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Abstract—In a complex-valued convolutional neural network,
its elementary unit consists of a complex-valued convolution layer
and a complex pooling layer. The pooling layer has a variety in its
dynamics. In this paper, we propose complex absolute-value max
pooling to extract complex-amplitude feature patterns meaning-
ful for discovery and/or adaptive classification of land form in
interferometric synthetic aperture radar (InSAR). Experimental
examination into amplitude and phase values in convolutional
kernels reveals that useful land-shape features emerge through
self-organization in high-magnitude kernels, which suggests that
the proposed dynamics is successful in extracting important
features.

Index Terms—Complex-valued neural network, interferomet-
ric synthetic aperture radar (InSAR), earth artificial intelligence
(AI)

I. INTRODUCTION

Many ideas have been proposed in these years to discover
and/or classify adaptively local features in earth observation
data [1]–[11]. They form the earth artificial intelligence (Earth
AI) field. There, complex-valued convolutional neural net-
works are very useful for dealing with complex-amplitude
local features consistently in interferometric synthetic aper-
ture radar (InSAR) [12], [13]. In the near future earth AI
systems, they will discover and continuously monitor specific
land forms such as volcanos, floodable regions and glacier
areas, which is significantly important for disaster preven-
tion/reduction, global warming monitoring, and various other
human life security. Related big-data processing frameworks
have also been investigated widely and intensively [14], [15].

There are a variety of possible dynamics in a complex-
valued elementary pair of a convolutional layer and pooling
layer [16]–[19]. In particular, we have to design a pooling
layer by considering what kind of features we need to extract,

A part of this work was supported by JSPS KAKENHI Grant Number
18H04105, and also by the Cooperative Research Project Program of the
Research Institute of Electrical Communication (RIEC), Tohoku University.
The Advanced Land Observing Satellite (ALOS) original data are copyrighted
by Japan Aerospace Exploration Agency (JAXA) and provided under JAXA
Fourth ALOS Research Announcement PI No. 1154 (AH).

𝑆𝑚

𝑆𝑠

𝐵𝐶𝑇

𝐵𝑃
γ𝐶𝑇

θ0

θ1

𝑅𝑚

𝑅𝑠

𝐻𝑠𝑎𝑟

𝐻

Fig. 1. Geometry of earth-surface height observation in interferometric
synthetic aperture radar (InSAR).

examining its available forward processing dynamics and
learning algorithms.

In this paper, we propose complex absolute-value max
pooling in the complex-valued convolutional neural networks
to enhance the convolution signal-to-noise ratios by paying
more attention to strong backscatterers and resulting con-
volutional outputs. Experiments demonstrate that this pool-
ing realizes the self-organization of meaningful information
in the convolutional kernels based on the assumption that
high-intensity convolutional outputs originating from strong
backscattering convey more information of the local target
area by suppressing thermal and other noise. We find that this
dynamics fits the purpose to discover and/or classify land-form
features in InSAR.
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Fig. 2. (a) Amplitude and (b) phase of InSAR interferogram [12].

II. INTERFEROMETRIC SYNTHETIC APERTURE RADAR
OBSERVATION

Fig. 1 shows rough geometry of interferometric earth obser-
vation by satellite-borne synthetic aperture radar (SAR) [20].
A SAR system illuminates the earth with an electromagnetic
wave having a wavelength of λ, and receives backscattered
wave as the amplitude and phase, i.e., complex-amplitude.
With the observation data at two satellite positions Sm and
Ss, corresponding to master and slave observations, we can
obtain an interferogram to calculate the land height changes
∆H by using their phase difference ∆Φ as

∆H =
λRm sin θ

4πBCT cos(θ − γCT)
∆Φ (1)

Then, we can make a height map by accumulating the phase
changes pixel by pixel. This accumulation process is called
”unwraping” since the phase value is ”wrapped” into the range
of [−π, π). This calculated high-accuracy height map is called
digital elevation model (DEM), which is obtained globally,
spatially continuously and temporally frequently, and is very
useful in human security.

Fig. 2 shows an (a) amplitude and (b) phase example of an
InSAR interferogram obtained by Advanced Land Observing
Satellite 2 (ALOS-2) of Japan Aerospace Exploration Agency
(JAXA) for a Mt. Fuji area in Japan. The amplitude represents
the magnitude of backscattering while the phase shows the
height in a 2π-wrapped manner as expressed by (1). In
this paper, we do not unwrap the phase image. Instead, we
make spatial difference images in east-west and north-south
directions so that we deal with land forms as slopes rather
than its absolute height.

III. PROPOSED COMPLEX-VALUED CONVOLUTIONAL
NEURAL NETWORK

Fig. 3 shows the construction of the complex-valued convo-
lutional neural network we propose for learning and process-
ing InSAR local data [12]. Complex-valued neural networks
are suitable for processing complex-amplitude data including
InSAR interferograms [21]–[27]. The two-direction difference
images are fed to the network as two-channel inputs (C=2) and
processed by one or more units of convolution and pooling
layers. The image sizes and parameters are summarized as
follows.

• Total data image size: 0I ×0 J = 1,200×1,200 pixels
• Local window size: 28×28 pixels
• Convolution kernel number: K=9 for each channel, size:

1pConv ×1 qConv=27×27 pixels
• Pooling window size: 1pPool ×1 qPool=2×2 pixels

After a single or multiple convolution-and-pooling layer pro-
cessing, we have a full connection layer to obtain total network
outputs. In the present classification, we prepare the same
number of output neurons as that of classes we intend.

A. Complex-valued convolution processing

In the following experiments, we feed the two complex-
valued spatially-differential images mentioned above, denoted
as l=0xew and l=0xns having common coordinates, to the
neural network. A neural elementary unit is composed of a
convolution layer and a pooling layer, and indexed by l in
Fig. 3(a). Input terminal layer is labeled as l = 0, while the
last layer is l = L, which is a fully connected network to work
for decision.

We have single or multiple input signals (images) 0xc

generally, where c is the image label and 0 means the input
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Fig. 3. (a) Construction of the convolutional neural network [12] and (b)
conceptual illustration of selecting high-amplitude convolutional output by
ignoring noisy/small-amplitude convolutional outputs in the pooling layer.

layer. The output signal vector of the first convolution layer
1vk = [1vkij ] is expressed for input signal vectors 0xc =
[0xc

i+p j+q] as

1v = f(1u) (2)

1ukij =

C∑
c=1

1P∑
p=1

1Q∑
q=1

1wc
k p q

∗ 1xc
i+p j+q (3)

f(1ukij) = tanh(|1ukij |) exp
(
j arg(1ukij)

)
(4)

where 1W = wc
k p q is the neural weight connecting an input

signal at position (p, q) in image c and a neuron at position
(p, q) in convolutional kernel k in the first layer, and C, 1P
and 1Q are the numbers of the total input channels, kernel
vertical size and kernel horizontal size, respectively, f(·) is

Fig. 4. Regions from which the teacher input images are clipped out. Orange:
north, blue: east, dark blue: south, green: west, yellow: flat, purple: sea and
red: Omuroyama [12].

the activation function, and lu is internal state of l-th layer
neuron.

B. Forward processing and teacher-signal-backpropagation
learning dynamics

We determine the neural dynamics as follows. The (l−1)-th
layer output signals l−1x are processed in l-th layer to generate



Fig. 5. Classification result obtained by the proposed complex-valued
convolutional neural network.

lx as

lx = f(lu) (5)
lu = lW l−1x (6)

f(lum) = tanh(|lum|) exp
(
j arg(lum)

)
(7)

where lW = [lwnm] is the connection weight between m (=
iJ + j)-th neuron in (l − 1)-th layer and n (= pQ + q)-th
neuron in l-th layer.

We also determine the backpropagation dynamics of teacher
signals, instead of errors, to update connection weights for
supervised learning as follows. We calculate teacher signal
vectors of each layers lt backwards from the output layer.
The teacher signal of (l − 1)-th layer l−1t is obtained from
the teacher signal of l-th layer lt as [26]

l−1t =
(
f
(
lt∗ lW

))∗
(8)

Then, we upadte lW by using lt as [28]–[30]

|lwnm| ← |lwnm|
− ϵa

{
(1− |lx2

n|)(|lxn| − |ltn| cos(argl xn − argl tn))|l−1xm| cosl θrotnm

− |lxn||ltn| sin(argl xn − argl tn)
|l−1xm|
|lun|

sinl θrotnm

}
(9)

arg(lwnm)← arg(lwnm)

− ϵp
{
(1− |lx2

n|)(|lxn| − |ltn| cos(argl xn − argl tn))|l−1xm| sinl θrotnm

+ |lxn||ltn| sin(argl xn − argl tn)
|l−1xm|
|lun|

cosl θrotnm

}
(10)

lθrotnm = arg(lxn)− arg(l−1xm)− arg(lwnm) (11)

where ϵa and ϵp are learning rates of amplitude and phase
respectively.

C. Complex absolute-value max pooling

The output of the pooling layer is invariant for small
position changes in the output patterns of the former layer. In
other words, a pooling layer absorbs small position changes
and small rotations of input images. Here, we determine the
complex-valued pooling process as

lyk i j =
l vk argmax

p,q
|lvk p q| (12)

That is, the output of a pooling layer is a value that has
maximum norm in the pooling window. If the local pattern in
the input image is similar to the complex-amplitude pattern in
a kernel of a convolutional layer, the norm of the output signal
becomes large, and then the following pooling layer extracts
this signal. At the same time, as shown in Fig. 3(b), this
process enhances high-amplitude signals in the convolution
process, resulting in extraction of phase information in high-
amplitude input signals. This treatment reflects the thought
that high-intensity signals are more meaningful, and should
be extracted intensively than small or noise components.

Then we design the dynamics of the teacher-signal back-
propagation in the pooling layer as follows. We make teacher
signals backpropagate in order to update only the neurons that
pass the signals to the following layer. Specifically, we get
teacher signals of the convolution layer lt̂ from teacher signals
for the pooling layer lt as

lt̂k p q =

{
ltk i j if lyk i j =

l vk p q
lvk p q otherwise

(13)

D. Fully connected network for decision

For classification, the output layer of the complex-valued
convolutional neural network is composed as a fully connected
network, just like a usual complex-valued neural network. The
input signal of the fully connected layer L−1x = [L−1xn] is
obtained from the preceding pooling layer as

L−1x k×I×J+i×J+j =
L−1 yk i j (14)

where k × I × J + i × J + j(= n) is represented one
dimensionally when the size of the output image of the pooling
layer has K images of I × J pixels.

IV. EXPERIMENTS AND RESULTS

Fig. 4 presents seven teacher zones from which we cut out
local teacher signals for seven classes (categories), namely,
north-facing slope, east-facing slope, south-facing slope, west
facing slope, flat plain, sea, and Omuroyama (scoria cone).
Omuroyama is a Japanese word meaning small eruptive crater.
By including Omuroyama as a class, we intend to find vol-
canos of a similar shape for disaster prediction/mitigation. In
the following experiments, we used a convolutional network
having a single pair of convolution and pooling layers. We
determined the teacher signals used at the full-connection
network as [1 − 1 − 1 − 1 − 1 − 1 − 1]T for north-
facing slope, [−1 1 − 1 − 1 − 1 − 1 − 1]T for east-facing
slope, and so on, where [· · · ]T stands for transpose.
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Fig. 6. (a) Area (i) land shape map and (b) its bird’s eye view (Google earth) including teacher Omuroyama and another Omuroyama-shaped mountain named
Katafutayama.

(a) (b)

Fig. 7. (a) Area (ii) land shape map and (b) its bird’s eye view (Google earth) including another typical Omuroyama and similar mountain Yahazuyama.

Fig. 5 presents the classification result for the whole target
region after the learning is completed. In this paper, we focus
on the extraction of Omuroyama-like land form. In the figure,
small red areas indicate the decision of Omuroyama shape.
We can see that they are scattered widely.

Let’s investigate into Areas (i), (ii) and (iii) in Fig. 5.
Fig. 6(a) shows Area (i) with red patches at the Omuroyama
decisions. Besides the teacher Omuroyama, we find another
Omuroyama class patch in the east-south direction, which is
an eruptive crater named Katafutayama. It is smaller in its size
than the teacher Omuroyama, but we can see in the photo in
Fig. 6(b) on the right-hand side that the shape is homothetic.
That is, the complex-valued convolutoinal network succeeded
in finding a similar land shape patch.

Fig. 7(a) shows the result for Area (ii), in which we find an-

other Omuroyama. (The mountain is named also Omuroyama,
and this is a typical Omuroyama in Japan in its shape.) In the
photo in Fig. 7(b), we can confirm the similar shape. Another
patch shows another mountain having similar land form.

Fig. 8(a) shows Area (iii), Hakone area, a popular sight-
seeing area located in the Fuji-Hakone National Park. The
marked two mountains are ”Futagoyama,” meaning twin
mountains. In Fig. 8(b), they are found surely to have also
Omuroyama-like shapes. However, these mountains are much
bigger than the teacher Omuroyama, in particular in its height.
Since there are no high mountains around them, it is not widely
known that these mountains have the Omuroyama-like shape.
In this way, however, they are discovered as Omuroyama-class
mountains surprisingly.
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Fig. 8. (a) Area (iii) land shape map and (b) its bird’s eye view (Google earth) including another typical Omuroyama and similar mountains Futagoyama
(”Twin Mountains”).

V. SELF-ORGANIZED IMAGES IN THE CONVOLUTIONAL
KERNELS

Fig. 9 presents the convolution kernels before and after
the learning process. They are found to self-organize to be
meaningful kernels as follows. Gray-scale images show the
amplitude values while color images represent phase values.
The initial values before the learning is shown in Fig. 9(a).
Both the amplitude and the phase are at random, presenting
no specific features. In contrast, Fig. 9(b) presents the emerged
kernels. Both in Wc=1 and Wc=2, the amplitude values are
large in four kaernels, i.e., k = 1, 2, 6 and 9. Other kernels are
relatively small. The large ones indicate significant meanings.

The kernel k=2 of Wc=1 in Fig. 9(b) shows large values
in the amplitude, and its phase values are pink in the left half
while green in the right half. This spatial pattern represents
an eastward up-and-down, that is, a ridge in the north-south
direction. Similarly, Kernel k=9 in Wc=2 also shows large
amplitude values, and its phase has green values in the
upper half while pink values in the lower half. It means a
northward up-and-down, or a ridge in the east-west direction.
In addition, the combination of these two features represents
a mountain shape having a peak at around the center. In
this way, the kernels self-organize into meaningful spatial
information representation. The correspondence to the large
amplitude reveals the successful feature extraction with the
complex absolute-value max pooling in the complex domain.

VI. SUMMARY

This paper proposed the complex absolute-value max pool-
ing to extract land form features adaptively by dealing with
local complex-amplitude in interferometric synthetic aperture
radar. The network discovers and classifies adaptively special

land forms such as Omuroyama. We confirmed in the exper-
iment that meaningful features emerge in the kernels in the
convolutional layers by investigating the complex-amplitude
spatial patterns.
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