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Abstract—As a supervised learning method, Factorization
Machine (FM) is famous for its capability of modeling feature
interactions. However, FM’s performance might be bad if we
assign the same weight to all feature interactions, as not all of
them are equally useful and productive. Attentional Factorization
Machine (AFM) improves FM by discriminating the importance
of distinctive feature interactions via a neural attention network.
Nevertheless, the neural attention network in AFM is not fine-
grained enough and it ignores the information of the fields
implied by the features, which limits the performance of the
model. In this work, we propose a novel model named IO-
aware Factorization Machine (IOFM), which enhances the fea-
ture representation ability of attention mechanism in estimating
weights via two awareness auxiliary matrices. To make the
model more efficient, we further reduce the model parameters
using canonical decomposition for the two auxiliary matrices and
design a shared matrix to correlate the decomposed matrices.
Extensive experiments on two real-world datasets indicate the
superiority of our IOFM model over the state-of-the-art methods.

Index Terms—Factorization Machines, Neural Attention Net-
work, Recommender Systems, User Response Prediction

I. INTRODUCTION

Learning and predicting user response makes a crucial con-
tribution to many personalization tasks such as recommender
systems, web search, and online advertising. The goal of
learning and predicting user response is to estimate a function
that maps predictor variables to the corresponding targets. Typ-
ically, the targets include real-valued targets for regression and
categorical labels for classification. The predictor variables in
these tasks are primarily discrete and categorical. A common
solution for many machine learning models with these types of
datasets is converting them to high-dimensional sparse binary
features via one-hot encoding, subsequently embedding them
to low-dimensional features. When estimating the function of
such discrete and categorical predictor variables, it is essential
to model the interactions between features.

As an example, predicting the probability that a user in a
particular occupation clicks on an ad is crucial in online ad-
vertising. We can cross variable occupation of user = {driver,
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doctor} with ad = {coffee, milk} and get a new occupation ad
= {driver coffee, driver milk, doctor coffee, doctor milk}, in
accordance with common sense, {driver coffee} is more likely
to be a positive sample. However, manually designing efficient
and useful feature interactions is a crucial but laborious task.
Therefore, these solutions may be difficult to be generalized
to new issues or domains.

To address the difficulty of manual feature engineering,
many machine learning models are intended to learn features
from raw data automatically. Factorization machines (FMs1)
were proposed in [1], which can embed feature into a latent
space and estimate the weight for a cross feature between
these embedding features. Invisible feature interactions can be
learned due to the brilliant generalization ability of FM, which
has been successfully applied to various applications [2]–[5].

Although effective, FM estimates the weight of each feature
interaction equally and may degrade the performance. For
this reason, Attention Factorization Machine (AFM) [6] was
proposed, which can discriminate the importance of different
feature interactions via attention mechanism. Since the atten-
tion mechanism has been introduced to deep learning, it has
achieved remarkable results, and it has been widely used in
various types of deep learning tasks such as machine transla-
tion [7], [8], image caption [9] and speech recognition [10].
However, the neural attention network in AFM directly calcu-
lates a scalar weight for each feature interaction, which may
lose useful information and compromise the powerful repre-
sentation capability of the attention mechanism. Besides, AFM
is directly improved from FM, which ignores the information
of the fields implied by the features. Inspired by FFM [11]
that the effect of a feature can differ when interacting with
features from different fields, the feature interactions also
imply information about the interactions between fields.

To solve the above issues, we propose a novel model called
IO-aware Factorization Machines (IOFM2) to enhance the
feature representation of attention mechanism in estimating
weight of feature interaction via two awareness auxiliary
matrices. The role of the two awareness auxiliary matrices

1In this paper, we focus on the second-order FM, which is the most effective
and widely used instance of FMs.

2Implementation of IOFM is available at: https://github.com/ihaozz/IO-
aware-Factorization-Machines
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is reflected in the input phase and the output phase of the
attention network, capturing wealthy interactive information
in two steps. Specifically, we use an input-aware auxiliary
matrix (as field interactions) to add field information into
the pair-wise feature interactions, and we use an output-
aware auxiliary matrix to enhance the expression capability
of attention networks, thus the attention distribution for each
feature interaction will be a vector, instead of a single value.
In other words, using a vector instead of a scalar for each
feature interaction is to describe the attention distribution
from a finer granularity. Additionally, we further reduce the
model parameters using canonical decomposition to make the
model more efficient, and design a shared matrix correlating
the decomposed matrices to improve the performance of the
model.

The main contributions of the paper include the following:
• By using two awareness auxiliary matrices we present

a novel neural attention network view for AFM, the
performance of the model is promoted significantly and
no feature engineering is required.

• Using factorization for the two auxiliary matrices, the
performance of IOFM is enhanced with fewer parameters.

• By using a shared matrix correlates the two decomposed
matrices, performance of IOFM is further improved.

• Experimental results on two well-known datasets demon-
strate that the proposed model IOFM is superior to the
state-of-the-art methods.

II. RELATED WORK

In learning and predicting user response, it is important
to capture feature interactions. Recently, many deep learning-
based methods have been studied to solve such problems [12],
[13]. Many traditional solutions need an army of artificial
feature engineering to generate the feature interactions, such
as Logistic Regression with FTRL optimizer [14]. Due to
the enormous space of combinatorial features, feature en-
gineering becomes a tough work. In order to solve this
problem, Factorization Machines [1] have been proposed to
learn the feature interactions automatically. FM is a matrix-
based machine learning algorithm designed by Steffen Rendle
for collaborative recommendation [15], it has good learning
ability by embedding high-dimensional space features from
raw data into a low-dimensional latent space. Given a real
instance with a feature vector x ∈ Rn and a target y, where n
denotes the number of features and xi denotes the i-th feature
in feature vector x. FM estimates the target by capturing all
interactions between each feature using factorized interaction
parameters:

ŷFM (x) = w0 +

n∑
i=1

wixi︸ ︷︷ ︸
linear regression

+

n∑
i=1

n∑
j=i+1

ŵijxixj︸ ︷︷ ︸
pair-wise feature interactions

(1)

Where w0 is the global bias, wi is the weights of the i-
th feature in feature vector, and ŵij denotes the weights of

the pairwise feature interactions xixj , which is factorized as
ŵij = vTi vj , where vi ∈ Rk denotes the embedding vector of
xi, and k is the size of embedding vector.

FMs use the dot product of two embedding vectors to model
the effect of feature interactions, and FFM [11] extended
the ideas by additionally leveraging the field information as
auxiliary information to improve model performance. In FFM,
each feature has separate latent vectors to interact with features
from different fields, therefore, a feature may have different
effects when interacting with features from diverse fields.
Mathematically, pair-wise feature interactions of FFM is:

n∑
i=1

n∑
j=i+1

(wi,fjwj,fi)xixj (2)

where fi and fj are respectively the fields of i and j.
With the great success of deep learning in various re-

search fields, many deep learning-based FM models have also
been proposed in recent years. FNN [16] uses a Multilayer
Perceptron (MLP) to learn high-order feature dependencies
on the hidden vectors of FM, thus avoiding the training of
the embedding layer from a random state. The key to PNN
[17] is to introduce a product layer between the embedding
layer and the first hidden layer. PNN defines the operations
of various products such as inner product and outer product
to capture different interactive information and enhance the
ability of the model to represent different data patterns. The
structure of DeepFM [18] is the dual network combination.
The improvement is that DeepFM replaces the wide part
of the Wide&Deep [19] with FM, enhancing the ability to
combine shallow network features. NFM [20] can be seen
as an improvement to the deep part of the Wide&Deep,
which combines the linearity of FM in modelling second-order
feature interactions and the non-linearity of neural network
in modelling higher-order feature interactions. FM can be
hindered by its modelling of all feature interactions with the
same weight, as not all feature interactions are equally useful
and predictive. AFM [6] introduces the attention mechanism
into FM, utilizes a neural attention network to learn the
importance of each feature interaction. IFM [21], based on
AFM and FFM models, comprises the feature aspect and the
field aspect to learn flexible interactions on two levels.

III. PROPOSED APPROACH

A. Architecture of IOFM
Figure 1 illustrates the neural network architecture of our

proposed IO-aware Factorization Machines model, we omit
linear terms and the global bias in the remaining parts for
simplicity. In what follows, we elaborate the details of several
layers in the architecture.

1) Embedding layer: The embedding layer projects each
feature to a dense latent vector representation, whose essence
is a fully connected layer. vi ∈ Rk denotes the embedding
vector for the i-th feature, where k is the size of embedding
vector. Since the input layer is composed of sparse features,
let the set of non-zero features in the feature vector x be χ, the
size of χ be m, and the set of embedding vectors be {vixi}i∈χ.
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Fig. 1. Architecture of proposed IO-aware Factorization Machines model.

2) Pair-wise interaction layer: The pair-wise interaction
layer enumerates interact of every two latent vectors in the
embedding layer, whose output consists of the interacted
vector of two features, which can be represented as:

Pij = (vi � vj)xixj , (i, j) ∈ Rχ (3)

Where � denotes the Hadamard product, i.e. the element-
wise product of two vectors, and Rχ = {(i, j)}i∈χ,j∈χ,j>i,
since there are m non-zero features in χ, the size of the set
Rχ is l, where l = m(m− 1)/2.
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Fig. 2. Architecture of the Attention layer in IOFM.

3) Attention layer: As shown in Figure 2, by adding
auxiliary information to the attention mechanism, we design a
new architecture to enhance the expression ability of attention
mechanisms in two steps. Pij is the output of pair-wise
interaction layer, as the input of attention layer. The output
of the attention layer is Aij , which is an attention vector for
feature interaction ŵij , can be interpreted as the importance
of ŵij in predicting the target. I ∈ Rk×l and O ∈ Rk×l are

two auxiliary matrices. Specifically, the input-aware auxiliary
matrix I plays the role of field interactions information, lever-
aging the information contained in the feature interactions,
and the output-aware auxiliary matrix O is used to enhance
the expression ability of attention networks. Unlike AFM, the
attention distribution for each feature interaction is a vector
instead of a single value. Formally, the attention network is
defined as:

P′ij = Pij � Ifij (4)

a′ij = hTReLU(WP′ij + b) (5)

aij =
exp(a′ij/τ)∑

(i,j)∈Rχ exp(a
′
ij/τ)

(6)

Aij = aijOfij (7)

Where � denotes the Hadamard product, ⊗ denotes the
scalar multiplied by the corresponding vector, i.e. a ⊗ O =
(a1, a2, a3) ⊗ (O1,O2,O3) = (a1O1, a2O2, a3O3). W ∈
Rt×k, b ∈ Rt, h ∈ Rt are parameters of the attention
network, t is attention factor, which denotes the hidden layer
size of the attention network. τ is a hyperparameter used
to control the effective strength of the feature interaction in
softmax function [22]. Ifij is the fij-th column vector of
I, and Ofij is the fij-th column vector of O, where fij
denotes the pair-wise interaction of i and j. In the middle
part, we refer to the attention network used in AFM, which
is a multilayer perceptron. The core standpoint is to increase
the generalization ability through MLP.

In order to make the model more efficient, we present
a more generalized architecture. The shape of the auxiliary
matrix both are k × l, excessive parameter quantities bring
difficulties to the model training. We decompose the two
auxiliary matrices using canonical decomposition [23] to re-
duce the model parameters. In addition, considering the strong



correlation between the two auxiliary matrices and the feature
interactions, we design a shared matrix in the factorization to
improve the correlation of the decomposed matrices:

I = ĪTT, (8)

O = ŌTT (9)

where Ī ∈ Rd×k, Ō ∈ Rd×k, and T ∈ Rd×l is a shared
factor matrix, with column vector Tfij representing the fij-th
shared vector of auxiliary matrices, d is the number of latent
factorization factors. The shared matrix T correlates the de-
composed matrices and further reduces the model parameters.
Correspondingly, the calculation method of attention becomes:

a′ij = hTReLU(W(Pij � (ĪTTfij )) + b) (10)

aij =
exp(a′ij/τ)∑

(i,j)∈Rχ exp(a′ij/τ)
(11)

Aij = aijŌ
TTfij (12)

4) Inference layer: The inference layer multiplies the at-
tention vector obtained in the attention layer with pair-wise
feature interactions, used to calculate the final output:

ŷ = αT
n∑
i=1

n∑
j=i+1

Aij � Pij (13)

Where α ∈ Rk is 1, � denotes the Hadamard product, which
means that the attention mechanism is used internally from
vectors that represent intersecting features, rather than using
scalars as attention weights to globally scale feature vectors
as in AFM.

To summary, the overall formulation of IOFM model is:

ŷIOFM (x) = w0+

n∑
i=1

wixi+αT
n∑
i=1

n∑
j=i+1

Aij�(vi�vj)xixj

(14)
where Aij is defined in Equation (12).

B. Space Complexity Analysis

IOFM has two additional auxiliary matrices compared to
AFM. After using canonical decomposition with a shared ma-
trix, the awareness matrices require l×d+2×d×k parameters
totally. Besides, the parameters of embedding vectors are n×k,
and the parameters of attention network is k × t + 2t. Thus,
the overall space complexity is O(ld + (2d + n + t)k + 2t).
Owing to sparse representation of x, the values of l, d, k,
and t are ussually much smaller compared to n, so the space
complexity is similar to that of AFM, which is O(nk).

C. Relation to AFM and IFM

The key difference between IOFM and AFM is the input and
output of the attention network, the two auxiliary matrices are
trained to improve the performance of the IOFM from two
phases. Specifcally, AFM can be seen as a special case of

IOFM when the elements in the two auxiliary matrices are all
1.

Compared to IFM, which is also inspired by FFM, IOFM
adds the field interactions information into feature interactions
directly, while in IFM the field informations come from every
feature. Direct use of field interactions information not only
reduces the computational complexity of the model but also
reduces the dependence of the field interactions information
on the embedding features, making the control to field infor-
mations more flexible. Besides, IFM treats the feature aspect
and the field aspect as two independent parts with no infor-
mation overlap, which makes the attention mechanism unable
to capture the attentional distribution of field interactions.
In IOFM, the field interactions information is added to the
feature interactions as the input to the attention network. More
importantly, IOFM uses an output-aware matrix to describes
the attention distribution at a more fine-grained level.

D. Learning

As IOFM directly enhances AFM from the perspective of
data modelling, it can also be applied to a variety of prediction
tasks, including regression, classification and ranking. Similar
to AFM, in this paper we also give priority to the regression
task and optimize the squared loss. For a regression task, the
target y(x) is a real value, a common objective function is
squared loss:

L =
∑
x∈ϕ

(ŷIOFM (x)− y(x))
2 (15)

where ϕ denotes the set of training instances. We also
employ dropout and L2 regularization to prevent overfitting.
Since there are two auxiliary matrices I and O in the attention
network except the weight matrix W, we additionally apply a
regularization for them. That is, the actual objective function
we optimize is:

L =
∑
x∈ϕ

(ŷIOFM (x)− y(x))
2

+ λ1‖W‖2

+ λ2(‖I‖2 + ‖O‖2)

(16)

where λ1 controls the regularization strength for the weight
matrix W, λ2 controls the regularization strength for two
auxiliary matrices I and O, respectively.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed
IOFM model on two real-world datasets and conduct extensive
experiments to answer the following research questions:

QR1 How does IOFM perform compared to the state-of-
art-methods?

QR2 How do the key hyperparameters of IOFM impact its
performance?

QR3 How do the two auxiliary matrices of IOFM impact
the prediction accuracy?

QR4 How do the factorization of auxiliary matrix and the
shared matrix impact the performance of IOFM?



A. Experiment Setting

1) Datasets and Evaluation Metric: We evaluate our mod-
els on two real-world datasets, Frappe [24] and Movie-
Lens [25], for context-aware recommendation and personal-
ized tag recommendation, respectively. Both datasets contain
categorical variables and positive records merely, we use
the datasets preprocessed in the previous work [20] directly,
generate negative samples by randomly pairing two negative
samples with each log and converting each log into a feature
vector via one-hot encoding. The datasets are divided into a
training set (70%), a validation set (20%), and a test set (10%)
like the experimental settings in the previous work. Table I
shows the description of the processed datasets.

TABLE I
DATASET DESCRIPTION.

Dataset instance Feature User Item Field
Frappe 288,609 5,382 957 4,082 10

MovieLens 2,006,859 90,445 17,045 23,743 3

We use the best parameter settings reported by the au-
thors [6], [20] for fair comparison. All models are trained
on the training set, and the optimal parameters are obtained
on the validation set. Performance is evaluated by Root Mean
Square Error (RMSE) on the test set with the best parameters,
with lower scores indicating better performance. Note that
RMSE has been widely used to evaluate regression tasks, such
as recommendation with explicit ratings [15], [26] and click-
through rate prediction [27].

2) Baselines: We compare our model with the following
competitive embedding-based methods:
• FM [1]. As described in Equation (1). FM is recog-

nized as the most effective linear embedding method for
sparse data prediction, which can subsume many specific
factorization models [28], such as Matrix Factorization
(MF) [29], parallel factor analysis, and SVD++ [30].
It has shown strong performance for personalized tag
recommendation and the context-aware prediction [15].

• DeepFM [18]. DeepFM uses FM to enhance the abil-
ity of shallow network features, and shares the feature
embedding between the FM and the deep component. It
combines the output of FM and DNN to obtain the final
probability prediction, which can learn both the lower-
order and higher-order feature interactions.

• NFM3 [20]. NFM seamlessly combines the linearity of
FM in modelling second-order feature interactions and
performs a non-linear transformation called Bi-interaction
on the latent space of the second-order feature interac-
tions.

• AFM4 [6]. AFM introduces the attention mechanism to
recommender systems, which learns one coefficient for
every feature interaction via a neural attention network

3https://github.com/hexiangnan/neural factorization machine
4https://github.com/hexiangnan/attentional factorization machine

to enable feature interactions that contribute differently
to the prediction.

• IFM5 [21]. IFM combines AFM and FFM with the intro-
duction of the feature aspect and the field aspect control,
learning feature interaction importance in a stratified
manner.

For the models that give the official implementation, we
use the code and optimal parameters they provide directly.
We also try to tune the relevant hyperparameters for better
performance.

3) Hyperparameters: The model-independent hyperparam-
eters are set to the optimal values reported by the previous
work [6], [21] for fairness. Specifically, the embedding size
of features is set to 256 for all models, τ in attention net is
set to 10 for IFM and IOFM. The attention factor is set to 256
and 8, and the batch size is set to 128 and 4096 for Frappe and
MovieLens dataset, respectively. An early stopping criterion is
used to prevent overfitting in the process of training models.
We also pretrain the feature embeddings with FM to get better
results and tune the other hyperparameters on the validation
set.

B. Performance Comparison (QR1)

TABLE II
TEST ERROR AND NUMBER OF PARAMETERS OF DIFFERENT METHODS ON

EMBEDDING SIZE 256. M DENOTES ”MILLION”.

Frappe MovieLens
Method Param# RMSE Param# RMSE

FM 1.38M 0.3340 23.24M 0.4666
DeepFM 1.64M 0.3311 23.32M 0.4642

NFM 1.45M 0.3125 23.31M 0.4536
AFM 1.45M 0.3117 23.25M 0.4314
IFM 1.46M 0.3108 23.25M 0.4210

IOFM 1.46M 0.3075 23.25M 0.4133

The model-independent hyperparameters in all models are
set to the same as mentioned in the previous section. We
carefully adjusted other hyperparameters to get the best perfor-
mance of each model on the Frappe dataset and the MovieLens
dataset, respectively. The best performances as shown in Table
II. IOFM achieves the best performance among all methods,
which demonstrates the effectiveness of IOFM. Specifically,
IOFM betters FM with a 7.9% and 11.4% relative improve-
ment by using less than 0.1M additional parameters on the
Frappe and MovieLens dataset, respectively. In the case of
using almost the same number of parameters, IOFM improves
by 1.3% and 4.2% compared to AFM and outperforms the
second best method IFM with 1.1% and 1.8% on the Frappe
and MovieLens dataset, respectively.

Both NFM and DeepFM contain captures of higher-order
feature interactions, and their performances are better than FM,
which proves that modelling higher-order feature interactions
can improve performance. However, their performances are

5https://github.com/cstur4/interaction-aware-factorization-machines



weaker than the rest of the model, which shows that the
improvement of the second-order feature interaction is still
worth studying.

Although the architectures of IOFM and IFM are different,
it can be seen from the comparison with AFM that modelling
the fields of features is effective.

C. Hyperparameter Investigation (QR2)

In this subsection, we mainly explore the effect of dropout
on the pair-wise interaction layer, L2 regularization, and the
number of latent factorization factors d.

(a) Frappe. (b) MovieLens.

Fig. 3. Validation error of IOFM, AFM, and FM w.r.t. different dropout ratios
on the pair-wise interaction layer.

1) Dropout: Dropout can effectively alleviate the occur-
rence of overfitting and achieve regularization to a certain
extent [31]. For exploring the effect of dropout on the pair-
wise interaction layer, no L2 regularization is used in models.
We apply dropout to FM and AFM on feature interaction
vectors and obtain better performances as a benchmark. Note
that we have tried the learning rate provided in official AFM
implementation, but the performance is weaker, so we set the
learning rate to 0.05 for the three models. In this setting, the
AFM model achieves a good performance. We set the dropout
ratio from 0 to 0.9 with increments of 0.1, as shown in Figure
3, by setting the dropout ratio to a proper value, both IOFM
and FM can be improved, but when the dropout ratio tends
to 1, all models suffer from underfitting issue and have poor
performances.

From the Figure 3, we can see that the performances of
IOFM and FAM fluctuated less with the change in the dropout
rate on the Frappe dataset, while it fluctuated significantly on
the MovieLens dataset. We believe that the effect is caused
by the dataset itself. Because each sample of the MovieLens
dataset has fewer non-zero features than the Frappe dataset,
it is more sensitive to changes in dropout rate. For nearly all
dropout rates, IOFM performs the best.

2) L2 regularization: We set up two sets of experiments
to verify the effects of λ1(which is control the regularization
strength for the weight matrix W) and λ2(which is control the
regularization strength for two auxiliary matrices I and O),
respectively. Figure 4 shows how IOFM performs when the L2

regularization hyperparameter λ1 varies while keeping λ2 to 0
and the dropout ratio to the optimal value from the validation

(a) Frappe. (b) MovieLens.

Fig. 4. Validation error of IOFM w.r.t. different λ1 of L2 regularization.

(a) Frappe. (b) MovieLens.

Fig. 5. Validation error of IOFM w.r.t. different λ2 of L2 regularization.

set. Correspondingly, Figure 5 shows how IOFM performs
only when the L2 regularization hyperparameter λ2 varies
while keeping λ1 and the dropout ratio to the optimal value
from the validation set. As can be seen from experimental
results, the performance of IOFM will improve when λ1 is
set to a value larger than 0, but the impact on performance is
not significant. Tuning λ2 to an applicable value can further
improve the generalization of IOFM, but a too large value will
result in worse performance.

We can conclude that using dropouts only on the pair-
wise interaction layer pairs simply is not enough to prevent
overfitting, carefully tuning the regularization strength of
the attention layer can further improve the generalization of
IOFM.

(a) Frappe. (b) MovieLens.

Fig. 6. Validation error of IOFM w.r.t. different factorization factors.



3) The number of factorization factors d : Figure 6 shows
how IOFM performs when the number of factorization factors
d varies. Dropout rate and L2 regularization are set to the
optimal value. Specifically, the optimal factorization factors
d on Frappe and MovieLens is 64 and 16, respectively. We
explain this phenomenon by studying the datasets. The size of
the set Rχ for the Frappe dataset is much bigger compared
to the MovieLens dataset, so the optimal factorization factor
d is also bigger, while a too-large factorization factor d can
also cause performance degradation since too many parameters
can increase the difficulty of model training. Besides, the per-
formance of IOFM fluctuates significantly on the MovieLens
dataset with the change in the factorization factors d. This
phenomenon is the same as the case on the impact of dropout.

(a) Frappe. (b) MovieLens.

Fig. 7. Performance comparison on the test set of IOFM, IOFM-I, and IOFM-
O.

(a) Frappe. (b) MovieLens.

Fig. 8. Performance comparison on the test set of IOFM, IOFM-NF, and
IOFM-NS.

D. Impact of IO-aware Auxiliary Matrix (QR3)

IOFM enhances the representation of attention mechanism
by using two awareness matrices. To investigate how each
auxiliary matrix affects predictive performance, we only pre-
serve an auxiliary matrix and explore how IOFM performs.
We named Input-aware-auxiliary-matrix-only-version IOFM-I,
named Output-aware-auxiliary-matrix-only-version IOFM-O.
As shown in Figure 7, although on different datasets, the two
auxiliary matrices have different effects on the performance
of the model, IOFM performs best for both datasets, which
illustrates the validity of both auxiliary matrices. Actually,
as can be seen from Figure 7 that the output-aware matrix

has a more significant effect on the performance than the
input-aware matrix, which means that the improvement of the
attention distribution plays a greater role.

TABLE III
NUMBER OF PARAMETERS OF THE AUXILIARY MATRICES AND TEST

ERROR OF IOFM, IOFM-NF AND IOFM-NS.

Frappe MovieLens
Method Param# RMSE Param# RMSE
IOFM 8,912 0.3076 8,240 0.4133

IOFM-NF 23,040 0.3110 1,536 0.4137
IOFM-NS 9,632 0.3091 8,288 0.4144

E. Impact of factorization and the shared matrix (QR4)

We now focus on studying the impact of the factorization
and the shared matrix on IOFM. We conduct experiments with
the non-factorized version (indicated as IOFM-NF), the non-
shared-matrix version (indicated as IOFM-NS), and IOFM
to determine performance affects. Note that early stopping
is disabled in this experiment, factorization factor d is set
to 16 for IOFM and IOFM-NS. As shown in Figure 8,
performance is further improved by using the shared matrix
for both datasets, since the shared matrix correlates the two
decomposed matrices and reduces the parameter amount of the
model. Factorization can speed up the convergence for Frappe
dataset, while the performance for the Movielens dataset is dif-
ferent. We explain this phenomenon by studying the relation-
ship between the datasets and the number of model parameters.
As shown in Table III, since the difference in model parameter
quantities is only reflected in the two auxiliary matrices, we
only show the parameter quantities of the auxiliary matrices
for the there models. For the Frappe dataset, the number of
parameters is reduced by 58.2% using factorization, further
reduced by 3.1% using the shared matrix, and IOFM betters
IOFM-NF with a 1.1% relative improvement. However, the
situation is reversed on the MovieLens dataset that the amount
of parameters becomes more after the factorization. Since the
MovieLens dataset contains only 3 interaction features while
we use a bigger factorization factor d. Therefore, the use of
factorization and shared matrix on the MovieLens dataset does
not significantly improve the performance of the IOFM.

V. CONCLUSION AND FURURE WORK

In this paper, we propose a novel model IOFM that en-
hanced the feature representation ability of attention mecha-
nism from two aspects. Expressly, the input-aware auxiliary
matrix is inspired by FFM, used to add field interactions
information into feature interactions, and the output-aware
auxiliary matrix describes the attention distribution at a more
fine-grained level. To make the model more efficient, we fur-
ther reduce the model parameters via canonical decomposition
with a shared matrix. Experimental results on two well-known
datasets illustrate that our proposed model is superior to the
state-of-the-art methods.



In the future, we will explore how to increase the ability
of the model to capture higher-order features and try to use
more advanced methods to extract more valuable information
from datasets [32] to see whether it can further improve the
performance. Besides, we will further generalize IOFM to a
more flexible structure and explore the application of IOFM
to other different types of data.
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