to observe
the extent to which the model adhere to the dataset under
examination. However, our work focuses on discovering the

actual information-seeking behavioural model which is sub-
sumed in conversational data by disentangling multi-thread
conversations, labelling the utterances, and extracting topics.
In general the focus of our work lies on the processing of the
data and model discovery, rather than evaluating the behaviour
of a preprocessed dataset.

Wang et al. [4] analyzed a dataset of structured conversa-
tions using conversation networks as well as process models.
The goal of this was to determine, how different sub-graphs
impact the effectiveness of the information-seeking threads. In
their work, the data came from an Apple Support community,
which originally included close to 50.000 discussion threads.
However, the researches had to trim this dataset to 120 threads,
because they manually had to perform utterance classification,
which highlights the importance of a single framework capable
of automatically performing this classification. In our work,
instead, we present a fully automated framework capable of
analyzing conversations coming from both structured (e.g.,
forums with conversations structured in threads) and unstruc-
tured (e.g., instant message systems) platforms.

The work presented by Di Ciccio et al. in [5] introduced
a technique known as MailOfMine that could output a set
of processes, given a collection of email messages. Their
approach uses clustering to mine activities and tasks, similar
to the approach taken in this paper as well. However, their
approach also exploits features (such as Receiver and Attach-
ments), that are specific to the structure of an email message.
Our framework, instead, takes a generalised approach, without
assuming any structured data, apart from message and author.

B. Message-stream disentanglement

Message-stream disentanglement, is the act of identifying
separate conversations within a single stream of messages.
This can often occur on online forums such as Twitch3 or
Gitter4, where a single chatroom is not limited to one conver-
sation at a time. Generally, methods for performing message-
stream disentanglement can be divided into supervised and
unsupervised approaches. The supervised approaches include
works using siamese neural networks [6] to estimate the sim-
ilarity between pairs of messages using message embeddings
and contextually based features. Other works, like [7], exploit
binary probabilistic classifiers to determine if a message is
part of a previous conversation, or is itself the beginning of a
new one. The features used to make these classifications, were
based on the amount of time between messages, and cosine
similarity between messages. An unsupervised approach in-
clude the work from Wang et al. [8] which assigned messages
to conversations based on similarity functions, such as cosine
similarity.

C. Utterance classification

Utterance classification has already been investigated exten-
sively in literature, and its purpose is to reveal the intention of
a given utterance based on different parameters. In the context

3See https://www.twitch.tv/
4See https://gitter.im/



of our work, utterance classification is the classification of a
message in a conversation.

Bhatia et al. [9] proposed a classical machine learning
approach classifying messages and exploiting features based
on content, structural, user-information and sentiment value
proposed to reveal that, utterances can be classified with an ac-
curacy of up to 72.02%. They use 8 classes to categorize each
message, in which 7 were first introduced in FIRE’10 [10].
The user-information based features employed in the work by
Bhatia et al., are however strongly depending on the data set
being informative with respect to the profile of the user.

Qu et al. [11] leveraged Bhatia et al. [9]’s taxonomy,
but suggested 4 more classes, due to lack of categories. In
their work, authors created a large scale annotated data set,
MSDialog [11], extracted from a Microsoft Support forum.
This data set is highly relevant to our work, and therefore
both their taxonomy, seen in Table I as well as annotated data
set will be used in our experiments.

Further work done by Qu et al. [12], revealed the importance
of user intent prediction in the context of utterances, due to
the advancement of CAs (Conversation Assistants). For CAs
to be able to accurately identify user intent and make use of
multi-turn conversations, Qu et al. suggested two approaches
to identify a category of a given utterance. The first approach,
similar to Bhatia et al. [9] extracts features based on struc-
ture, content and sentiment, and performs classical machine
learning. The second approach uses a neural architecture to
predict user intent. Moreover, these approaches offer a set of
features which are better suited to the intention of our work –
e.g. compared to Bhatia et al.’s approach – since they neglect
features based on user profiles.

III. MINING PROCESS MODELS FROM GROUP CHATS

In this section we present the general framework for mining
information-seeking conversations. This is decomposed into
two research questions, that will be answered through our
work.

A. Problem Statement

Currently there is limited research on the subject of applying
process mining techniques and extracting process models from
conversation data. Previous efforts to achieve this, used man-
ually labelled data and analysed the process models extracted
from such data. This, however, implies intense manual work
which limits the data to be used by a large extend. Therefore
our research proposes a general framework for extracting pro-
cess models from information-seeking conversations, without
the need of manual labelling. Therefore our research explores
the following research questions:

• RQ1: Can we automatically extract process models from
unlabelled information-seeking conversational data?

• RQ2: Can we derive meaningful insights from such
process models?

B. Extracting process models from conversational data

In order to automatically analyze information-seeking con-
versational data with process mining techniques, it is necessary
to pre-process the raw data and make it suited to the analysis.
Specifically, event logs [1] are required to have, at least:

• The activity name that the event refers to. In our setting,
the activity refers to the utterance of the message;

• The process instance (also called “case id”) that an ac-
tivity refers to. In our setting this refers to the discussion
thread that a message belongs to;

• A timestamp, referring to the time when the action took
place, i.e., when the message has been sent;

• Additional attributes which can be used to filter and refine
the analysis. In our case, we will consider the set of topics
that are discussed within in a thread.

The general idea for converting conversational data into
process mining capable logs is graphically depicted in Fig. 2.
The pre-processing comprises 3 steps (depicted as numbered
arrows): (1) disentanglement of the messages in order to
identify the thread of each message, (2) the identification of
the utterance of each message, and (3) the discovery of topics
referring to each discussion. Finally (depicted as step (4)),
the event log can be processed using standard process mining
techniques, for example to discover a process representation.

We can now discuss each component of the framework
given in Figure 2. The framework is given a set of messages
M . It then iterates over all messages and, for each message,
it extracts the case id, the activity name and the set of topics
of a message. With this information available, the framework
composes an event which is then added to the log being
generated which will eventually be returned and used in the
analysis of the process model.

The framework consists of several components, which ob-
jectives are quite clear. Disentagle should assign to each
message a case id, which can be one associated to a previous
message or a new one. Utterance Classification is in charge
of extracting the utterance, i.e., the activity, of a message. The
set of activities that the function can extract is not constrained:
different implementations of Utterance might map events to
different numbers of activities. Finally, Topic Discovery has
to identify relevant words in a message. Ideally, these words
are the most contextually relevant, i.e., they reveal something
about the content of the message and of the conversation.
These topics are used to enrich the log, by giving the option
to filter events based on specific topics. However, this step is
not strictly necessary for the analysis with process mining, and
could be left out if not needed.

IV. CONVERSATIONAL PROCESS MINING ON ONLINE
INFORMATION-EXCHANGE MEDIA

In this section we present a possible implementation of the
components of the framework which are required in order to
reveal useful information from conversational data.

The framework requirements for the input data are very
limited: it is required that each message holds an attribute



ID Message
M1 How do I change my password on my phone?

M2 Does anyone know who offers the most free 
storage Google or Dropbox?

M3 @UserX What kind of phone do you have?

M4 @User10 I believe Google Drive offers the 
most storage

Thread Message

1 M1

2 M2

1 M3

2 M4

Thread Class Message

1 Question M1

2 Question M2

1 Clarification M3

2 Answer M4

Thread Class Topic

1 Question Password, 
Phone

2 Question Storage

1 Clarification Phone

2 Answer Storage

1: Disentangle

2: Utterance Classification

3: Topic Discovery

4: Process Model Discovery

Clarification

Answer
Question

Fig. 2. General structure of the framework presented in this paper. All arrows, which are numbered, refer to the activities required to convert set of messages6

into event logs to be analyzed with process mining techniques.

describing the user ID: typically a username referring to
the author of the message itself, date and time of when
the message has been sent, and the actual content of the
post, expressed in natural language (e.g., English). With this
information it is possible to disentangle and classify both the
type of utterance and topics of the posts. The steps of the
framework presented in this paper are depicted in Figure 2.
In the picture, the arrows, which are numbered, refer to
the manipulations of a given input in order to generate a
corresponding output.

In the following subsections we describe a possible real-
ization of each step of the framework. The technique has
been implemented using Python and has been made publicly
available along with the results.5 6

A. Step 1: Message-Stream Disentanglement Using TF-IDF
and Mentions

Due to the nature of information-exchange communities,
it is fundamental to assume that not all data sets will be
of perfect structure like the MSDialog data set. To obtain a
dataset suitable for our process mining analysis it is required
to disentangle the messages in order to group those belonging
to the same conversation as reported in step 1 of Figure 2. As
previously mentioned in Sec. II-B, there are multiple ways to
disentangle message streams, however in our work, we decided
to implement a new technique based on a combination of
the TF-IDF technique [13] and the concept of mentioning. A
mention refers to a user specifically targeting another user in
a message. On many messaging platforms today, a mention
is identified with an ‘@’ sign (e.g., “@BillGates”). This
makes it relatively easy to identify mentions by using regular
expressions. The underlying assumption is that a mention
is a strong indicator that a message belongs to a specific

5See https://github.com/lassestarklit/PM for Conversation
6See https://doi.org/10.5281/zenodo.3727599

conversation, under the assumption that homogeneous set of
users participate in the same conversation. Obviously, users
could be contributors to multiple conversations at a time but in
our context we decided to simplify the setting, assuming this
not to be the case. Moreover, each conversation is assumed
to have a max time-span i.e. from the first message of the
conversation until the last there should be less than a certain
number of minutes. This hyperparameter is subject to change
depending on the contributors in the message stream. If a given
message does not include a ‘mention’, it will be mapped to a
conversation in a different way. In this paper we went with an
unsupervised approach using TF-IDF and cosine similarity.
Each message is pre-processed to remove punctuation, code
blocks and upper case letters. Furthermore, we removed stop-
words using NLTKs English stopwords7, and stemmed words
using NLTKs SnowballStemmer8. Then we mined the IDF
from the set of pre-processed messages in the dataset, where
each message is considered a bag of words. Once mined, we
can represent each message as a vector of TF-IDF weights,
and compute the distances between them in the vector space
using cosine similarity. We used cosine similarity, due to its
widespread use in NLP tasks. If the similarity between a
new message and any of the current conversations is below a
threshold, the message will be added as the initial message in a
new conversation. This threshold should be altered depending
on the dataset. For our experiments we set the threshold to
0.05.

B. Step 2: Utterance Classification

Given a dataset of structured conversation data, where each
message belongs to a specific thread, we need to classify
the utterance in order to elicit the “activity” subsumed by
the user with a certain message. This activity is depicted in

7See https://www.nltk.org/book/ch02.html
8See https://www.nltk.org/howto/stem.html



TABLE I
TAXONOMY OF UTTERANCES USED IN THE PAPER, FROM [12].

Code Label Description

OQ Original Question The first question in the QA dialog.
RQ Repeat Question Another user repeats a previous Q
CQ Clarifying Question Request for clarification
FD Further Details Users or agents provide more details
FQ Follow Up Question Follow up questions about relevant issues
IR Information Request Agents ask for information of users.
PA Potential Answer A potential answer provided by agents.
PF Positive Feedback Positive feedback for working solutions.
NF Negative Feedback Negative feedback for useless solutions.
GG Greetings/Gratitude Users or agents greet each others.
JK Junk There is no useful information in the post
O Others Posts that cannot be categorized.

Figure 2 as step 2. As mentioned in Section II-C, this can be
achieved in a variety of ways, exploiting different taxonomies.
For this research, we tested AdaBoost [14], Naı̈ve Bayes [15],
Random Forest [16] as well as logistic regression [17] clas-
sifiers separately, given that these were shown to achieve
good performance [12]. We first transform each message
into a feature vector, based on content-based, structural and
sentiment features, as outlined in [12]. These features include,
but are not limited to, the utterance containing specific words
or signs (indicating the utterance is a question), utterance
similarity between one utterance and the initial utterance of
a conversation and also the whole conversation (indicating
relevancy of the utterance to the conversation), position of
a message in a conversation i.e., index of the message in the
list of messages which constitutes the conversation (indicat-
ing whether the utterance is a question/further details or an
answer [12]), and sentiment score (indicating expressions of
gratitude and identifying whether user feedback is positive).

Another parameter of this step is the taxonomy used for
the classification, i.e., the set of labels that each classifier will
associate a message to. This taxonomy will have a high impact
on the final process models, as these labels will define the
activities of the processes. With this in mind, we used the
taxonomy seen in Table I, which originally comes from [12].

C. Step 3: Conversations Represented by Topics

Step 3 of the data processing in the framework, as depicted
in Fig. 2, is to extract the topics discussed in a message.
In the context of this paper, a topic is a set of labels that
somehow captures the content of the individual message. In
the examples from Figure 2 (messages in the top-left table)
topics could be labels like “Storage”, “Password” and “Phone”.
By extracting these topics for each thread, we can enrich the
process mining capable dataset with information regarding, not
only the structure, but also the content of the discussion.

In our implementation we mined the Inverse Document
Frequency (IDF) a priori, and computed TF-IDF at runtime.
The words with the highest TF-IDF scores from the first
message in the thread was then used as the topic for the whole
thread. We chose to limit this to three topics per thread i.e. the
three highest scoring words were used as the topics. The TF-
IDF was computed on the pre-processed utterances. Similarly

to Step 1, the stopwords, code and punctuation was removed,
and the words were stemmed using NLTK for python.

D. Step 4: Process Mining Analysis

For the process mining analysis, we used the tool Disco9.
The tool, which supports control-flow discovery and trace
filtering, is designed to be interactively used by exploring the
process maps at different levels of details (i.e., showing all
behavior vs showing just the most important one). For our
experiments we will test different parameters configurations
and report the corresponding maps.

V. EXPERIMENTS & RESULTS

In this section we present the results of running three
datasets through our proposed framework, to evaluate our
implementation and the process models gained from the
datasets. One synthetic dataset consisting of 7 conversations,
wa constructed, as an example of what the framework accom-
plishes. The dataset is made publicly available10. The other
two datasets used in the experiments are MSDialog [11] and
the Gitter Free Code Camp dataset11. All experiments were
run on a standard machine running on MacOS Catalina with
8 GB RAM, a 3,1 GHz Intel Core i5 CPU and Python 3.7.6.

A. Syntehtic Dataset

The first experiment we present was conducted to present
the reader to a concrete example, of how our framework maps
conversations to process models. We first generated a synthetic
dataset by creating different patterns of conversations (i.e.,
how an information-seeking message could introduce different
types of conversations, such as OQ → PA → GG → GG),
and hereafter improvising the textual content. The dataset
consists of 7 conversations exposing different patterns.

As emphasized previously; structure, relevance and formal-
ity can vary substantially depending on source/platform of
which the conversation takes place. Thus, in this experiment,
we trained 3 models on 5 of the 7 conversations to evaluate
the first 2 steps of the framework. For testing purposes, we
interleaved the remaining 2 conversations. Table V-A presents
the content of the messages in the first column. They are
represented in an order computed by the disentanglement
step (cf., column Disen. pos), which also happens to be the
correct one. The original/scrambled order is shown in the
column Abs. pos. We evaluated the different classifiers and
concluded that the classifier suited best for this dataset was
Adaboost. Looking at true and predicted classes, the only
misclassification is a message of further details (i.e., ‘FD’),
which is classified as potential answer (i.e., ‘PA’).

From this small synthetic dataset we report an accuracy
message classification of 88.8% and 100% accuracy on thread
disentanglement, however mentionings appeared to be a vital
factor to the disentanglement.

9See https://www.fluxicon.com/disco
10See https://doi.org/10.5281/zenodo.3727599
11https://www.kaggle.com/freecodecamp/all-posts-public-main-chatroom



TABLE II
TRUE AND PREDICTED CLASS LABELS AND THREAD LABELS FOR A

SMALL SYNTHETIC DATASET

Content True class Pred. class Abs. pos Disen. pos

Does anyone know who offers
the most free storage Google or Dropbox? OQ OQ 1 1

@User10 I believe Google Drive offers the most PA PA 2 2
cool thanks @User11 :) GG GG 5 3
You’re welcome @User10 GG GG 7 4

How do I change my password on my phone? OQ OQ 3 5
@UserX What kind of phone do you have? IR IR 4 6
@Agent I have an iPhone 3 FD PA 6 7
@UserX you can follow the instructions

from this link PA PA 8 8

It seems like it works @Agent :) Thanks! PF/GG GG 9 9

The last part of the framework consist of a process
model analysis. The model related to the synthetic dataset,
is seen in Fig. 3. The process map reported in the fig-
ure contains one node for each activity (plus circled nodes
indicating the beginning and the end of the process). Ac-
tivities are connected with edges which indicate that the
two activities are observed one immediately after the other.

1
2 secs

1
1 secs

1
1 secs

1
27.9 mins

2
2 mins

1
2 secs

2

2

OQ

2 (instant)

PA

3 (instant)

GG

3 (instant)

IR

1 (instant)

Fig. 3. The process model
from the synthetic dataset

The thickness of the edges and the
color-scale of the activities indi-
cate the frequencies (i.e., thicker
edges refer to direct successions
being observed more often, darker
activities refer to activities hap-
pening more frequently). Addi-
tionally, both activities and edges
have numeric values indicating
absolute frequencies and median
time, however for this map, since
it is synthetic, these times do not
reveal any useful information.

B. Complete Framework Test on
Gitter Dataset

In our work, we tested the pro-
cess of the entire framework on an unstructured dataset
extracted from 3 months of conversations on the Gitter Free
Code Camp12, in order to answer RQ1 (cf., Sec. III-A). The
dataset is freely available as a .csv file, and is structured
as a long conversation, referred to as a “group-chat”. Each
message comes with appertaining attributes such as user id and
timestamp. Applying the first component of the framework, the
Message-Stream Disentanglement described in Sec. IV-A, to
the dataset will provide a structure, such that each message
is either rejected or assigned as an event in a trace in the
event log. Furthermore, we apply the classification component,
referred to in Sec. IV-B. This process associates each event to
an activity, which will be used in the rest of the analysis and
for this activity we used Logistic Regression. The last step
is the Message-Topic Discovery, described in Sec. IV-C, to
populate each trace with words of significance in relation to the
respective stream of messages. After processing the dataset,
the set of traces represent conversation process models, which
can be analyzed to discover meaningful insights from the

12https://www.kaggle.com/freecodecamp/all-posts-public-main-chatroom
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Fig. 4. The process model of event log from the Gitter dataset

online message-exchange platform. In total, the event log
contains 20.485 events, each referring to 1 if 7 activities
distributed over 11.491 traces.

Our analysis of the extracted process model reveals some
important insights regarding the process of requesting informa-
tion. In the rest of the analysis we filtered only traces referring
to information-seeking conversations: the first activity has to
be an actual question (i.e., ‘OQ’ as in Tbl. I), thus ending
up with 3495 traces (about 30% of all cases). Looking at the
efficiency to which one can expect a solution to the proposed
question, the data reveals that in 10% of the cases the initial
question is solved in the immediately following utterance.
Figure 4 reveals the process when an information-seeking
utterance initializes the conversation.

From the median time of the mined process, emphasized in
the secondary value in Fig. 4, we see that the time between the
beginning of an information-seeking utterance to a potential
answer (i.e., ‘PA’) is 73 sec. The most frequent flows in
Figure 4 follow scenarios of information-seeking-utterance
to solution patterns, which was expected before analyzing
the process model. The pattern, which appears as the most
common in the dataset is OQ → PA → FD → RQ. The
flow is initialized with a question, and directly followed by a
potential answer. However further detail is provided (the self
loop in FD indicates that multiple informational utterances are
exchanged). The repeated question (‘RQ’, a question similar to
the original question, asked by another user) that ends the flow
indicates that the original question is not resolved. Another
common pattern is OQ → PA → GG and it indicates a
successful flow seen from an information-seeking perspective,
as an original question is followed by a potential answer,
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(a) Most common process in Gitter
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(b) Most common process in MSDialog

Fig. 5. Highly filtered and aggregated Disco transition graphs for both Gitter
and MSDialog datasets.

which must be assumed to be correct, since the following
utterance is a gratitude (i.e., ‘GG’).

Investigating the most abstract version of the process map
(i.e., setting 0% for both parameters in Disco), we observe
that the most common flow consists of an original question
directly followed by a potential answer, as seen in Fig. 5(a).
This observation supports the idea that seeking information in
Gitter, does indeed have a beneficial effect.

C. Deriving Insights from MSDialog Dataset

In this section we report the results of the investigation on a
subset of the MSDialog dataset, in order to answer RQ2 (cf.,
Sec. III-A). This dataset contains labels for the utterances, as
well as structured conversations and topics. We can therefore
rewrite the format of this data, to present process models from
MSDialog, that are free of classification errors. In other words,
this experiment focused mostly on the analysis of the results.

The process model extracted from the data can be seen in
Fig. 6. For this analysis we discarded conversations lasting
longer than one year (these are often terminated conversations,
where a new user posts something several years later). Fur-
thermore, the graph was constructed in Disco with high levels
of filtering, to be able to construct a comprehensible process
map. We also considered only discussions starting with an
original question (i.e., ‘OQ’) Therefore, the event log used for
the analysis contains 8455 events, referring to 251 activities
distributed over 1858 traces.

The process maps reveals that roughly half of the conversa-
tions in the dataset, starts with an original question (i.e., ‘OQ’)
and receives a potential answer (i.e., ‘PA’) within 35 hours on
average. The other half of conversations contains an original
question, that is followed up by some kind of information
request (i.e., ‘IR’) or some further details (i.e., ‘FD’). More
generally, the data reveals a median case duration of 3.2 days,
with an average of 4.6 messages per conversation.

Lastly, in Fig. 5(b) we filter the graph, to reveal the most
common process in the dataset (i.e., setting 0% for both
parameters in Disco). We can see that most of the time a
question from a user receives a useful answer straight away,
and often a user responds with positive feedback.
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Fig. 6. The process model of the annotated MSDialog dataset
TABLE III

CONVERSATION METRICS FOR VARIOUS TOPICS IN MSDIALOG

Topic Median Conversation Duration Msg. Per Conversation

Windows 7 and 8 4.9 days 4.49
Skype 3.3 days 4.41
Windows 10 2.5 days 4.82
Office 2.0 days 4.69

By comparing the two most abstract process maps as in
Fig. 5, referring to the two datasets examined in the paper
it is interesting to see that the behavior of the users on the
two platforms is quite similar. Still, it is relevant to note that
in MSDialog potential answers are sometimes followed by
positive feedback. This could be due to difference of formality
in a instant-messaging platform and a forum or the simple
reason that an equal amount of messages are followed up by
a negative/positive feedback in the Gitter dataset.

D. Analysis of Conversation Topics

Lastly, we present conversation metrics on conversations
referring to specific topics. From the MSDialog dataset, we
utilize their annotation and the user-specified categories herein.
We constructed 4 aggregated classes: Windows 7 and 8; Skype;
Windows 10; and (Microsoft) Office. The metrics used for
evaluation are median conversation duration and messages per
conversation. The results are presented in Table III, which is
sorted in descending order of conversation duration. From this,
it is interesting to note, that questions regarding Windows 10
are resolved twice as fast as questions on Windows 7 and 8.



TABLE IV
CONVERSATION METRICS FOR VARIOUS TOPICS IN GITTER DATASET

Topic Median Conversation Dur. Msg. Per Conversation

IDEs 9.9 minutes 7.75
Programming Languages 9.8 minutes 7.68
Microsoft Products 9.8 minutes 6.00

Similarly, we constructed three aggregated classes for
the Gitter dataset: Programming languages (HTML, CSS,
JavaScript, JQuery, Nodejs, Rails); IDEs (Sublime Text, Vim,
Emacs, Visual Studio); and Microsoft Products (Windows 7
and 10, Microsoft, Skype, Office). As reported in Table IV
the conversation durations are quite similar for all topics.
Additionally, the average number of messages per conversation
is slightly different for the different topics.

VI. DISCUSSION

Going back to the original research questions stated in
Section III, we found RQ1 to hold true. We were able to
show through experiments in Sec. V-A and V-B how we could
extract process models from information-seeking discussions
datasets. Specifically, in the experiment in V-B we applied the
framework to an entirely unlabelled, unstructured, and real
dataset, and were able to produce process models from this.
To our knowledge, extracting process models from unlabelled
and unstructured information-seeking conversation dataset is
something that has never been reported before. Furthermore,
we also found RQ2 to hold true from experiments in Sec. V-B,
V-C and V-D. These experiments showed how it was possible
to extract information regarding the process of answering
questions in two different settings. Additionally, different
metrics of these processes such as conversation duration, were
analyzed based on the topics covered in the discussions.

Our work has revealed that the idea of converting conversa-
tional data into process mining reports is an important factor
in understanding and learning the structure of a human-to-
human conversation. The behavior of a conversation is highly
connected to the platform used for exchanging the messages.
Specifically, with our framework we are able to reveal structure
out of an unstructured data. Moreover, we have experienced
how different types of online message-exchanging platforms
can lead to different process flows, and how topics on the same
platform might unfold in terms of duration. These observations
amongst a number of others which this framework is capable
of revealing, will help to understand and exploit parameters,
such as the efficiency of a platform.

While this framework proved to be capable of answering our
research questions, and reveals benefits, we were still able to
identify certain limitations. Firstly, the framework is sensitive
to the choice of parameters like choice of disentanglement
function, utterance classification function and topic extraction
function. Furthermore, our research was applied to datasets
of information-seeking conversations (i.e. there is a request
and exchange of meaningful information between users with
a goal to achieve). Therefore, the application of our proposed
framework in more informal inconsequential conversations
might be limited.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a general framework for ex-
tracting process models from unstructured information-seeking
conversations. To accomplish this, we divided our framework
into the three steps: disentanglement, utterance classification
and topic extraction, and we presented an algorithm for this.
Furthermore, we provided an instantiation of our framework
which uses cosine similarity for disentanglement, a classifier
selected among a pool for utterance classification and TF-IDF
for topic extraction. This instantiation was tested on a large
unlabelled and unstructured chat dataset. Results showed that
both the research questions identified hold true. Additionally,
however, limitations were pointed out concerning the sensitive-
ness of the approach to parameters and the application domain
(which has been limited to information-seeking conversations).

Future work will make the disentanglement and the utter-
ance classification steps more robust, for example adopting
entropy-based measures or ensemble classifiers. Another fu-
ture work direction includes testing the framework on different
datasets where the conversations are not so much goal-oriented
and where chatbots are involved.
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