
A new batch SOM algorithm for relational data
with weighted medoids.
Laura M. P. Mariño, Francisco de A. T. de Carvalho

Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
Email: {lmpm,fatc}@cin.ufpe.br

Abstract—The great majority of previous works on SOM
concern quantitative vectorial data. Nowadays, relatively few
SOM algorithms are able to manage relational data despite their
usefulness. This paper proposes a new batch SOM algorithm for
relational data with weighted medoids. The particularity of the
proposed approach is to consider the cluster representatives as
vectors of weights whose components measure how objects are
weighted as a medoid in a given cluster. From an initial solution
and for a fixed epoch and radius, the proposed training batch
SOM algorithm provides a partition and cluster representatives
by optimizing a suitable objective function aiming to preserve the
topological properties of the data on the map. Experiments with
datasets of UCI machine learning repository, in comparison with
relevant medoid-based batch SOM for relational data algorithms,
showed the usefulness of the proposed method.

Index Terms—Self-Organizing Maps, Bath SOM, Relational
data, Weighted medoids

I. INTRODUCTION

Self-organizing Kohonen map networks [1]–[6], called
SOM, are one of the most popular unsupervised learning
methods because they simultaneously perform clustering and
non-linear data projection, and thus act as a powerful visual-
ization tool. The SOM network consists of neurons (vertices)
arranged in a priori chosen structure (usually a two or three
dimensional grid map). Each neuron has a representative
(prototype) and it is associated to a subset of the data (a
cluster). The prototypes structure is imposed by both the data
and the a priori structure itself.

SOM networks have been useful in tasks such as profiling
of the behavior of criminals, categorization of galaxies , cate-
gorization of real estates, etc. Moreover, it has been applied on
the statistic, industrial, biomedical, financial and many other
areas (see [4], [7], [8] for surveys).

SOM networks aim to group the data taking into account a
neighborhood structure among the clusters aiming to preserv-
ing the spatial order of the prototypes on the map: the most
similar prototypes are associated with adjacent vertices, while
less similar prototypes are associated with distant vertices on
the map. As a consequence, SOM provides a powerful visu-
alization tool because the clusters can be displayed according
to their neighborhood structure.

During the training of the map, each object must select the
neuron whose associated prototype is most similar to its de-
scription (best match unit, BMU). As a result, both the BMU-
associated prototype and the neuron-associated prototypes in
the BMU’s spatial neighborhood are updated to better reflect
the similarity between the object and these neurons.

SOM networks preserve the topological properties of the
data, which means that if two objects are similar in the original
description space, the corresponding BMU prototypes are also
similar and will be associated with adjacent or nearby vertices
on the map.

The training of the SOM network can be incremental or
batch. According to Kohonen [3], the batch version of the
SOM network is the most appropriate for practical appli-
cations. However, the original version of the batch training
SOM network [1], [9] is limited to manage only quantitative
vector data. Indeed, in unsupervised learning methods, much
more attention was given for quantitative vector data. The
vast majority of currently available machine learning and data
analysis methods are based on a vector model in which, each
object is described by a vector of quantitative values [10].

Unfortunately, many data depart strongly from this model
[11]. In many real-world applications, data cannot be described
by a fixed set of numerical attributes, for instance, when data
are described by categorical variables or by relations between
objects (e.g., persons involved in a social network) [10], [12],
[13]. A way to cope with these more general type of data is to
consider objects described by relational data where each pair
of objects is represented by a relation. In this case, we assume
that data is available in a relational form, where we only have
information about the degrees to which pairs of objects in the
data set are related. This type of data is known as relational
data [10], [14].

The most common case of relational data is when the
relationships between objects are expressed by a matrix of
dissimilarities D = [dkl], where each dkl is the dissimilarity
between the objects ek and el. Relational data is more general
in the sense that it is applicable to situations in which the
objects cannot be represented by numerical features. It is also
more practical for situations where the distance measure does
not have a closed form solution, or when groups of similar
objects cannot be represented efficiently by a prototype vector
[10].

Unsupervised relational data methods have the advantages
of introducing methods capable of handling such data using the
most appropriate distance function for the problem, ensuring
the confidentiality of data represented by a matrix dissimilarity,
having the ability to handle heterogeneous data through its
transformation into dissimilarities, etc.

Many unsupervised methods have been designed for rela-
tional data. In Hierarchical clustering, the sequential agglom-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

erative hierarchical non-overlapping (SAHN) algorithm [15]
handle dissimilarity data. In crisp partitional clustering, Hard
C-medoids (HCMdd) [16] and Partitioning Around Medoids
(PAM) [14] algorithms are extensions of k-means for relational
data using the notion of generalized median: as cluster proto-
types cannot be computed for relational data, it is replaced by
an object of the original data (named medoid) that represents
the best approximation among the original data. Ref. [17] also
extends the k-means for relational data with the particularity
that the cluster representatives are set of medoids (instead of
a single medoid). Moreover, Ref. [18] extends the k-means
for relational data in which the prototypes of the clusters are
vectors of weights whose components measure how objects
are weighted as a medoid in a given cluster. Finally, Relational
Hard C-Means (RHCM) [19] algorithm extends k-means for
Euclidean relational data in which the clusters prototypes
are vectors of weights whose components are related to the
membership of each object in a given cluster.

In fuzzy clustering, Fuzzy C-medoids (FCMdd) [16], Fuzzy
C-Set-Medoids (FCSMdd) [20] and Fuzzy C-Means with
Multiple Weighted Medoids (FCMMdd) [21] extend fuzzy
c-means for relational data but the first with the cluster
prototypes being a single medoid, the second with the cluster
representatives being a set of medoids and the third with the
clusters prototypes as vectors of weights whose components
measure how objects are weighted as a medoid in a given
cluster. Finally, Relational Fuzzy C-Means (RFCM) [12] and
Fuzzy Analysis (FANNY) [14] extend k-means for Euclidean
relational data in which the clusters prototypes are vectors of
weights whose components are related to the membership of
each object in a given cluster.

Concerning Self-Organizing Maps, Median Batch SOM [1],
[9], [22] is the first extension of SOM for relational data. In
this paper, the cluster prototypes are represented by a single
medoid. Ref. [23] provided an extension of the Median Batch
SOM where the cluster prototypes are represented by a set of
medoids. Later, another approach to extend SOM for relational
data was developed. It uses implicit ”linear combination” of
the original data and it is based in the following: the Euclidean
distance between a data point and any linear combination of
the original data points can be computed using solely the
distance matrix. Batch [24] and on-line [13] versions SOM
for relational data based on this latter approach are already
available.

The great majority of previous works on SOM concern
quantitative vectorial data. Nowadays, relatively few SOM
algorithms are able to manage relational data despite their
usefulness. Therefore, extensions of SOM for relational data
are very much required. Refs. [18], [21] shown that multiple-
weighted medoids can describe rich intra-cluster information,
and are more powerful than a single medoid for representing a
cluster. In order to take this advantage and combine with the
visualization properties in an efficient learning strategy, we
propose a new Batch SOM algorithm for relational data with
weighted medoids, hereafter named Batch SOM algorithm
with multi-medoids for relational data (RBSOM-MMdd).

In comparison with previous batch SOM methods for
relational data [1], [23], the new contributions of RBSOM-
MMdd are more precisely the following ones:
• the paper provides a suitable objective function that

should be optimized in order to learn the SOM;
• for a fixed neighborhood radius, the paper gives the

optimal solution for the computation of the representative
(weighted medoids) associated to each neuron;

• for a fixed neighborhood radius, the paper provides an
optimal solution for the partition associated to the neurons
of the SOM;

• the paper gives the time complexity of the proposed
method;

• the paper provides a meaningful evaluation of the pro-
posed method in comparison with relevant medoid-based
batch SOM algorithms for relational data.

The paper is organized as follows: Section II describe
the proposed method and analyzes the temporal complexity.
Section III presents the setup of our experiments. Section
IV provides the performance evaluation of the proposed al-
gorithms against previous approaches, presenting the results
and discussing the main findings obtained with the above
configurations. Finally, Section V concludes.

II. PROPOSED APPROACH

This section introduces a batch Self-organizing map (SOM)
algorithm with weighted medoids, RBSOM-MMdd, that is
able to manage relational data. It is based on fuzzy clustering
algorithm with multi-medoids (FMMdd) and Batch SOM al-
gorithm with c-Medoids for relational data (RBSOM-SMdd).

Let E = {e1, . . . , eN} be the set of objects and let a N×N
dissimilarity matrix D = (dkl) where dkl = d(ek, el) is the
dissimilarity between objects ek and el (1 ≤ k, l ≤ N) on
dissimilarity matrix D.

A SOM consists of a low-dimensional (usually, two-
dimensional) regular grid (map), which contains C nodes
(neurons). Each SOM map is associated with a clusters
partition in which a neuron indexed by r has associated a
cluster Pr and a representative (prototype) vr. In this paper,
the representative vr = (vr1, . . . , vrN) of cluster Pr is a N -
dimensional vector of weights whose components measure
how the objects are weighted as a medoid with respect to
cluster Pr [18], [21].

The allocation function maps each object to an index
r = f(ek) of the index set {1, . . . , C}. The partition P =
{P1, . . . , PC} associated to a SOM is defined by the allocation
function which gives the index of the cluster of P to which
the object ek belongs to, Pr = {ek ∈ E : f(ek) = r}.

Therefore, the proposed method aims to provide:
• A matrix V = (vrj) (1 ≤ r ≤ C; 1 ≤ j ≤ N)

of prototype weights of the objects with respect to the
clusters [21], where vr = (vr1, . . . , vrN) is the vector of
weights whose components vrk measure how the object
ek is weighted as a medoid with respect to cluster Pr;

• The partition P of E into C clusters represented by P =
(P1, . . . , PC)

Starting from an initial solution, and aiming that the ob-
tained SOM be representative of the relationships among the
object provided by the dissimilarity matrix D, the matrix V
of prototype weights of the objects with respect to the clusters
and the partition P are obtained iteratively by the minimization
of an error function J , computed as the sum of the error
measures of all neurons:

J(V,P) =

N∑
k=1

∆(ek,vf(ek)) (1)

Given an object ek, the winner neuron called the best
matching unit (BMU), is selected as the neuron that is closest
to the object ek. The BMU is indexed by f(ek) and identified
with the prototype vector vf(ek). The error measure of a BMU
vf(ek) with respect to the object ek is computed by means
of the dissimilarity function ∆ that enables to compare each
object ek to each prototype vr according to:

∆(ek,vf(ek)) =

C∑
r=1

hf(ek),r d(ek,vr) (2)

where hf(ek),r is the neighborhood kernel function: it mea-
sures the influence neighborhood of BMU on neuron r, and it
is defined as

hf(ek),r = exp

{
−
||af(ek) − ar||2

2σ2

}
(3)

where af(ek) and ar are, respectively, the BMU and neuro r
positions in the grid. Besides, σ is the neighborhood radius.
The size of the neighborhood decreases with σ: the smaller σ,
the fewer the neurons that belong to the effective neighborhood
of a given BMU.

The function d(ek,vr) computes the dissimilarity between
an object ek and a cluster representative vr and it is defined
as

d(ek,vr) =

N∑
j=1

(vrj)
nd(ek, ej) (4)

In Eq. (4), the parameter n controls the level of smoothness
of the distribution of prototype weights among all the objects
in each of the clusters [18], [21].

A. The RBSOM-MMdd algorithm

When the radius σ is kept fixed, from an initial solution
the training map of the RBSOM-MMdd algorithm is based
on the minimization of cost function J , which is performed
iteratively in two steps: representation and assignment. The
representation step gives the optimal solution for the compu-
tation of the representatives associated to the neurons of the
map. The assignment step provides the optimal solution for
the clusters associated to the neurons of the map.

1) Initialization: Some initialization techniques proposed
for the standard SOM can be extended to the case of relational
data [22]. In this paper, we use a random initialization in order
to initialize the matrix V = (vrj) (1 ≤ r ≤ C; 1 ≤ j ≤ N)
followed by the computation of the initial partition P . See
more details in Algorithm 1.

After initialization, the algorithm runs for Niter epochs. One
epoch consists of a representation step in which the prototype
of each cluster is updated followed by an assignment step, in
which each input is associated with a cluster.

2) Representation: During the representation step, the par-
tition P is kept fixed. The cost function J(V,P) is minimized
with respect to the matrix V = (vrj) subject to

∑N
j=1 vrj =

1,∀r and vrj ≥ 0, ∀r, j. First, we compute the Lagrangian
function as follows:

L(V,P) = J(V,P)−
C∑
r=1

βr

 N∑
j=1

vrj − 1

 (5)

where βr are the Lagrange multipliers. Then, taking the partial
derivatives of L w.r.t vrj and βr, and by setting the partial
derivatives to zero, and after some algebra we obtain:

vrj =

 N∑
s=1

(∑N
k=1 hf(ek),rd(ek, ej)∑N
k=1 hf(ek),rd(ek, es)

) 1
n−1

−1 (6)

Remark. From Eq. (6) we can conclude that, at the final of
the training of RBSOM-MMdd algorithm, when hf(ek),r ∼ 0
for f(ek) 6= r, as low is the

∑
ek∈Pr

d(ek, ej) as high is the
weight of object ej as a medoid with respect to cluster Pr.

3) Assignment: During the assignment step, the matrix V
of prototype weights is kept fixed. The cost function J(V,P)
is minimized with respect to partition P and each individual
ek is assigned to its nearest prototype (BMU). It can be easily
shown that the error function J is minimized w.r.t the partition
P when the clusters Pr are updated as follows:

Pr =

{
ek ∈ E : ∆(ek,vr) = min

1≤s≤C
∆(ek,vs)

}
(7)

where ∆ is computed according to Eq. (2).
These steps are repeated until is achieved the max number

of iteration Niter. The algorithm 1 summarizes these steps.

B. Time complexity

The computation of the time complexity of Algorithm 1
takes into account its three (3) main steps as well as the input
parameters: Niter (the number of iterations), N (the number
of objects in E) and C (the number of neurons (clusters)).
• Initialization: The initialization has four (4) steps: (i)

computation the distance matrix between the nodes of
the grid δ, (ii) initialization of the matrix V(t), (iii) the
setting of the initial partition P = (P1, . . . , PC), and (iv)
computation the objective function J(V,P) considering
the initials matrix V(t) and partition P .

Algorithm 1 RBSOM-MMdd algorithm

Require: D = [d(ek, el)] (the dissimilarity matrix), the size
map, the number C of neurons (clusters), δ = [||am −
ar||2] (1 ≤ m, r ≤ C) (the distance matrix between the
nodes of the grid), Niter (the number of iterations), σ0
(initial radius), σf (final radius);

Ensure: V (the matrix of prototype weights of the objects
with respect to the clusters), P (the partition of E into C
clusters);
Initialization:

1: Set t← 0;

2: Compute σ(t) = σ0

(
σf

σ0

) t
Niter ;

3: Compute hm,r = exp

{
− ||am−ar||

2

2σ2
(t)

}
(1 ≤ m, r ≤ C);

4: Randomly initialize the matrix
V(t) = (v

(t)
rj) (1 ≤ r ≤ C; 1 ≤ j ≤ N) such that∑N

j=1 v
(t)
rj = 1∀r and v(t)rj ≥ 0∀r, j;

5: Compute P (t)
r (1 ≤ r ≤ C) to obtain the initial partition

P(t) = (P
(t)
1 , . . . P

(t)
C) according to Eq. (7);

6: Compute J(V(t),P(t)) according to Eq. (1);
7: repeat
8: set t← t+ 1;

9: Compute σ(t) = σ0

(
σf

σ0

) t
Niter ;

10: Compute hm,r = exp

{
− ||am−ar||2

2σ2
(t)

}
(1 ≤ m, r ≤ C);

11: Step 1: Representation: Compute the components v(t)rj
of the matrix V(t) according to Eq. (5);

12: Step 2: Assignment: Compute P
(t)
r (1 ≤ r ≤ C) to

obtain the partition P(t) = (P
(t)
1 , . . . , P

(t)
C) according

to Eq. (7);
13: Compute J(V(t),P(t)) according to Eq. (1);
14: until t = Niter

The complexity to compute δ in the worst case is O(C2).
The cost to initialize the matrix V(t) is O(NC). To de-
termine P the complexity in the worst-case is O(N2C2).
Alike, the complexity in (iv) is O(N2C). Finally, the time
complexity of RBSOM-MMdd in the initialization step
is O(N2C2).

• Representation: The representation step updates the ma-
trix V(t) which has a complexity O(N2C).

• Assignement: The assignment step updates the partition
P = (P1, . . . , PC), which has a complexity O(N2C2).

The general complexity of the algorithm can be computed,
in the worst case, from the complexity of the main three steps
taking into account that representation and assignment run
Niter iterations. Finally, the time complexity of the RBSOM-
MMdd algorithm is O(NiterN

2C2).

III. EXPERIMENTAL SETTING

This section describes relevant aspects of the experimental
setting used to evaluate the proposed method in comparison

with Batch SOM algorithm with single Medoid (MEDIAN-
BSOM) and RBSOM-SMdd state of art medoid based batch
SOM algorithms for relational data. The algorithms were
implemented in the C language and performed on the same
machine (OS: Windows 7 64-bits, Memory: 16 GB, Processor:
Intel Core i7-X990 CPU @ 3.47 GHz).

Seventeen (17) datasets from the UCI Machine learning
Repository [25], were considered in this study. Table I sum-
marizes these datasets, in which N is the number of objects,
P is the number of variables and C is the number of a priori
classes.

TABLE I: Dataset characteristics and array size

Dataset N P C K Squared array size

BrestTissue 106 9 6 9 3 × 3
Iris 150 4 3 9 3 × 3

Wine 178 13 3 9 3 × 3
Sonar 208 60 2 9 3 × 3
Seeds 210 7 3 9 3 × 3
Glass 214 9 6 9 3 × 3

Thyroid 215 5 3 9 3 × 3
Ecoli 336 7 8 16 4 × 4

Ionosphere 351 32 2 16 4 × 4
Libras 360 90 15 16 4 × 4
Wdbc 569 30 2 16 4 × 4
Pima 768 8 2 25 5 × 5

Statlog 1000 20 2 25 5 × 5
Yeast 1484 8 10 36 6 × 6

Wine-quality 1599 11 6 36 6 × 6
Segmentation 2100 19 7 36 6 × 6

Abalone 4177 8 3 64 8 × 8

For each data set, the Euclidean distance is used to compute
a dissimilarity matrix between the objects, taking into account
simultaneously all the real-valued variables. Then, the matrices
were normalized according to their overall dispersion [26] to
have the same dynamic range as follows: each dissimilarity
d(ek, el) (1 ≤ k, l ≤ N) in a given dissimilarity matrix
D is normalized as d(ek,el)

T , where T =
∑N
k=1 d(ek, g) is

the overall dispersion and g = el ∈ E = {e1, . . . , eN} is
the overall representative, which is computed according to
l = argmin1≤h≤N

∑N
k=1 d(ek, eh). One can easily show

that after the normalization of D, we have T = 1. The
considered batch SOM algorithms operate on these normalized
dissimilarity matrix.

In this study, the maps are arrays of squared shape and the
number of neurons was fixed as b

√
Nc. Table I also provides

K, the number of neurons (clusters) in the maps, and their
respective squared array size.

The successful training of the bach SOM algorithms de-
pends on the choice of their parameters [1]–[3]. Different
configurations were searched in an unsupervised way without
the use of the labels provided by the a priori partition through
the appropriate combination of parameters.

Table II shows the parameters used with these algorithms.
They are four (4) common setting for the compared methods.
Each method is executed using either 20 or 50 iterations
(Niter). Also, the initial radius σ0 is computed from the value
of the desired initial neighborhood h0 which, in this paper is

either 0.50 or 0,99. The final value of the neighborhood hf ,
used to compute the final radius σf , is fixed as 0.01.

TABLE II: General setting

Config Niter h0 hf

1 20 0,5 0,01
2 20 0,99 0,01
3 50 0,5 0,01
4 50 0,99 0,01

The initial and final value of the radius σ is computed
according to the expressions (8) and (9) where x and y
correspond to the size of the grid in the horizontal X-axis
and vertical Y-axis, respectively.

σ0 =

√
−[(x− 1)2 + (y − 1)2]

2 ln(h0)
(8)

σf =

√
−1

2 ln(hf)
(9)

σ is updated in each iteration t from the expression:

σ(t) = σ0

(
σf
σ0

) t
Niter

(10)

Moreover, for each dataset it is assumed a square array
map of size

√
K ×

√
K. Specifically, for the RBSOM-

SMdd method two values for q (the cardinality of the set-
medoids) were considered: K

4 and K
2 . The MEDIAN-BSOM

has q = 1. The parameter n of the RBSOM-MMdd method,
that controls the level of smoothness of the distribution of
prototype weights among all the objects in each of the clusters,
was set as 1.1, 1.5 and 2.0.

For a fixed configuration of parameters, the number of
epochs was set, by trial and error, in 30 times. The SOM
map was trained with each batch SOM algorithm on each
dataset. The best training map is selected according to their
respective minimum error function. In order to evaluate the
quality of the cluster partitions and the training map provided
by the batch SOM algorithms, the Overall Error Rate of
Classification (OERC) [27] , the topographic error (TE) [28]
and the Silhouette (S) [29] were considered.

The OERC index assesses the degree of agreement be-
tween an a priori partition and a partition provided by the
SOM algorithm. This index assumes values on the intervals
[0,1] where 0 indicates a perfect agreement between the
partitions.

Moreover, the quality of the best training map given by the
batch SOM algorithms is measured by the topographic error
(TE), computed as follows [28]. Given an object ek let us
denote its BMU with Gr and second BMU with Gs. If these
representatives are associated with adjacent neurons, there is
no local error; otherwise, there is a local topographic error.
The topographic error for the whole mapping is then obtained
by summing up the number of local topographic errors for all
objects and normalizing [28]:

TE =
1

N

N∑
k=1

u(ek) (11)

where N is the number of objects and where u(ek) = 1 if
the neurons corresponding to the BMU and second BMU, are
non-adjacent, and u(ek) = 0 otherwise. TE assumes values
on the interval [0,1] in which a value 0 indicates that there is
no local topographic error.

The silhouette coefficient S corresponds to the average of
the silhouette scores s(ek) computed for each object. The
silhouette coefficient is as follows:

S =
1

N

N∑
k=1

s(ek). (12)

The silhouette score s(ek) is a measure of how similar an
object ek is to its own cluster (cohesion) compared to other
clusters (separation) [29]. The score s(ek) assumes values
on the interval [-1,1], where a high value indicates that the
object is well matched to its cluster and poorly matched to
neighboring clusters. The score s(ek) is obtained as

s(ek) =

1− a(ek)

b(ek)
, if a(ek) < b(ek)

0 if a(ek) = b(ek)
b(ek)
a(ek)

− 1 if a(ek) > b(ek)

(13)

where a(ek) is the mean distance between ek and all other
objects in the same cluster and b(ek) is the smallest mean
distance of ek to all objects in any other cluster. The silhouette
was calculated from the dissimilarity matrix D.

IV. RESULTS AND DISCUSSION

This section discusses the performance of the proposed
RBSOM-MMdd algorithm w.r.t. medoid bases state of art
methods RBSOM-SMdd [23] and MEDIAN-BSOM [1] al-
gorithms.

Table III shows, for each data set and relational batch SOM
algorithm, the overall error rate of classification OERC, the
topographic error (TE) and the silhouette coefficient (S) for
the best hyper-parameter tuning for each method. The tuning
of these hyper-parameters was achieved in an unsupervised
way, the best SOM map provided by each method was selected
based on the best topographic error (TE), the others indexes S
and OERC were considered to measure the quality of cluster
partitions provided by the methods for their corresponding best
SOM map.

It can be observed that RBSOM-SMdd presented the
best performance according to the OERC index in 6 out of
17 datasets. It also tied in 2 datasets with MEDIAN-BSOM
in which they outperformed RBSOM-MMdd. Moreover,
RBSOM-MMdd was the best in 6 and MEDIAN-BSOM in
3 out of 17 datasets. Regarding the TE index, RBSOM-
MMdd was the best in 9 out of 17 datasets. It also tied
in 3 datasets with RBSOM-SMdd in which they outper-
formed MEDIAN-BSOM. In addition, the RBSOM-SMdd
and MEDIAN-BSOM methods win in 1 dataset each one. All

TABLE III: Quality of the training maps and cluster partitions
provided by the batch SOM algorithms

DataSet Methods

Median Config # RBSOM-SMdd Config # RBSOM-MMdd Config #

BSOM (q) method (q) method (n)

Brest- 0,4717 2 0,5472 4 0,5472 4
Tissue 0,1415 (q = 1) 0,1321 (q = 5) 0,0755 (n = 1,1)

0,5890 0,7172 0,7689

Iris 0,0733 2 0,0600 3 0,1000 3
0,3667 (q = 1) 0,2333 (q = 6) 0,0067 (n = 1,5)
0,3597 0,4527 0,5815

Wine 0,2697 2 0,2697 1,2 0,2753 2
0,1629 (q = 1) 0,2697 (q = 3) 0,1573 (n = 1.5)
0,6563 0,6663 0,7287

Sonar 0,4423 1 0,4087 2 0,3510 4
0,2308 (q = 1) 0,1779 (q = 7) 0,1202 (n = 2,0)
0,1413 0,1882 0,1927

Seeds 0,1190 4 0,1048 1 0,1000 1
0,2095 (q = 1) 0,1000 (q = 7) 0,0857 (n = 1.5)
0,4844 0,4850 0,4696

Glass 0,3972 1 0,3879 2 0,4393 2
0,2150 (q = 1) 0,0607 (q = 7) 0,0607 (n = 1,1)
0,3796 0,4752 0,4798

Thyroid 0,1674 2 0,1209 1 0,1163 2
0,4837 (q = 1) 0,3070 (q = 7) 0,0372 (n = 1,5)
0,1920 0,4158 0,4643

Ecoli 0,2530 1,2,3,4 0,2649 1,2,4 0,2798 2
0 (q = 1) 0 (q = 5) 0 (n = 1,5)

0,3271 0,3301 0,3522

Ionos- 0,2963 2 0,3020 2 0,1624 2
phere 0 (q = 1) 0 (q = 5) 0 (n = 1,1)

0,1170 0,1234 0,1049

Libras 0,7861 4 0,7917 1,2,4 0,7944 4
0,0028 (q = 1) 0 (q = 9) 0 (n = 1,1)
0,1781 0,1699 0,1832

Wdbc 0,1160 2 0,1160 1 0,1178 1
0 (q = 1) 0 (q = 6) 0 (n = 1,1)

0,4263 0,4265 0,4128

Pima 0,3060 2 0,2839 4 0,3333 4
0,0859 (q = 1) 0,1419 (q = 14) 0,0078 (n = 1,5)
0,2503 0,1728 0,3458

Statlog 0.2910 4 0,2890 2 0,2910 2
0.2790 (q = 1) 0.1860 (q = 28) 0.1900 (n = 1,5)
0.2338 0.2587 0.2385

yeast 0,5728 1 0,5660 2 0,5613 2
0 (q = 1) 0,0007 (q = 19) 0,0007 (n = 1,1)

0,2429 0,1923 0,1856

wine- 0,5222 4 0,5210 1 0,5228 2
quality 0,0013 (q = 1) 0 (q = 10) 0 (n = 1,1)

0,4198 0,4160 0,4120

segmen- 0,5462 1, 2 0,5619 2 0,5233 1
tation 0,0019 (q = 1) 0,0005 (q = 11) 0 (n = 1,1)

0,3348 0,3194 0,3120

0,4779 4 0,4740 1 0,4838 2
abalone 0,0077 (q = 1) 0,0055 (q=16) 0 (n=1,5)

0,3890 0,2504 0,3984

methods tied in 3 datasets. Finally, RBSOM-MMdd was also
the best regarding the S index in 10 out of 17 datasets followed
by RBSOM-SMdd (4 out 17) and MEDIAN-BSOM in 3 out
of 17 datasets.

Concerning the configurations of Table. II, one can observe
that, whatever the batch SOM algorithm considered, configura-
tions 2 and 3 provide, respectively, the best and the worst TE
for the majority of the datasets. Moreover, as high is parameter
q as better is the TE provided by RBSOM-SMdd. Finally,
RBSOM-MMdd has better values of TE for small values of
parameter n.

The Friedman test [30] was applied to the results aiming
to test if the observed differences in performance among the
methods and indexes were statistically significant. The test
rejects the null hypothesis which states that all the algorithms
are equivalent regarding the TE index. The application of the
Nemenyi and Bonferroni post-tests with α = 0.05 shows that
the RBSOM-MMdd algorithm significantly outperformed the
MEDIAN-BSOM algorithm. The critical difference (CD) deter-
mined by these post-tests were 0.8039 and 0.7687 respectively.
Fig. 1 show the compared methods concerning TE. The best
methods correspond to the lower values of ranks. Moreover,

Fig. 1: TE. Comparison of methods using the Friedman test
in combination with Nemenyi post-test.

the same tests cannot reject the null hypothesis which states
that all the algorithms are equivalent regarding OERC and
S indexes. However, the best ranks also correspond to the
RBSOM-MMdd method with respect to S index.

A. The Ionosphere dataset

This section provides more detailed results for the iono-
sphere dataset in order to illustrate the usefulness of the
proposed method.

The ionosphere dataset [31] consists of a phased array of
16 high-frequency antennas with a total transmitted power on
the order of 6.4 kilowatts. The targets were free electrons
in the ionosphere. ”Good” radar returns are those showing
evidence of some type of structure in the ionosphere. ”Bad”
returns are those that do not; their signals pass through the
ionosphere. Received signals were processed using an auto-
correlation function whose arguments are the time of a pulse
and the pulse number. There were 17 pulse numbers for the
Goose Bay system. Instances in this dataset are described by 2
attributes per pulse number [31]. The priori classes have 225
”Good” and 126 ”Bad” instances.

Table IV shows the confusion matrices (Class x Cluster)
for the methods a) MEDIAN-BSOM, b) RBSOM-SMdd, and
c) RBSOM-MMdd with the corresponding better parameter
setting achieved on the ionosphere dataset.

TABLE IV: Confusion Matrix of the compared methods.
a)
56 0 0 85 0 0 0 0 0 0 0 0 58 0 0 26 225
24 0 0 18 0 0 0 0 0 0 0 0 80 0 0 4 126
80 0 0 103 0 0 0 0 0 0 0 0 138 0 0 30 351
b)
27 0 0 88 0 0 0 0 0 0 0 0 56 0 0 54 225
7 0 0 19 0 0 0 0 0 0 0 0 76 0 0 24 126

34 0 0 107 0 0 0 0 0 0 0 0 132 0 0 78 351
c)
63 0 0 43 0 0 0 0 0 0 0 0 95 0 0 24 225
12 0 0 0 0 0 0 0 0 0 0 0 21 0 0 93 126
75 0 0 43 0 0 0 0 0 0 0 0 116 0 0 117 351

(a)

(b)

(c)

Fig. 2: SOM maps provided by (a) MEDIAN-BSOM, (b)
RBSOM-SMdd and (c) RBSOM-MMdd methods on iono-
sphere dataset

In Table IV, columns 1 to 16 correspond to the clusters,
the rows 1 to 2 correspond to the a priori classes. Except for
the last row and last column, the cells provide the number
of objects shared by the clusters and the a priori classes.
Moreover, the cells of the last row gives the number of objects
in each cluster. Finally, the cells of the last column give the
number of objects, respectively, for the first a priori class (row
1), for the second a priori class (row 2) and the total of objects
(row 3).

Fig.2, displays the repartition of the objects over the 16
clusters on the 4×4 grid provided by (a) MEDIAN-BSOM, (b)
RBSOM-SMdd and (c) RBSOM-MMdd on the ionosphere
dataset. Each node (Clus X) represents a cluster (neuron).
Besides, the circle size is proportional to the number of objects
of the cluster. Also, the total area of the circle is shared
between the two areas corresponding to the a priori classes
”Good” and ”Bad”. Finally, it is indicated also the number
of objects in each a priori class among the objects of the
corresponding cluster.

It can be observed that in the SOM maps and whatever
the considered algorithm, only clusters 1, 4, 13 and 16 are
not empty. Moreover, the clusters with the majority of the
objects belonging to a priori class ”Good” are 1, 4 and 16 in
the SOM map provided by the algorithms RBSOM-MMdd
and RBSOM-MMdd, and are 1, 4 and 13 in the SOM
map provided by the algorithm RBSOM-MMdd. Besides,
the cluster with the majority of the objects belonging to a
priori class ”Bad” is 13 in the SOM map provided by the
algorithms RBSOM-MMdd and RBSOM-MMdd, and is 16
in the SOM map provided by the algorithm RBSOM-MMdd.
Therefore, MEDIAN-BSOM and RBSOM-SMdd algorithms
provided SOM maps that from the top of the grid moving down
to the bottom right side goes from a priori class ”Good” to
a priori class ”Bad”. Moreover, RBSOM-MMdd provided
a SOM map that from the top of the grid moving down to
the bottom left side goes from a priori class ”Good” to a
priori class ”Bad”. Besides, it can be observed that the clusters
produced by RBSOM-MMdd algorithm are more homoge-
neous than those produced by MEDIAN-BSOM and RBSOM-
SMdd algorithms. Finally, the considered algorithms provided
SOM maps of similar quality as measure by TE.

V. CONCLUSIONS

The great majority of previous works on SOM concern
quantitative vectorial data. Relatively few SOM algorithms
were designed to manage relational data despite their im-
portance in practical applications. In this paper we proposed
RBSOM-MMdd, a batch training SOM algorithm for re-
lational data. RBSOM-MMdd minimizes a cost function
aiming to group and visualizing the data while preserving the
spatial order of the neurons on the map. RBSOM-MMdd
is designed to provide a map for visualization purposes, a
partition in a fixed number of clusters and the vectors of
prototype weights representatives of the clusters. For a fixed
neighborhood radius, based on the minimization of a suit-
able cost function, the proposed learning algorithm performs

interactively two steps: the representation step, where it is
computed the cluster representatives, and the assignment step,
where it is updated the cluster partition. The paper provided
the optimal solution for these two steps. Moreover, the paper
also provides the time complexity of the RBSOM-MMdd
algorithm.

Experimental evaluations of the RBSOM-MMdd algo-
rithm, in comparison with relevant medoid-based batch SOM
algorithms MEDIAN-BSOM and RBSOM-SMdd for rela-
tional data were carried out on seventeen datasets from the
UCI Machine learning Repository. The original datasets were
duly transformed to obtain a normalized dissimilarity matrix
as a representation of each base. The degree of dissimilarity
between the objects in the matrix was computed using the
Euclidean distance.

Several configurations of hyper-parameters were considered
for each algorithm. For a fixed configuration of parameters,
the SOM map was trained 30 times with each batch SOM
algorithm on each dataset. The best training map was selected
according to their respective minimum error function. In order
to evaluate the quality of the cluster partitions and the training
map provided by the batch SOM algorithms were computed
OERC, TE and S indexes for the best hyper-parameter
tuning for each method achieved in an unsupervised way.

It was observed that in the majority of the data sets
considered, RBSOM-MMdd outperformed RBSOM-SMdd
and MEDIAN-BSOM concerning TE index. The Friedman test
and Nemenyi post-test confirmed that the proposed method
was significantly better regarding TE. Moreover, RBSOM-
MMdd presented also the best performance concerning S
and OERC indexes. Finally, the usefulness of the RBSOM-
MMdd algorithm was illustrated with its application on the
ionosphere dataset.

ACKNOWLEDGMENT

The authors are grateful to the anonymous referees and to
the Fundação de Amparo à Ciência e Tecnologia do Estado
de Pernambuco - FACEPE (IBPG-0820-1.03/19) and Con-
selho Nacional de Desenvolvimento Cientı́fico e Tecnológico
- CNPq (303187/2013-1) for their financial support.

REFERENCES

[1] T. Kohonen, Self-Organizing Maps, ser. Springer Series in Information
Sciences. Springer, 1995, vol. 30.

[2] F. Badran, M. Yacoub, and S. Thiria, “Self-organizing maps and unsuper-
vised classification,” in Neural networks. Springer, 2005, pp. 379–442.

[3] T. Kohonen, “Essentials of the self-organizing map,” Neural networks,
vol. 37, pp. 52–65, 2013.

[4] C. A. Astudillo and B. J. Oommen, “Topology-oriented self-organizing
maps: a survey,” Pattern analysis and applications, vol. 17, no. 2, pp.
223–248, 2014.

[5] M. Cottrell, M. Olteanu, F. Rossi, and N. Villa-Vialaneix, “Theoretical
and applied aspects of the self-organizing maps,” in Advances in Self-
Organizing Maps and Learning Vector Quantization - Proceedings of
the 11th International Workshop WSOM 2016, Houston, Texas, USA,
January 6-8, 2016, 2016, pp. 3–26.

[6] ——, “Self-organizing maps, theory and applications,” Revista Investi-
gatión Operational, vol. 39, no. 1, pp. 1–22, 2018.

[7] S. kaski, K. Jari, and T. Kohonen, “Bibliography of self-organizing map
(som) papers: 1981–1997,” Neural Computing Surveys, vol. 1, pp. 1–
176, 1998.

[8] M. Oja, S. kaski, , and T. Kohonen, “Bibliography of self-organizing
map (som) papers: 1998–2001 addendum,” Neural Computing Surveys,
vol. 3, no. 1, pp. 1–156, 2003.

[9] T. Kohonen, “Comparison of SOM point densities based on different
criteria,” Neural Computation, vol. 11, no. 8, pp. 2081–2095, 1999.

[10] H. Frigui, C. Hwang, and F. C. Rhee, “Clustering and aggregation
of relational data with applications to image database categorization,”
Pattern Recognition, vol. 40, no. 11, pp. 3053–3068, 2007.

[11] B. Conan-Guez, F. Rossi, and A. E. Golli, “Fast algorithm and im-
plementation of dissimilarity self-organizing maps,” Neural Networks,
vol. 19, no. 6-7, pp. 855–863, 2006.

[12] R. J. Hathaway and J. C. Bezdek, “Nerf c-means: Non-euclidean
relational fuzzy clustering,” Pattern Recognition, vol. 27, no. 3, pp. 429–
437, 1994.

[13] M. Olteanu, N. Villa-Vialaneix, and M. Cottrell, “On-line relational
SOM for dissimilarity data,” in Advances in Self-Organizing Maps -
9th International Workshop, WSOM 2012, Santiago, Chile, December
12-14, 2012, Proceedings, 2012, pp. 13–22.

[14] L. Kaufman and P. J. Rousseeuw, “Clustering by means of medoids.
statistical data analysis based on the l1 norm,” Y. Dodge, Ed, pp. 405–
416, 1987.

[15] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Prentice-
Hall, 1988.

[16] R. Krishnapuram, A. Joshi, and L. Yi, “A fuzzy relative of the k-medoids
algorithm with application to web document and snippet clustering,” in
FUZZ-IEEE’99. 1999 IEEE International Fuzzy Systems. Conference
Proceedings (Cat. No. 99CH36315), vol. 3, 1999, pp. 1281–1286.

[17] F. A. T. de Carvalho, Y. Lechevallier, and F. M. de Melo, “Partitioning
hard clustering algorithms based on multiple dissimilarity matrices,”
Pattern Recognition, vol. 45, no. 1, pp. 447–464, 2012.

[18] J. Mei and L. Chen, “Fuzzy clustering with weighted medoids for
relational data,” Pattern Recognition, vol. 43, no. 5, pp. 1964–1974,
2010.

[19] R. J. Hathaway, J. W. Davenport, and J. C. Bezdek, “Relational duals of
the c-means clustering algorithms,” Pattern Recognition, vol. 22, no. 2,
pp. 205–212, 1989.

[20] F. A. T. de Carvalho, Y. Lechevallier, and F. M. de Melo, “Relational
partitioning fuzzy clustering algorithms based on multiple dissimilarity
matrices,” Fuzzy Sets and Systems, vol. 215, pp. 1–28, 2013.

[21] J. Mei and L. Chen, “Fuzzy relational clustering around medoids: A
unified view,” Fuzzy Sets and Systems, vol. 183, no. 1, pp. 44–56, 2011.

[22] T. Kohonen and P. Somervuo, “Self-organizing maps of symbol strings,”
Neurocomputing, vol. 21, no. 1-3, pp. 19–30, 1998.

[23] A. E. Golli, B. Conan-Guez, and F. Rossi, Classification, Clustering,
and Data Mining Applications - Proceedings of the Meeting of the
International Federation of Classification Societies (IFCS), Chicago,
USA, 15–18 July 2004. Springer, 2005, ch. A Self-Organizing Map
for Dissimilarity Data, pp. 61–68.

[24] A. Hasenfuss and B. Hammer, “Relational topographic maps,” in Ad-
vances in Intelligent Data Analysis VII, 7th International Symposium
on Intelligent Data Analysis, IDA 2007, Ljubljana, Slovenia, September
6-8, 2007, Proceedings, 2007, pp. 93–105.

[25] C. Black and C. Merz, “UCI Repository of machine learning databases,”
http://www.ics.uci.edu/ mlearn/MLRepository.html, Irvine, CA: Univer-
sity of California, Department of Information and Computer Science,
1998.

[26] M. Chavent, “Normalized k-means clustering of hyper-rectangles,” in
Proceedings of the XI International Symposium of Applied Stochastic
Models and Data Analysis (ASMDA 2005), vol. 1, 2005, pp. 670–677.

[27] L. Breiman, Classification and regression trees. Routledge, 2017.
[28] K. Kiviluoto, “Topology preservation in self-organizing maps,” in Pro-

ceedings of International Conference on Neural Networks (ICNN’96),
Washington, DC, USA, June 3-6, 1996, 1996, pp. 294–299.

[29] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[30] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

[31] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

