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Abstract—Reinforcement learning has become an important
scheduling solution with many successes in markets with dynamic
pricing options, e.g., electric vehicle charging in a deregulated
electricity market. However, the highly-uncertain requests and
partially-unknown individual preferences remain major chal-
lenges to effective demand responses in the user-centric envi-
ronment. For charging stations who aim to maximize the long-
term revenue in this fast-growing market, an accurate estimate of
user’s sensitivity, or acceptance, of the prices they offered to the
potential customers is the key to the success of dynamic pricing.
While most existing pricing schemes assume users will consis-
tently follow stable patterns that are observable or inferrable by
the charging service provider, it remains crucial to consider how
users may be influenced by historic prices they have observed and
react strategically to decide optimal charging demands that can
maximize their utilities. To overcome this limitation, this paper
presents a new framework based on reinforcement mechanism
design to determine the optimal charging price in a mechanism
design setting, which can optimize the long-term revenue of
charging stations as well as the social welfare of users with private
utility functions. Specifically, the strategic interaction between
the station and users is modelled as a discrete finite Markov
decision process, a Q-learning-based dynamic pricing mechanism
is proposed to explore how price affects users’ demands over a
sequence of time. The experiments demonstrate that our pricing
mechanism outperforms the predetermined time-of-use pricing
in maximizing the long-term revenue of the charging station.

Index Terms—Charging station; electric vehicle; demand re-
sponse; dynamic pricing; mechanism design; utility; Markov
decision process; Q-learning.

I. INTRODUCTION

Microgrids are advancing the management efficiency and
security of power grids with the ability to integrate distribution
renewable energies, energy storage systems and distributed
controllers [1]. However, in microgrids, peak power demands
at some specific times of the day may bring higher costs
to end-users and instabilities to the electricity networks [2].
Recently, the high penetration of electric vehicles (EVs) may
aggravate the peak loads, which also influences the energy
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prices in the electricity market and consequently the efficiency
of charging scheduling [3]. This situation motivates microgrid
to provide incentives for EV users to adjust the timing of
charging [4]. In such a case, demand response (DR) enables
users to manage their charging preferences through time-
varying prices or incentives at different periods to help im-
prove the grid stability by shifting on-peak charging demands
towards off-peak periods [5], [6]. Typical pricing schemes in
the existing literature include time-of-use, critical-peak and
real-time mode [5].

However, two gaps exist in the current DR-based dynamic
pricing mechanisms: First, most works neglect users’ self-
interested nature and their preferences on power demands,
simply assuming that users’ demands are predefined or drawn
from a given distribution [7], [8]. In the literature, electric
energy tariffs are the most common way to incentivize users
to modify or predict their consumption habits in order to
stabilize the grid loads with an assumption that the charging
actions do not affect the electricity price. However, users
should also participate in the price settlement acting both as
a price taker and a price maker. In realistic scenarios, users’
charging demands are flexible given their utility with reference
to the price. Second, some incentive-based DR mechanisms
that adopt game theoretical approaches focus on computing the
Nash equilibrium-based solutions for the energy management
at each hour or in a short period of time [9]–[11]. However,
the Nash equilibrium solutions, based on user’s best response
strategy regarding the price signal, are always myopic and not
optimal, especially in maximizing the long-term objectives.

In terms of user’s strategic behaviors in a market environ-
ment, dynamic pricing should be formulated as a mechanism
design problem, which can naturally capture the conflicting
preferences of the self-interested users and obtain socially
desirable outcomes, e.g., the maximal long-term revenue of
charging station and the social welfare [12]. However, it is
challenging to develop such a pricing mechanism for EV-
based demand response in a charging market, where users
are modelled as the self-interested agents who aim only
to advance their own benefits rather than the system wide
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efficiency. Particularly, the selfish users will take advantage
of the energy-flexibility by adjusting their power demands
for economic benefits [13]. In addition, their decisions are
affected by multiple factors, making it inapplicable to assume
user’s demand information is single-dimensional, statistically
known, and does not change over time [14]. In the charging
market, users may not be fully rational due to information
asymmetry and may not follow the price signal offered by the
charging station. Moreover, there is no explicit utility model
for users, whose private information is subject to stochastic
changes over time. Add it all up, the information that affects
the dynamic pricing is uncertain, unknown and changing dy-
namically over time, which is accumulated from users’ random
arrivals and changing preferences on charging demands. Such
a strategic interaction between the charging stations and users
will exclude many candidates from existing demand-dependent
pricing schemes, especially when the demand-price profile
and valuation function of users are not precisely known.
Therefore, designing a pricing mechanism needs to address
the stochastic process governing the agent’s preferences with
changing populations over time [15].

To this end, mechanism design can be integrated with
various machine learning techniques in order to accommodate
a variety of dynamic settings across periods and agents’
feedback and their preferences, especially for dynamic pricing
to obtain more profits than those possible from a single
sale price [16]. Specifically, reinforcement learning has been
widely used in decision-making under uncertain scenarios in
energy systems control such as electric vehicles and smart
appliances in the smart grid [17]–[20]. It is able to explore
how the proposed demand response programs can be used
for foresighted users in dynamic environments. For instance,
a reinforcement learning algorithm is proposed in [19] to
deal with dynamic pricing and energy consumption scheduling
in microgrid. The service provider acts as a broker who
purchases energy from the utility company and sells it to
customers, while the customers schedule their energy demands
following the retail charging price. Furthermore, an incentive-
based DR algorithm that integrates reinforcement learning and
deep neural network is proposed in [7] to purchase energy
resources from its subscribed customers, in order to balance
energy fluctuations and enhance grid reliability. However, most
of these works model the electricity price as a component of
state and assume users are price-takers whose actions do not
affect the electricity price; moreover, users are assumed to con-
sistently follow stable patterns that are observable. Different
from them, we aim to estimate user’s strategic response to the
prices during a sequential decision-making process.

In order to address dynamics in mechanism design, a sys-
tematic approach called automated mechanism design solves
the mechanism design problems as a search problem via
artificial intelligence techniques [21]. It takes the input in-
formation of a set of agents and returns a mechanism that
maximizes an objective such as expected revenue over the
agents’ valuation distribution. Within this context, P. Tang
proposed a modelling and algorithmic framework, i.e., rein-

forcement mechanism design [14], to solve the mechanism
design as a sequential decision-making problems and optimize
the economic mechanisms in dynamic environments, where a
designer can make use of the data generated in the process
and automatically improve future design using reinforcement
learning algorithms.

In this paper, we propose a novel reinforcement mech-
anism design framework based on [14] to address a DR-
based dynamic pricing problem in an islanded microgrid
charging station, taking EV users’ strategic behaviors and other
dynamics into account. This framework extends an one-time,
static mechanism to a sequential, dynamic one, considering
the characteristics of power loads, random EV arrivals, un-
certain charging demands and the private preferences of the
self-interested users. Different from the classic mechanism
design, we solve the dynamic pricing as a sequential decision-
making process, where the charging station adaptively sets the
charging prices at each hour so as to maximize its long-term
revenue as well as the social welfare across all users.

In such a decentralized and dynamic environment, users act
as not only the price-taker, but also the price-maker. They
are incentivized to flexibly adjust their charging demands
and reduce the energy consumption of load peak periods by
observing the charging price and the outcome or feedback
that is relevant to them; meanwhile the charging station is
interested in long-term objectives such as the cumulative rev-
enue over time with different price parameters. The strategic
interaction between the charging station and users is modelled
as a finite Markov decision process (MDP) and solved by Q-
learning which determines the optimal pricing for charging
station over time and explores users’ best response on the
charging demands. To the best of our knowledge, this is the
first work in the existing literature that adopts reinforcement
mechanism design framework to address EV-based demand
response problems via dynamic pricing.

The rest of this paper is organized as follows: Section II
introduces the preliminaries and problem formulation. Sec-
tion III illustrates the reinforcement mechanism design frame-
work. Section IV presents the experimental study. Section V
draws a conclusion and outlooks our future research.

II. EV-BASED DEMAND RESPONSE IN MICROGRID

A. System Model

We set one day of 24 hours as the operation period
T = 1, 2, ..., 24, where the t-th hour is denoted by t ∈ T .
We consider an islanded microgrid where a charging station
controls the energy allocated to each connected EV over time
with an objective to maximize its long-term revenue. This
station is connected with microgrid and installed with a solar
panel and an energy storage system. Its power capacity is
characterized by Gbt and Grt , where Gbt is the power offered
by microgrid that is limited by the transformer, and Grt is
the power of photovoltaic array and storage system connected
to this station. The charging station has m identical chargers
which can simultaneously charge at most m EVs at any time



t. It is noted that vehicle-to-grid paradigm is not considered
in this system model.

Consider a set of users I who come and leave the charging
station within T , and each user i ∈ I has a charging
request to be processed by this charging station. The request
is defined as a 4-tuple:

〈
ati, dti, SoE

ini
i , Ei

〉
, where ati and

dti are user i’s earliest arrival time and latest departure time,
respectively. User i should complete her charge within time
window [ati, dti]. SoEinii is the initial State-of-Energy (SoE)
of user i when she plugs into a charger, and Ei is the battery
capacity of her EV. Noting that SoEi,t = Ei ∗ SoCi,t, where
SoCi,t is the State-of-Charge (%) of EV at t.

Before plug-in, user i has a minimum energy demand
emini ∈ [0, Ei − SoEinii ], and she should also decide her
demand xi,t ∈ R+ at for each t ∈ [ati, dti] and ensure
that the total charged energy

∑
t xi,t does not exceed the

maximum energy volume restricted by the battery capacity,
i.e.,

∑
t∈[ati,dti] xi,t ∈ [emini , Ei−SoEinii ]. In addition, let It

be the set of connected EVs at t, where It ⊆ I; and let nt be
the number of EVs plugged in at t, where ∀t ∈ T , nt ≤ m.

The charging station first sets the energy price λt ∈ Λ per
unit power at t and announces it to users, and then users
respond to λt by demanding an optimal amount of power xi,t.
Then the station starts charging EVs and observes the outcome
as well as the revenue at the end of t. These two events
will continue to take place sequentially. The total charging
demands Xt of all connected users at t is

∑
i∈It xi,t, and

the energy-related revenue of station is λt
∑
i∈It xi,t. A user

also has to pay a fixed parking fee τp every hour, and the
parking-related revenue at t is τpnt.

The scheduling result (an outcome) at t satisfies all the
charging demands of the connected EVs, maximizing the
cumulative revenue of energy and parking, as follows:

Rtotalcs =
∑
t∈T

(λt
∑
i∈It

xi,t + τpnt − τe[
∑
i∈It

xi,t −Gbt ]+). (1)

If the total demands Xt exceeds the capacity Gbt , the
charging station has to start using the spare energy sources
Grt and pay extra energy costs with the per unit price τe,
i.e., τe[

∑
i∈It xi,t − Gbt ]

+, where [y]+ = max{0, y}. In
our model, we assume the backup energy sources Grt are
always enough for the excessive demands from users, i.e.,
∀t ∈ T , [

∑
i∈It xi,t −G

b
t ]
+ ≤ Grt .

B. Pricing Mechanism Design

As users’ valuation function and demand-price curve are not
precisely known by the charging station. While the sequential
decisions made by the station relies on the knowledge of users’
charging demands at each hour, which come from the rough
estimation of the maximum energy requirements according to
the battery capacity of the vehicle model. To maximize the
long-term revenue, charging station has to develop efficient
mechanisms to elicit an estimated relation between the price
and users’ charging demands through the strategic interaction.

We first construct a mechanism design environment.

Definition 1 (Mechanism Environment): A mechanism en-
vironment Γ = {I, {Θi}i∈I , {Xi}i∈I ,Φ, {vi}i∈I} consists of
• a set of users I, where I = {1, 2, ..., n};
• for every user i ∈ I, a set of types Θi;
• for every user i ∈ I, a set of actions Xi;
• a set of outcomes Φ and
• for every user i ∈ I, a valuation function vi.
Specifically, (i) the type of user encapsulates all the infor-

mation possessed by users that is not publicly known. Type
will affect user’s valuation over the outcomes, and thus bring
uncertainties in determining the charging demands. In our
model, user i’s type Θi is her current SoC level. (ii) Action
set Xi, a function of user i’s type Θi at each hour, includes her
all possible demands. An action profile X is denoted as the
Cartesian product of the action set of all users: X =

∏n
i=1 Xi,

and x = (x1, x2, ..., xn) ∈ X . (iii) The set of outcomes Φ
includes the energy allocation at each hour given the users’
demands. (iv) User i’s valuation vi is the measurement on an
outcome φ based on her type, i.e., vi(φ; θ) : Θi × Φ → R+,
which reflects user’s demand-price curve. The system-wide
goal of mechanism design is defined with a social choice
function f :

∏n
i=1 Θi → Φ, which maps the type profile of all

users to a set of outcomes. Social choice selects the optimal
outcome given agent types [22].

In this mechanism design environment, dynamic pric-
ing mechanism is essentially the procedure through which
achieves a desired social goal by providing incentives to users.
This dynamic pricing mechanism contains a decision policy
and a payment policy, as follows:

Definition 2 (Pricing Mechanism): A pricing mechanism
(x, {pi}i∈I) over a mechanism environment Γ consists of
• A decision policy x : Λ → {xi,t}i∈I , which maps the

charging prices Λ to the charging demands of users at t;
• For each user i, a payment function pi : X → R+, which

maps the action profile X of all users to a real number.
In our study, user i pays pi,t = λtxi,t+τ

p at t. This pricing
mechanism proceeds as follows: charging station sets the
charging price λt at each hour t from the parameterized class
Λ, and finds a policy that enjoys desirable cumulative revenue.
Users observe the announced price signal at the end of time t,
and then react strategically to determine their demands xi,t+1

for the next hour. At the end of t+1, charging station receives
an outcome as well as the associated immediate reward.

III. REINFORCEMENT MECHANISM DESIGN FRAMEWORK

To implement the pricing mechanism in sequential periods,
we formalize the strategical interaction between the charging
station and users as an MDP and solve the dynamic pricing
with Q-learning, considering the uncertainties coming from
the charging demands and random arrivals of EVs. The
reinforcement mechanism design framework is illustrated in
Fig. 1. In this section, we first introduce the preliminaries
about MDP; and then present the detailed MDP formulation
for the charging station and the Q-learning algorithm; finally,
we analyze user’s strategy in this dynamic pricing mechanism.



Fig. 1. MDP model for the interaction between charging station and users.

A. Preliminaries

The station-user interaction is formulated as an Markov
decision process [23], which is typically characterized by
a 5-tuple 〈S,A, P, r, γ〉, where S is a finite set of states
st ∈ S and A is a finite set of actions at ∈ A. The function
P : S×S×A → [0, 1] defines the state transition probabilities,
where p(st+1|st, at) represents the transition probability from
st to st+1 after at is taken. The stochastic process satisfies the
Markov property: p(st+1|s0, a0, ..., st, at) = p(st+1|st, at).
The function r : S × A → R defines the expected rewards
for state–action pairs, where r(st, at) is the immediate reward
received when at is taken at st. Let Rt denote the discounted
sum of rewards from the state st, then Rt =

∑
t∈T γ

tr(st, at),
where γ ∈ (0, 1] is the discount factor. In the case of charging
scheduling, a station chooses a charging price from the given
set in the current state, and users respond strategically based
on the price. At the end of t, charging station receives an
immediate reward associated with the outcome. Then the time
progresses to t+ 1 with all information updated accordingly.

B. Charging Station Side Analysis

In this MDP, a state consists of the base power capacity and
battery capacity information of the connected EVs; the action
for a charging station is to set the charging price; and the
immediate reward is the total expected station revenue at the
current hour. Specifically, the variables are defined as follows:

1) States: A state st is defined as a 3-tuple:
〈
Gbt , E

req
t , nt

〉
,

which consists of the base load Gbt of the charging station, the
total required energy Ereqt from all users, and the number of
connected EVs nt at t. In this study, Ereqt ≈

∑
i∈It(Ei −

SoEinii ), where Ereqt is an estimation of the total maximal
energy that all connected EVs can charge based on each user’s
battery capacity and her initial SoE. The optimal action for
charging station is determined by observing the current state.

2) Actions: An action taken by the charging station is the
decision of charging price λt at t and the allocation of energy
based on the limited energy supply Gbt and the required user
demands Ereqt . The price has three levels: off-peak λlt, mid-
peak λmt and on-peak λht , where Λ = {λlt, λmt , λht }, λt ∈ Λ.
After these actions are taken, st is updated according to the
strategy of users with respect to the outcome xi,t of time t.

Algorithm 1 Q-learning based Demand Response
Input: The price set Λ, the maximum episode H;
Output: The optimal policy π∗, ∀t ∈ T ;
1: for h = 1→ H do
2: for each hour t ∈ T do
3: Choose at by ε-greedy policy;
4: Take action at;
5: for each user i ∈ I do
6: User i observes the price and submits

their optimal demands xi,t;
7: end for
8: Charging station observes r(st, at), st+1;
9: Update the Q value;

10: end for
11: end for

3) Reward: The immediate reward rt at st of the charging
station is defined as its expected revenue:

rt = λt
∑
i∈It

xi,t + τpnt − τe[
∑
i∈It

xi,t −Gbt ]+. (2)

To maximize the total reward, Q-learning is the most widely
used model-free reinforcement learning algorithm due to its
simplicity, in which the agents learn the optimal policy through
their interaction with the environment [23]. In our study,
charging station learns the optimal pricing through the strategic
interaction with users. Q-learning uses the Q value Q(st, at) as
an expected reward for a state-action pair (st, at). While the
real reward is represented by Q′(st, at) and consists of the
immediate reward r(st, at) and the future expected Q value:
Q′(st, at) = r(st, at) + γmaxat+1

Q(st+1, at+1). And the Q
value is updated by Q(st, at) ← Q(st, at) + σ[r(st, at) +
γmaxat+1 Q(st+1, at+1) − Q(st, at)], ∀(st, at), where σ is
the learning rate. As proven in existing literature [20], [24],
Q-learning obtains a near-optimal policy by driving the action-
value function towards the optimal action value Q∗(s, a)
through iterations.

Solving an MDP is to determine the optimal policy
π∗(a|s) : S → A for the dynamic pricing, which is
to select the optimal action (charging price) for each state
t ∈ T . Numerically, the optimal policy can be calculated
by: π∗(at|st) ← arg maxat

∑
st+1

p(st+1|st, at)[r(st, at) +
γmaxat+1

Q∗(st+1, at+1)]. The process of Q-learning–based
demand response algorithm is shown in Algorithm 1.

Specifically, a charging station chooses the current action at
with the ε-greedy strategy subject to the observations, which
can avoid staying in the local optimum by balancing the
exploitation and exploration during the learning process [24].
The ε-greedy algorithm continues to explore, with probability
1- ε of selecting the best action, and with probability ε of
selecting a random action. In our study, the optimal action
is used in about 90% of the price (ε = 0.1), and takes a
completely random action in about 10% of the cases to explore
and meet bigger possible rewards.



C. User Side Strategy

EV users act both as a price-taker and a price maker,
who observes the charging price and adaptively adjust their
charging demands for each hour. While the charging station
observes the outcome at the end of current hour and determines
the price for the next. The bidding process can be auto-
matically implemented on smart phones or other platforms,
where users only need to set up their charging requests and
the preference information. This section explores how users
respond to the charging prices in order to achieve a maximal
revenue by encouraging users to adapt their charging demands.

The final total energy
∑
t∈[ati,dti] xi,t that user i will charge

is not predetermined; instead it relies on the charging price λt
and the current SoEi,t at each t. During t, users will consume
the energy xi,t required at t−1, so that SoEi,t+1 = SoEi,t+
xi,t, and then recompute their optimal demands for t+1 based
on the updated charging price and SoE.

As the self-interested agents, users will always maximize
their utilities when computing the optimal charging demands.
In our model, we do not consider the strategic interaction
and competition among users but focus on the station-user
interaction, because users have no information about others’
preferences and no conflicting interests with others. We then
present the definition of user’s utility.

Definition 3 (Quasi-linear Utility Function [15]): User i’s
utility is captured by the difference of her valuation vi(·) for
demand xi,t and the charging cost pi,t at t based on her type
Θi and price λt, i.e.,

ui(xi,t, λt; θi,t) = vi(xi,t; θi,t)− pi,t
= vi(xi,t; θi,t)− (λtxi,t + τp).

(3)

The optimal demands x∗i,t ∈ R+ for hour t are obtained
by solving arg maxxi,t

ui(xi,t, λt; θi,t), in terms of their type
θi,t ∈ Θi and the charging price λt. And user i’s charging cost
pi,t includes the energy cost λtxi,t and parking fee τp. We
assume that user’s valuation function follows a Logarithm
function in economics [25], [26]. Users are also assumed to
have a decreasing marginal valuation as SoC increases, which
implies the higher SoC level they have, the less satisfaction
(lower valuation) they will get from the same amount of
energy. Specifically, user’s valuation is defined as the marginal
value of obtaining a certain amount of energy xi,t = ∆SoCi,t∗
Ei given SoCi,t−1, and ∆SoCi,t = SoCi,t−SoCi,t−1. Fig. 2
presents an illustrative example including two different SoC-
valuation functions of user 1 and 2. And this general SoC-
price curve also demonstrates that users always consume less
energy when charging price is higher.

To analyze user’s best response in generating the optimal
demands, we first present the concept of individual rationality.

Definition 4 (Ex-ante Individual Rationality): The pricing
mechanism is ex-ante individual rational if each user i ∈ I
receives a non-negative utility by participation regardless of
her type at t. That is, with user i’s participation, we have

ui(xi,t, λt; θi,t) = vi(xi,t; θi,t)− pi,t ≥ 0, ∀t ∈ T . (4)

Fig. 2. An example of SoC-valuation/price curve of users. User 1 and 2
have different valuation functions, leading to different increase of values in
terms of the same increase of SoC due to their individual types. It can be
seen that user 1 is more sensitive than user 2 in terms of the increase of SoC.
Moreover, the marginal valuation is decreasing with the increase of SoC. For
instance, user 1 has an increased value of $0.71 from 30% to 50% SoC;
however, she has only $0.44 for charging from 50% to 70% SoC.

In other words, ex-ante individual rationality holds if users
can always achieve as much expected utility from participation
as without participating, regardless of knowing her own type
or other users’ types [22].

Definition 5 (Best Response): User’s best response x∗i,t is
the charging demand that maximizes her utility based on her
current SoEi,t and type Θi given the charging price λt. That
is, the optimal demand is defined as xi,t : ui(xi,t, λt; θi,t) ≥
maxx′

i,t
ui(x

′
i,t, λt; θi,t), ui(xi,t, λt; θi,t) ≥ 0, xi,t, x

′
i,t ∈

[0, Ei − SoEinii −
∑
t′∈[ati,t−1] xi,t′ ].

User i will stop charging under two conditions, which
indicates x∗i,t = 0 for t: First, for any charging demands that
produce ui(xi,t, λt; θi,t) < 0, which indicates that continuing
charging brings no more marginal values to her. Second,
the current SoE reaches to EV’s battery capacity limit, i.e.,
Ei − SoEinii −

∑
t′∈[ati,t−1] xi,t′ < xi,t.

Theorem 1: The dynamic pricing mechanism is ex-ante
individual rational.

Proof 1: The set of outcomes Φ−i that is achievable without
user i is a weak subset of outcomes with user i, i.e., ∀i, Φ−i ⊆
Φ. The utility ui of user i is non-negative on all outcomes
without her, i.e., ui(φ′; θi,t) = 0, ∀φ′ ∈ Φ−i. Noting that
users are uncertain about their total demands

∑
t∈[ati,dti] xi,t

before charging, and their real demands are affected by the
physical battery capacity and initial SoE. A rational user will
stop charging when she obtains a negative utility, i.e., when the
charging cost pi,t exceeds the valuation vi(xi,t; θi,t) brought
by this amount of energy xi,t. The parking fee is a constant
cost in the utility function that can reduce a user’s wait-and-see
strategy to charge at a cheaper price in the future. Therefore,
myopic users have no tendency to delay their charge. There-
fore, user i’s best response x∗i,t ← arg maxxi,t

ui(·) implies
her optimal charging demands with the trade-off between
valuation and cost, which admits a maximum utility under
the current price λt. The expected utility accrued from the



rational users is always non-negative. Add it up, the proposed
dynamic pricing mechanism is ex-ante individual rational.

Definition 6 (Weak Budget Balance): A mechanism is
weakly budget balanced if all users make a non-negative
payment to the charging station for all feasible type profiles,
and the total payment is non-negative, i.e.,∑

t∈T

∑
i∈It

pi,t =
∑
t∈T

(λt
∑
i∈It

xi,t + τpnt) ≥ 0. (5)

It can be seen that this pricing mechanism is weakly budget
balanced. That is, there can only be a payment made from
users to the station, but no payment from the station to users.

Followed by above properties, there exists a Nash equilib-
rium in this pricing mechanism if both of the charging station
and users act on their best response based on the actions taken
by the other side.

Definition 7 (Nash Equilibrium): The set (λ∗t ,x
∗
t ) is the

Nash equilibrium of this pricing mechanism [3], if charging
station follows the equilibrium strategy λ∗t ∈ Λ given the best
response x∗

t of all users at t, we have

r(λ∗t ,x
∗
t (λ∗t )) ≥ r(λt,x∗

t (λt)), ∀λt ∈ Λ. (6)

where x is the action profile of all users, such that x∗
t (λ∗t )

is their collective best response, i.e., the optimal demands
(x∗i,t)i∈I in terms of price λ∗t . It can be inferred from the
Theorem 4 in [26] that the set (λ∗t ,x

∗
t ) is a Stackelberg

equilibrium of the strategic interaction between the charging
station and users, if the price set Λ is a non-empty, convex,
and compact subset of an Euclidean space R, and the utility
function ui of user i is continuous in Λ and concave in λt.

IV. EXPERIMENTAL STUDY

A. Experiment Setup

We design two experiments with different charging station
sizes: m = 10 for Group 1 and m = 30 for Group 2. Both of
them are Level-2 AC (240-volt) station supporting an output
power of > 3.7kW and ≤ 22kW . We use the real-world
24-hour data of user power consumption at public charging
stations1, where the 20% and 50% of this commercial load are
used as the base load supply {Gbt}t∈{1,...,24} for 10 chargers
(Group 1) and 30 chargers (Group 2), respectively.

The arrival rate of EVs at each hour t is assumed to
follow a Possion distribution p(k) = δk

k! e
−δ, k = 0, 1, ...,

where δ = 4 represents the Group 1 scenario, and δ = 6
represents the Group 2 scenario. User i’s latest departure time
dti = t + U [2, 5], where U is a uniform distribution, and
her initial SoC is randomly distributed in U [10, 50] (%); then
SoEinii = SoCinii ∗ Ei = 0.01 ∗ U [10, 50] ∗ 30 = U [3, 15].
We assume that all EVs have an equivalent battery capacity
Ei = 30kWh and supports a maximum charging power
50kW . The minimum energy demand emini of user i is
randomly drawn from [0, Ei − SoEinii ].

1SCE load profiles, https://www.sce.com /regulatory/load-profiles, ID: GS-
1, 08/20/2019

We build user’s valuation function vi based on the natu-
ral logarithm function following [26] and assume EV users
share the same utility function, noting that our algorithm
applies to heterogeneous utility functions with different αi.
The valuation-SoC function is shown as:

vSoCi,t =

{
αi ln(βi + SoCi,t), if 0 ≤ SoCi,t ≤ SoCi
αi ln(βi + SoCi), if SoCi ≤ SoCi,t

(7)
where SoCi,t = (SoEi,t−1 +xi,t−1)/Ei. Noting that demand
xi,t at every t ∈ [ati, dti] satisfies xi,t ∈ [0, Ei − SoEinii −∑
t′∈[ati,t−1] xi,t′ ], such that the total energy charged will not

exceed the battery capacity. αi is randomly drawn from 0.2 ∗
Ei ∗U [0, 1] according to the different demand profile of users,
and βi = 1. SoCi is the threshold of the marginal valuation
(often set as 80%), because EVs’ SoC or the charging voltage
will not significantly increase at a saturation stage according
to the battery charging profile2. The valuation is measured
by the marginal gain for obtaining xi,t subject to the current
SoC, i.e., vi(xi,t; θi,t) for demand xi,t, which is Eiαi[ln(βi+
SoCi,t) − ln(βi + SoCi,t−1)]. The optimal demands for t is
computed by xi,t ← arg maxxi,t

ui(xi,t, λt; θi,t)± ξ, where ξ
is an uncertain factor over user demands, ξ ∈ [0.05Ei, 0.1Ei].

This experiment study uses the charging price in the U.S.
public charging stations as the reference, which is around
$0.15/kWh after tax3. Accordingly, the charging price of off-
peak λlt, mid-peak λmt and on-peak λht hour in our model is set
as $0.1/kWh, $0.15/kWh and $0.2/kWh, respectively. The
parking cost τp is $1 per hour. The extra energy purchasing
fee τe is $0.35/kWh. And we set 7:00 p.m. to 7:00 a.m. as
off-peak hour, 7:00 a.m. to 11:00 a.m. and 5:00 p.m. to 7:00
p.m. as mid-peak hour, and 11:00 a.m. to 5:00 p.m. as on-peak
hour in a general case4.

We compare the pricing policy by the Q-learning with the
uncontrolled and static strategy, namely the predetermined
Time-of-Use (TOU) pricing, for these two groups of experi-
ments. A user’s best response and strategy under TOU pricing,
as well as other experimental parameters, including random
EV arrivals and user side information, etc., share the same
setting as they are in the dynamic pricing mechanism.

In this experiment, Q-learning algorithm and static TOU
pricing have ten parallel experiments for each group, and
one experiment iterates for 10,000 times (iterations); and the
solutions are used to define a policy. Each iteration calculates
the total rewards (revenue) Rtotalcs (1) of a day (24h). To
better display the performance of two methods in terms of
the revenue, we take the average rewards of 100 iterations as
one episode, and each experiment has totally 100 episodes.

We use the Q-learning algorithm to approximate Q(s, a)
which takes a state s as input and outputs a vector of
Q-values corresponding to the actions of charging station:

2Battery University, https://batteryuniversity.com/learn/article/charging
lithium ion batteries.

3Global EV Outlook 2019: Scaling up the transition to electric mobility,
https://www.iea.org/gevo2019/.

4TOU Pricing and Schedules, https://www.powerstream.ca/customers/rates
-support-programs/time-of-use-pricing.html.



(a) (b)

Fig. 3. Error band by Q-learning (upper curve) and TOU pricing (lower curve) of 100 episodes. Group (1): with 10 chargers; Group (2): with 30 chargers.
Each band takes the mean and standard deviation of the station reward of ten parallel experiments (y-axis) at each episode (x-axis).

Fig. 4. (Smoothed) Rewards of Q-learning in training for Group 2 (with
30 chargers): one experiment example with 10,000 iterations. Three different
epsilons (0.05, 0.1 and 0.25) are tested in this experiment study.

λt ∈ {λlt, λmt , λht }. The pricing mechanism and Q-learning
algorithm are coded in Python and use reinforcement learning
environments from the OpenAI Gym. The experiments are
carried out on a PC with a processor of Intel (R) Core (TM)
i5-6500U CPU @ 3.2GHz, 8GB memory.

B. Results and Analysis

Fig. 3 demonstrates the performance of two groups using
Q-learning algorithm and TOU pricing, respectively, which
reports an error band-with the mean and standard deviation
during training the cumulative reward (revenue). In Fig. 3 (a)
(Group 1), the station revenue of these 100 episodes for the
Q-learning and TOU are around $476.44 and $442.32, with
an variance of $6.81 and $3.19, respectively. The average
revenues of Group 2 are presented in Fig. 3 (b), which are
$1,321.25 with a variance of $92.15 and $1,032.74 with a
variance of $6.13 for dynamic pricing and TOU, respectively.
The Q-learning with dynamic pricing mechanism can improve
the station revenue for around 7.71% compared to the TOU
pricing for Group 1 and around 27.93% for Group 2, which
indicates charging station can make more $34.12 (Group 1)
and $288.51 (Group 2) profits a day. Moreover, it can be seen

Fig. 5. User charging demands for charging in terms of the best charging
price learned by Q-learning: one iteration example. The stack bar (left blue)
shows the charging demands of each connected EV at each hour in terms of
the charging price (right red). It can be seen that when the energy supply is
low, the charging price can efficiently reduce the energy consumption from
users and postpone the charging activities of some users from peak-hours to
off-peak hours, such that the load stability can be well maintained.

that the dynamic mechanism presents a better performance for
the larger charging station size with more users, as can be seen
that Group 2 improves averagely 27.93% compared to TOU
pricing in terms of the revenue. A larger station size implies
more options for the demand response.

We pick one experiment with 10,000 iterations of Group
2 and present its rewards with three different epsilons (ε =
0.05, 0.1 and 0.25, respectively) in Fig. 4. It demonstrates
that Q-learning algorithm converges to an average reward
of $1,326.61 with ε = 0.1. In addition, Fig. 5 presents one
iteration of dynamic pricing under Q-learning, with the curve
of users’ charging demands and the electricity price from 1:00
a.m. to 12:00 p.m..

Nash equilibrium. It can be seen from Definition 7 that
the Nash equilibrium exists if Λ is a non-empty, convex,
and compact subset of an Euclidean space, while the utility
function is continuous in Λ and concave in λt. We can easily
see that the first condition holds. Combined with the utility



definition (3) and the valuation function (7), the second order
derivative of user i’s utility ui is ∂2ui

∂λ2
t

= 0, ∀t ∈ T . Hence,
the second condition also holds. Therefore, Nash equilibrium
exists if the best price setting can be learned for each hour
under a lack of user-side information.

Since the reward obtained by the Q-learning algorithm is an
expected value, the pair (λ∗t ,x

∗
t ) is an approximation of Nash

equilibrium at t after training the optimal policy π∗ by Q-
learning. Different from the identical-interest Nash equilibrium
of stochastic game that computes the joint optimal policy of
all players [27], the MDP model in this paper acts as a leader-
follower mode, like [3], [26]. The equilibrium strategy exists
in the supply and demand side where users have no conflicting
interests with each other.

V. CONCLUSION AND FUTURE RESEARCH

This paper proposes a reinforcement mechanism design
framework to solve a dynamic pricing problem of an islanded
microgrid charging station in a dynamic charging market. The
sequential strategic interaction between the charging station
and users is modelled as an MDP and solved by the Q-
learning algorithm. The optimal price settlement is learned
by Q-learning considering the random arrivals of EVs and
the uncertain charging demands of users in this sequential
decision-making process. The experimental results show the
charging station revenue by our approach can be improved by
a maximum of 27.93% compared to the TOU pricing.

In our model, users are myopic agents who only care about
their own utility in a short period of time (e.g., one hour),
while computing the optimal charging demand needs more
information about future parameters. For example, users may
tend to wait for a better deal at a lower price in future and take
the potential risk of an increased costs. Our future work will
model user’s decision-making as an MDP and explores the
optimal joint policy of all users that gives them the maximal
expected sum of discounted utilities. Moreover, more strict and
detailed game theoretical proof should be developed to discuss
the gap between the pair (λ∗t ,x

∗
t ) and Nash equilibrium, as

well as its convergence.
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