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Abstract—A plethora of techniques have been proposed in
human action recognition fields, and particularly deep learning-
based methods such as convolutional neural networks (CNNs)
have achieved impressive results. Usually, there is need to tune
hyper-parameters in the deep neural network (e.g., filter size,
stride) to achieve reasonable results. Such hyper-parameter
tuning is, however, extremely time and resource-intensive even
for small models. In this paper, we posit that the inclusion of
an adaptive pooling in CNNs used for human action recognition
largely eliminates the need for hyper-parameter tuning. Specif-
ically, we demonstrated our idea for human action recognition
using inertial sensor data (i.e., a temporal sequence) with a one-
dimensional adaptive pooling. We compared the adaptive pooling
to conventional CNNs with randomly chosen hyper-parameters
using a publicly available data set for human action recognition.
Experimental results showed that the adaptive pooling achieved
better accuracy than the conventional CNNs.

Index Terms—activity recognition, convolutional neural net-
works, hyperparameters, adaptive pooling

I. INTRODUCTION

Human action recognition is a challenging task. Traditional
approaches to solving the problem include the use of video
data capturing the visual patterns of different actions. More re-
cently however, Inertial Measurement Unit (IMU) sensor data
has been adopted for this same purpose with impressive results
[1], [2]. This also comes with the advantages of mobility
and improved user privacy. As such, we direct the proceeding
discussion to IMU sensor-based activity recognition.

Regardless of the modality adopted, Human action recogni-
tion is beset by different concerns including feature extraction
and classification modalities. Traditionally, Feature extraction
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for IMU-based sensor data was handled using different sta-
tistical and temporal measures, including but not limited to
entropy, skewness, kurtosis, etc., with the selection of features
usually determined empirically. Although good performance
was obtained, the problem of feature extraction and selection
remained pertinent.

With the advent of deep neural networks, specifically con-
volutional neural networks (CNNs), the need for manual
feature extraction is obviated. This is due to the ability of
the convolutional portions of such networks to automatically
learn the optimal features which aid the downstream task
(i.e., classification, regression, etc.). This has led to massive
performance improvements in several domains, such as: WiFi
localization [3], Radio communications [4] and Video Trans-
lation [5].

The prevalence of deep neural networks motivates the
question of how to obtain the best performance (e.g. predictive
accuracy, etc.) from their use. This could be seen to consist
of two distinct components. The first of these is the problem
of finding the ”best” architecture for the given problem,
which is formally termed Neural Architecture Search (NAS)
[6]. The second component is concerned with finding the
optimal configuration for a given network architecture. This
configuration refers to the hyperparameters of the network,
which determine the structure of the network. For instance, the
number of recurrent units to use in Recurrent Neural Networks
(RNNs) or the number, size, and stride of convolutional
filters in Convolutional Neural Networks (CNNs). However,
network architectures and hyperparameters need to be tuned
for individual problems, and cannot, in general, be inferred
automatically in a theoretically-principled manner.

In the case of NAS, unless particular constraints are placed
on the network architecture, there are virtually infinite pos-



sible architectures that may yield optimal performance on
the given problem. Additionally, it is immediately clear that
it is computationally-expensive due to the need to train the
candidate models from scratch each time. Additionally, NAS
is, to some extent, still subject to the hyperparameter search
problem i.e. regardless of the architecture chosen, proper
hyperparameters must be selected to yield good performance
on the problem. This also implies that there is no theoretical
guarantee that a simpler architecture with proper hyperparam-
eters cannot match or outperform the optimal architecture as
determined by a NAS procedure.

We believe that the preceding discussion sets the stage for
emphasizing the relative benefit of focusing on hyperparameter
search for deep networks. Given the representational capacity
of deep networks in general, it is not unreasonable to instead
attempt to tune them for optimal performance rather than
focus solely on their particular architecture. This is because
hyperparameter tuning scales with the complexity of the net-
work, and therefore its difficulty can be somewhat contained
by simplifying the network architecture as much as possible.
Although the hyperparameter search problem is, like NAS,
basically infinite, it is much more tractable in practice because
it inherently requires discrete and not continuous solutions,
and the search space can be limited to regions which contain a
(small) range of values. Therefore, we believe that considering
a fairly simple deep network and tuning that accordingly is a
much more feasible approach to obtaining good performance
on a range of different tasks.

There are existing techniques designed to mitigate the
hyperparameter search problem. From first principles, Grid-
search [7] is one such approach that may be applied to
the hyperparameter optimization problem, which considers a
subregion of the (discrete) hyperparameter space, and visits
every point in this region with a view to finding the optimal
hyperparameter configuration therein. This is something of a
naive approach, necessitating the use of less computationally
intensive approaches and methods. Random search [8] is
another approach, which involves the visitation of random
points within some region of the hyperparameter space. This
approach, being non-exhaustive, may not yield the optimal
results but rather ‘good-enough’ results depending on the
criteria set. More advanced techniques like Bayesian hyperpa-
rameter optimization [9] also exist but are not applicable to all
problems, in that they rely on certain assumptions that cannot
easily be guaranteed to be universally valid. Regardless, the
previously-described techniques still remain resource-intensive
due to the need to train and evaluate multiple models, although
countermeasures like parallelization may be adopted to miti-
gate this. In the presence of these drawbacks, two questions
evolve:

e Is it possible to derive a technique that yields optimal
model hyperparameters without the associated computa-
tional overhead?

o Is it possible to design models that are robust to hy-
perparameter settings, such that the exact selection of
hyperparameters does not affect the performance of the

model significantly?

Therefore, the work done in this paper is aimed towards
providing an answer to the second question. We propose
the inclusion of adaptive pooling in convolutional neural
networks applied to activity recognition based on IMU-based
sensor data. Adaptive Pooling is a technique to perform multi-
scale summarization over convolutional feature maps, while
capturing the essential behavior of the feature map itself. It has
the effect of reducing the amount of data needed in tuning the
downstream portion of CNNSs, while reducing the convergence
time and increasing generalization performance. To the best of
our knowledge, this is also the seminal work in which adaptive
pooling is adopted for the realization of hyperparameter-
robust deep convolutional networks. We design a suitable
experimental methodology to validate our proposition, and
carry out experiments on a publicly-available dataset to this
end. Empirical results obtained from our experiments indicate
the efficacy of the proposed method in realizing the stated
goal, consistently providing near-optimal model performance
in the worst case.

The rest of this paper is organized as follows. Section II
provides some background on concepts relevant to the work
done in this paper. Section III introduces our experimental
methodology and its particulars. In Section IV, we present the
results obtained and interpret them accordingly. We conclude
the paper and describe points for future consideration in
Section V.
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Fig. 1. Spatial pyramid pooling for 1D data (4-2-1 pooling sizes)

II. BACKGROUND
A. Adaptive Pooling

Adaptive pooling is a generalization of another technique
called spatial pyramid pooling, which was first introduced in
[10]. Spatial pyramid pooling was introduced to solve the
problem of varying input sizes in CNNs for image-based tasks,
and therefore involves the conversion of convolutional feature
maps of varying sizes into fixed-length summarizations. These
fixed-length summarizations are compatible with the fully-
connected portions of such networks which are actually the
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Fig. 2. System Architecture.

network portions enforcing the requirement for fixed-length
inputs.

The summarization itself is performed over multiple scales.
That is, the feature map is broken into a number of fixed-
size regions, over which a simple pooling operation (max
or average pooling) is carried out, thereby yielding a fixed
number of features. This is typically done over multiple
varying region sizes, ranging from global (i.e., over the whole
image), to smaller sizes. At each size, the number of features
derived is different, but captures details at different levels of
granularity about the input data. By concatenating the features
obtained at different region sizes (i.e., scales), a compact yet
informative descriptor is obtained.

Although the preceding discussion is focused on 2-
dimensional feature maps, it can be seen that the same
principle can be applied to multidimensional inputs as well.
Therefore, adaptive pooling simply describes the extension of
spatial pyramid pooling to arbitrary dimensions, although we
focus on the one-dimensional case in this work due to the
nature of the signals involved. In this case, each of the resulting
1-D feature maps is divided into regions, over which a pooling
operation (i.e., max or average pooling) is performed, similar
to the 2-D case. This is illustrated in Figure 1.

In this work we use a simple notation to describe the
parameters/configuration of the adaptive pooling operation,
which effectively determines the (number of) levels/region
sizes at which adaptive pooling is performed. For simplicity,
we use hyphens to denote the sizes used i.e., 4-2-1 implies that
the input is broken into 4 regions, each of which is pooled, then
2 regions, then a global pooling (i.e., 1 region) is performed.
In general for a configuration x-y-z, the number of features

TABLE I
HYPERPARAMETER CONFIGURATIONS CONSIDERED

Hyperparameter Name Values

Convl Size 2,3,4,5,6,7,8,9,10,11,12,13,14,15
Conv2 Size 2,3,4,5,6,7,8,9,10,11,12,13,14,15
Conv2 Stride 1,2,3,4,5,6,7,8
MaxPool Size 2,3,4,5,6,7.8
MaxPool Stride 1,2,3,4,5,6,7,8
Total Configurations: 87,808

obtained from the use of adaptive pooling is = + y + z.

III. EXPERIMENTAL SETUP
A. Dataset

For purposes of clarity, we perform our experiments on the
REALDISP dataset ( [11], [12]), which is a dataset consisting
of 33 different activities collected from 17 individuals in
total at a sample rate of 50Hz. REALDISP includes 4 sensor
modalities (i.e., accelerometer, gyroscope, magnetometer and
rotation), but we consider only the first two in this work.
We preprocess the dataset into fixed-length windows, each 1
second long and label each window according to the activity it
corresponds to. This yields a total number of 13,963 samples,
75% of which are used for training the models with the
remainder used in testing the predictive performance of the
models. It is also pertinent to state that, during each of the
n training and testing steps mentioned previously, a different
training and testing split is considered in order to obtain a
better estimate of the model’s true performance. We select
n =5 in this work.



B. Protocol

The core hypotheses governing this work are itemized as
follows:

o Hypothesis 1: Given any arbitrary convolutional neural
network architecture, including adaptive pooling in it
gives comparable or better results than the vanilla archi-
tecture i.e., without adaptive pooling.

o Hypothesis 2: Considering some subregion of the hy-
perparameter space, the variance in performance of the
corresponding models which include adaptive pooling is
smaller than the corresponding models without it, due
to the hyperparameter-agnosticism granted by adaptive
pooling.

o Hypothesis 3: The performance of the models including
adaptive pooling are very close to the best performance
obtained by any of the considered models i.e., adaptive
pooling situates the model performance at or very close
to the performance optimum achieved by the best model
amongst the configurations evaluated.

Therefore, in line with the above hypotheses, we design our
experimental protocol as follows:

e We design a benchmark convolutional architecture
(shown in Figure 2), consisting of a number of convo-
lutional layers and a single max-pooling layer. Since we
are not considering neural architecture search, we fix the
base architecture and instead adjust the hyperparameters
of the network layers. We adopt this architecture as it has
been used successfully in solving the activity recognition
problem with generally good results [13], [14], and is
sufficiently small to feasibly demonstrate the concept
under discussion.

o We define a subregion of the hyperparameter space which
contains reasonable hyperparameter configurations for the
problem at hand. The hyperparameters and the values
considered for each are given in Table L.

o Given the large number of candidate configurations in
this subregion (a total of 87,808), we randomly sample
a number of configurations to reduce the computational
resources required for the experiments while giving an
unbiased estimate of the expected behavior of the pro-
posed method. Results from 2,743 models (3.12% of the
total) are obtained.

o For each candidate configuration c, we:

— Initialize the benchmark architecture’s layers with
the elements of the configuration ¢, then obtain
the mean value m, of the performance metric (i.e.,
prediction accuracy) over a number of runs n, each
consists of a training and a testing step.

— Using the same configuration, we replace the default
pooling operator - i.e. traditional max-pooling - in
the architecture with an adaptive pooling layer with a
fixed hyperparameter configuration (i.e., 4-2-1, using
the notation described previously), then obtain the
mean value m/ of the performance metric using

this modified version of the architecture, also over
n training and testing steps.

o We then compare m,. and m/, and aggregate the statistics
over all considered c candidates. Based on the derived
statistics, we then validate each of the foregoing hypoth-
esis accordingly.

All the experiments were implemented using the PyTorch
[15] neural network library, version 1.0.

We present the results obtained and their interpretation in
the following section.
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IV. RESULTS AND DISCUSSION

In order to streamline the proceeding discourse, we present
the results obtained graphically. We derive a histogram over
the model performances as shown in Figure 3, showing the
statistical distribution thereof between the proposed and com-
parative (i.e., without adaptive pooling) models. Additionally,
we include a scatter plot of the baseline model performances
against the proposed models’ performances, shown in Figure 4.

It can be observed that, when the proposed method is used,
the mean of the models’ performances is higher than the
mean of the baseline model (94.14% vs. 92.31%). This is in
line with the first hypothesis put forth, and may be attributed
to the inherent benefits of the adaptive pooling - its ability
to effectively summarize the input data, maintaining its key
characteristics while eliminating much of the details which
may be uninformative (or even misleading to the classifier).
This directly improves generalization as it permits the classi-
fication portion of the network focus on the core parts of the
input which are beneficial for the downstream classification,
rather than factoring in a large number of features which may
eventually degrade its performance based on their noisiness.
Additionally, the summarized version of the input also reduces



100

95

90

85

80

75

Predictive accuracy with adaptive pooling [%]

70

70 75 80 85 90 95 100
Predictive accuracy without adaptive pooling [%]

Fig. 4. Scatter plot of model performances with/without adaptive pooling.
The Red diagonal line indicates a trade-off between accuracies with/without
adaptive pooling, i.e., plots above the line means that accuracies with adaptive
pooling are better than those without adaptive pooling.

the number of weights utilized in the classification portion of
the network, allowing for faster convergence. Figure 4 also
shows the majority of the points distributed above the red
line, indicating that for a given configuration, the performance
obtained from the proposed method is generally higher than
that obtained using the baseline model.

Additionally, it is also apparent that the spread of the
models’ performances when using the proposed method is
much smaller than that without adaptive pooling, which can
also be seen from the spread of the points for the horizontal
(i.e., without average pooling) and the vertical (i.e., with
average pooling) directions, in Figure 4. This indicates that
the variance of the models which include the proposed method
(0.778%2) is much smaller than the models which do not
include it (6.09%?). This is in line with the expectations
put forth by the second hypothesis. This occurs because
unlike the baseline models (i.e., which include max-pooling),
the inclusion of adaptive pooling lends significant robustness
against the hyperparameters chosen, allowing the models to
maintain their performance even in the presence of disparate
hyperparameter settings. This is by virtue of its ability to
summarize the input data across multiple timescales and
therefore preserve the salient information in a robust way.

Going further, it should be noted that the small variance
in the performances obtained from the proposed models also
indicates that the models are reasonably comparable to the
very best model obtained, although a slight performance
penalty may be observed. This validates the third hypothesis,
since their actual performance values lie close (i.e., within 4-
5%) to the maximum possible performance attainable (from
using this architecture).

From the preceding discussion, it can be seen that each
of the proposed hypotheses have been confirmed, indicating
the validity of the initial proposition. Although the results
presented have been aggregated over a fraction of the total
hyperparameter space, we ensure that random sampling in
some sense considers the entirety of the desired subregion and
therefore provides a statistically-valid view of the performance
of the proposed method.

V. CONCLUSION AND FUTURE WORK

In this work, we have proposed an empirical adjustment for
convolutional neural networks as applied to wearable sensor-
based human activity recognition, which aims to eliminate
the need for hyperparameter tuning. We design an experi-
mental methodology to empirically validate our hypothesis,
by considering the results obtained from a baseline CNN
architecture using differently and randomly sampled hyperpa-
rameter configurations. Next, we compare them to the results
obtained from a version of the same architecture modified
based on the proposed method. We obtained results indicating
that the proposed modification yields generally better and
more stable/consistent results than the baseline architecture,
thereby validating the preceding approach and establishing its
suitability for the domain in question.

In the future we intend to perform much more comprehen-
sive evaluations of different models and also investigate the
potential of adaptive pooling in achieving the same or similar
effects for data types at different dimensionalities e.g. images.
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