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Abstract—In current deep network architectures, deeper layers
in networks tend to contain hundreds of independent neurons
which makes it hard for humans to understand how they interact
with each other. By organizing the neurons by correlation, hu-
mans can observe how clusters of neighbouring neurons interact
with each other. In this paper, we propose a novel algorithm
for back propagation, called Locality Guided Neural Network
(LGNN) for training networks that preserves locality between
neighbouring neurons within each layer of a deep network.
Heavily motivated by Self-Organizing Map (SOM), the goal is
to enforce a local topology on each layer of a deep network
such that neighbouring neurons are highly correlated with each
other. This method contributes to the domain of Explainable
Artificial Intelligence (XAI), which aims to alleviate the black-
box nature of current AI methods and make them understandable
by humans. Our method aims to achieve XAI in deep learning
without changing the structure of current models nor requiring
any post processing. This paper focuses on Convolutional Neural
Networks (CNNs), but can theoretically be applied to any type of
deep learning architecture. In our experiments, we train various
VGG and Wide ResNet (WRN) networks for image classification
on CIFAR100. In depth analyses presenting both qualitative
and quantitative results demonstrate that our method is capable
of enforcing a topology on each layer while achieving a small
increase in classification accuracy.

I. INTRODUCTION

There has been significant progress in deep learning in the
past few years, especially with recent advances in compu-
tational power and the emergence of large datasets to train
models. Deep learning techniques have taken the top position
as state of the art in many domains such as image processing
[1] and natural language processing [2]. The development
of software libraries have simplified the process of training
networks to the point where domain experts that only have a
small amount of deep learning knowledge can build models.
However, one major challenge for deep learning is its inherent
black box nature, in which users have little control or knowl-
edge on what type of features are learned in the hidden layers.
This lack of knowledge can prohibit the application of deep
learning in critical domains; where misclassifications have a
high cost. Until we can explain how deep learning models
have come up with a decision, it will be difficult to apply
them in areas such as self-driving cars, medical diagnoses,
and other critical domains [3]. Another application where it is
important to understand what type of semantic information a
model learns is in transfer learning [4]. Many of these methods

take pretrained networks that are trained on large datasets
like ImageNet [5] or Kinetics [6] and then utilize only the
feature extraction portion of the model and feed it through a
different classifier. In these types of methods, the classifier
is forced to treat all of its input features as independent
and unknown features due to the blackbox nature of deep
learning. If domain experts could understand the features from
deep learning methods, they may be able to apply their own
knowledge and form handcrafted features that could improve
the classifier.

One challenge in trying to understand neural networks is
that the neurons within a given layer are independent of each
other. In current deep learning structures, neurons are only
connected to other neurons in the previous and next layers;
none of the neurons within the same layer are connected to
each other. This makes it difficult to find any inherent rela-
tionship between features without comparing all of the neurons
in the same layer together. We propose a new algorithm for
back propagation inspired by Self-Organizing Map (SOM),
that can enforce a topology on each layer where neighbouring
neurons learn similar concepts. While in this work we focus
on convolutional neural networks with images, this method is
theoretically applicable to other networks types. Enforcing a
topological structure that gathers similar filters together will
make it easier for humans to visually understand the deeper
layers of a network. The work by Google [7] identified the
concept of Neuron Groups in which certain visual concepts
activate specific groups of neurons. Our method aims to
group these neurons together in the topology. The primary
contributions of our Locality Guided Neural Network (LGNN)
method include:

• Clustering neurons in each layer of a network using
a similar neighbourhood function to SOM such that
neighbouring filters share semantic concepts.

• Only modifying the gradient update step for convolutional
layers such that it can be integrated into any state of
the art Convolutional Neural Network (CNN) model with
negligible computational overhead.

• Enforcing the topology during training without any post-
processing, unlike methods like [8], [9]

• Slightly increasing accuracy for image classification due
to the regularizing effect of neighbourhood functions
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II. BACKGROUND

A. Explainable Artificial Intelligence

The Explainable Artificial Intelligence (XAI) program was
started by DARPA in their interest for autonomous systems
that can make critical decisions. While they credit machine
learning methods for their high success, they state their main
limitation is their inability to explain their decisions to human
users. The main questions they want answered by machine
learning systems include: ”Why did you make your decision?”,
”When do you succeed or fail?”, and ”How can I correct
your errors?”. The target for the XAI program is for a new
generation of machine learning methods that can have their
thought process explained to human users. Researchers have
mainly targeted the problem of XAI in two ways:

• Post hoc methods that can attach explanations to already
trained models

• Modifying or creating new machine learning models that
are more inherently understandable by humans

Research in post hoc interpretation of machine learning have
tried to tackle the problem from several angles. One example
is Local Interpretable Model-agnostic Explanations (LIME)
which ignores the AI model and explains the relationship
between a single input and its output by approximating a
small local area around the input as a linear classifier [10]. For
XAI in CNNs, some recent works try to tie neuron activations
to semantic concepts humans can understand. One method is
Network Dissection [9], which is a framework that assigns
quantitative values to how interpretable an individual neuron
is to a semantic concepts such as scenes, objects, textures, and
colors. Another method is Testing Concept Activation Vectors
(TCAV) [8], which translates semantic concepts to a vector
within a layer’s output space rather than an individual neuron.
TCAV finds the vector by first creating a training set consisting
of images that contain a concept and images that do not. The
images are fed through the network and the activations at the
desired layer are used as an input to a linear classifier. The
vector orthogonal to the linear boundary is used to represent
the concept.

Several XAI methods, including our method, propose ways
to modify models to be inherently more understandable. Vari-
ational Auto Encoders (VAE) and their variants are a good
example of a specific network model that is explainable [11]–
[13]. Autoencoders consist of an encoder that compresses an
input to a latent space, and a decoder that restores the original
input vector. VAEs modify the encoder such that it returns a
probability distribution instead of a single latent variable and
also adds a regularization term to the loss such that the latent
space becomes continuous, where vectors close to each other
in the latent space have similar appearances in the original
input space. This allows users to sample the latent space and
still get coherent decoded outputs. In one XAI application, [4]
proposed a network architecture that inherently learns action
recognition in an explainable way. Rather than classifying the
action directly, their method detects objects first. The objects
are then fed through a Graph Connected Network (GCNs)

[14] to determine how the objects interact to classify actions.
Since the network has been broken up into steps, a human can
see what types of objects were detected by the first step, and
also see what type of connections the second step deemed as
important for classification.

Our method explores XAI by simply re-organizing the order
of filters such that users can have a more global understanding
of each layer compared to looking at the unordered filters
individually. In the ideal scenario, the filters trained by LGNN
would be identical to the baseline, but organized such that
the filters that all activate on similar semantic concepts are
gathered together. In [7], the authors identified the groups of
filters that activated on similar concepts as Neuron Groups, but
their work did not use these groups to reorganize the filters.

B. Network Visualization

Since CNNs are applied to the domain of image processing,
it is natural that many methods try to explain CNNs through
visualization. Two categories of visual CNN interpretations
include attribution/saliency and feature visualization [15], [16].
Attribution methods show what parts of an example image
triggered a specific neuron activation [7], [17]–[19]. They
first take an input image and feed it through a trained CNN.
They then try to map the neuron response back to the pixel
regions in the original image that activated it. The issue
with attribution methods is that they only show a correlation
between an input image and neuron activation. In traditional
CNNs, individual neurons at the higher levels can represent
mixtures of patterns or concepts [20]. Since attributions are
tied to dataset examples, they could possibly mislead users by
only showing a portion of what a neuron is looking for.

Feature visualization methods try to numerically generate a
new image that maximizes a specific neuron’s activation. They
start with a noise image and trains the image to maximally
activates a neuron. It accomplishes this by setting the training
loss to the negative activation of the desired neuron, freezing
the network weights, and passing the gradients all the way
to the noise image. The resulting image should be a pattern
that represents what the desired neuron is looking for. There
are several regularization techniques listed by [16] that can
help make clearer visualizations including; high frequency
penalization, transformation robustness, and learned priors.

C. Self Organizing Maps

This work uses a locality enforcing algorithm that is mo-
tivated by SOM [21]. SOM is an unsupervised clustering
algorithm that is often compared to Vector Quantization (VQ)
or K-Nearest Neighbours (KNN). The unique feature of SOM
compared to other clustering methods is that SOM sorts its
clusters by similarity. Section III-A explains in fuller detail,
but essentially SOM achieves the locality based ordering by
defining a structure (typically a 2-D grid) for the clusters
during initialization as a set of connected neighbours for
each node and then propagating any gradients that each node
receives to its neighbours.



Several works including [22], [12] and [23] are examples
of methods that have employed SOM in AI. In [22], Spherical
Self Organizing Maps (SSOM) is used as an extension of
SOM, to evaluate ballet dance performance. The only differ-
ence between SOM and SSOM is that SSOM is structured as
a tessellated enclosed sphere as opposed to a 2D grid. This
work treated individual neurons within the SSOM as a posture
and classified full ballet performances as a trajectory through
the SSOM. In [12], the main goal of the work was to take the
high dimensional features from deep networks and to make
them more visually interpretable for humans; specifically for
time series. The work used a VAE as the baseline model and
further compresses the encoding by representing it as a neuron
within a trained SOM. The main contribution in the paper
was the introduction of several loss functions, which allow
the backpropagation to overcome the non-differentiability of
discretization and for the SOM to be traversed smoothly in
time. Similar to [22], this method can encode a time series as
a trajectory through a SOM. In [23], a SOM was trained on the
FC layer at the end of a deep network as a means of quantiza-
tion for Aproximate Nearest Neighbour (ANN) search. Their
method leveraged the topology preserving capabilities of SOM
to train a quantization loss along side the classification loss
where similar image pairs minimized their distance on the
SOM map while dissimilar images maximized their distance.
By attaching SOM to the end of a deep network, they were
able to acquire input features from the FC layers that contain
information about the image. Overall, their method is capable
of both ANN search and classification.

III. PROPOSED METHOD

A. Locality Guided Neural Networks

The main goal of this work is to interfere as little as possible
with current CNN structures while allowing correlation along
the channel dimension to be inherent. Our method will attempt
to enforce a topology on each layer such that neurons that
search for similar concepts are clustered together. This will
make it easier for users to have a more global understanding of
each layer rather than looking at individual neurons. Addition-
ally, having locality within the learning will allow information
to be propagated within each layer instead of only propagating
between layers.

Our algorithm borrows its topology preserving properties
from SOM. In the original SOM algorithm, neurons are
arranged into a 2D grid and contain a location in the grid lj
and a weight wj for each neuron j. The weight corresponds to
the position of the node in the high dimensional input space.
The location of the neuron would be its position in the 2D
latent space. SOM employs competitive learning such that
during each iteration, only a single neuron wins a gradient
from the input. SOM also employs a neighbourhood function
such that after a neuron wins, a portion of the gradient is
passed to its neighbouring neurons in the latent space. When
fully trained, the competitive learning and the neighbourhood
functions cause the SOM map to behave like a blanket being
spread on a higher dimensional surface.

At the beginning of the SOM algorithm, the grid is ini-
tialized with random weights. Each iteration, a single sample
is selected from the input and the node with the weight that
has the smallest Euclidean distance is selected as the winning
node:

c = argminj(||x[t]− wj [t]||2) (1)

where c is the index of the winning node, x[t] is the input at
iteration t, and wj [t] is the weight of neuron j. The winning
node and its neighbours receive a gradient that is inversely
proportional to its distance in the latent space to the winner:

wj [t+ 1] = wj [t] + α[t](ηcj [t](x[t]− wj [t])) (2)

where ηcj [t] is the neighborhood function and α[t] is the
learning rate. The neighborhood function is a monotonic
decreasing function centered on the winning node. In this work
we use a Gaussian window of a fixed size and shrinking σ
as our neighbourhood function. Overall, this means that the
winning node receives a large pull towards the input, while
the neighbouring nodes receive a pull of diminishing strength
as the nodes get further from the winner. By having the winner
pass a portion of the gradient to its neighbours, the neighbours
all start to share similar semantics after a few iterations.

While SOM is a type of neural network, its structure is
not meant for deep learning. Previous works such as [12] and
[23] have already combined SOM with deep learning models
as explored in Section II-C, but in both of the works SOM was
trained on the output of a single layer. In this work however,
we wish to enforce a SOM-like locality on each layer of a
CNN. That way, the filters of each layer can be arranged
along the channel dimension and have its topology preserved.
Since the filters of a CNN already receive gradients from
back propagation, we decided to use those gradients rather
than acquiring them from the input like in traditional SOM.
Additionally, while we initially tried to incorporate competitive
learning to our method, we found during our initial test that
it significantly reduced the rate at which the network was
learning and so it was taken out. In a future work, competitive
learning could be added back in. Since the only part of SOM
we are keeping is the neighbourhood function, we call our
method LGNN to avoid confusion.

Before the weight update function from SOM can be used,
it needs to be modified to fit the gradients from deep learning.
In CNNs, the gradients now come from back propagation and
are accumulated over batches and so we denote g[k] as the
gradient of the kth filter which has been accumulated over
a batch of images. We also note that since we have a batch
of accumulated gradients instead of the gradient of a singular
winner of an iteration, the neighbourhood function needs to
shift and be applied to each of the gradients. From equation
2, we remove the time arguments and add a summation over
k accumulated gradients in a batch. The new weight update
function for each batch is:



wnew[j] = wold[j] + α
∑
k

(η[j − k]g[k])

= wold[j] + α(η ∗ g)[j]
(3)

As shown in equation 3, the term on the right is equiv-
alent to performing a convolution between the accumulated
gradients and the neighbourhood function. In other words, to
achieve locality between filters, we simply reshape the channel
dimension of the gradient matrix and then low pass filter it.
The pseudocode for LGNN is as shown in Algorithm 1. The
product of the SOM dimensions [m,n] need to be equal the
number of filters in the layer. Since each individual layer can
have different number of output channels, we store the SOM
dimensions as a lookup table.

Algorithm 1: Locality Guided Neural Networks
cout = output channels, cin = input channels, s =
filter size, [m,n] = SOM dimensions

begin
Initialize network
Initialize LPF with fixed weights
for each iteration do

Zero gradients
Input batch into network and calculate

gradients from back propagation
for each layer do

Reshape gradient tensor:
[cout, cin, s, s] −→ [(cin × s× s), 1,m, n]

Apply LPF
Reshape tensor back:
[(cin × s× s), 1,m, n] −→ [cout, cin, s, s]

Apply gradients

For our neighbourhood function, different LPF sizes were
tested. It was found that when the LGNN switched from a 3×3
LPF to a 5× 5 LPF, the validation accuracy dropped by more
than 2%. We suspect that this is due to the fact that LGNN
gets its gradients from back propagation rather than having
the neurons matching the input distribution. While for SOM
there is a singular input distribution, there are several local
minimums that a network can settle on. If the pulling effect
from the neighbourhood function is too strong, it may force
the network to overfit to the training set and not generalize as
well to new data.

There are several benefits to LGNN. Firstly, this method
allows information to propagate locally within a layer. Nor-
mally, information in neural networks only propagates between
layers, which can allow neurons within the same layer to carry
redundant or conflicting information. The second benefit to
LGNN is that applying it to a network only modifies the accu-
mulated gradients during back propagation. No modifications
are done to the network configuration nor the forward pass, and
there is no required post-processing. Since back propagation
is the only thing changed, an LGNN version of a network

will have identical inference time to the baseline model. Also,
since the accumulated gradients are the only tensors affected
by LGNN, the added computational time of LGNN does not
scale with image or batch size since the gradients are already
accumulated for an entire batch.

IV. EXPERIMENTS AND RESULTS

A. LGNN Applied to VGG and WRN

In our first experiment, we compare the performance of
LGNN against their baseline models. For these experiments,
CIFAR-100 is used as the dataset. We use two different
baseline models: VGG [24] and Wide ResNet (WRN) [25].
For VGG, we use VGG-11 and VGG-19. For these models,
we replace the last 3 FC layers with a single FC layer as [19]
demonstrated that multiple FC layers adds too many network
parameters without much benefit. For WRN, we use WRN-
16-8 and WRN-28-10. All models use batch normalization
[26] and the WRN models use the dropout version with 0.3
dropout. The optimizer is SGD with a momentum of 0.9 and
a weight decay of 0.0005. VGG-11 ran for 100 epochs with
an initial LR of 0.1 and decreased by a factor of 0.2 at epochs
(40, 70, 90). The other 3 networks ran for 200 epochs with
initial learning rate of 0.1 and decreased by a factor of 0.2
at epochs (60, 120, 160) just like in [25]. The reason why
VGG-11 has different hyper parameters is because the model
was small enough to finish training at 100 epochs and we
wished to keep training time short for this model in order to
test the different versions. For the neighbourhood function, a
3 × 3 Gaussian LPF was used with a σ of 0.5. Replication
padding was used whenever the LPF was applied. In most of
our experiments, two different version of the neighbourhood
function were tested; in the first version the LPF stayed the
same the whole time and in the second version, σ was changed
at the rate of:

σ = 0.5× (1− current epoch

total epochs
) (4)

In the results, we call the trials either constant or decreasing
to refer to σ. Since LGNN does not change the network
configuration or number of parameters, we were able to save
5 sets of random initializations and then ran each network
configuration on each of those saves. When looking at the
final results, we use the median instead of the mean as it is
more robust against outliers when the number of trials is low.

VGG size Regular LGNN-Constant LGNN-Decreasing
VGG-11 69.96 70.16 70.17
VGG-19 72.01 72.39 72.46

TABLE I: Accuracies (%) for VGG

The results for VGG-11 and VGG-19 are shown in table
I. For the VGG networks, the median performances for all 3
networks are not dramatically different, with both versions of
LGNN pulling slightly ahead of the baseline version. Also,
having a decreasing or constant sigma did not significantly



affect the median performance. Between the two sizes, VGG-
19 had a larger performance increase. While the performance
difference is minimal, we have demonstrated that training a
network to have a local topology did not adversely affect the
performance of the network.

Wide ResNets have a more complex structure than VGG
with various convolution filter sizes and residual branches.
Therefore, we test LGNN on various combinations of layers.
In ResNets, the shortcut path is supposed to grant an easier
path for gradients to flow to lower layers and so there is a
possibility that applying LGNN to the 1 × 1 convolutions in
them may decrease performance. Also, the very first convo-
lution in WRN contains far fewer filters than the other layers
and applying locality to such a small number of filters may
harm the network’s ability to learn distinct features. Therefore,
the first configuration we use only applied LGNN to the main
branch of the resblocks without changing the convolutions in
the shortcuts and first layer. The second configuration applies
LGNN to the main branch and the shortcuts in the resblocks
but still ignores the first layer. The final configuration applies
LGNN to all layers.

WRN
size Regular Main Branch ResBlocks All

Con Dec Con Dec Con Dec
16-8 78.87 78.90 78.94 79.08 79.10 79.07 79.12
28-10 80.62 - - 80.88 81.08 80.99 80.81

TABLE II: Accuracies (%) for Wide ResNet

The results on WRN are shown in table II. In the WRN-
16-8 experiment, All LGNN configurations performed better
than the baseline, with the Main Branch configuration per-
forming slightly worse than the other two. The other LGNN
configurations have relatively similar performances with the
highest performance having a 0.25% increase compared to
the baseline. The best median performance came from having
a decreasing sigma where the difference between applying
LGNN to only the resblocks or all layers was fairly minimal.
In the WRN-28-10 experiment, since applying LGNN to only
the main branch of the resblocks did not perform as well as
the other two structures in WRN-16-8, those experiments were
left out. The best median performance came from applying
LGNN to only the resblocks with a decreasing sigma which
had a performance increase of 0.46% increase.

Overall, while the performance increase was minimal, it
scaled positively with network size. Our theory as to why
LGNN marginally improves performance is due to regu-
larization. While we use weight decay already, our other
experiments in section IV-B suggests that the competitive
learning from LGNN may have a regularizing effect on the
weights. Another reason why LGNN could possibly have
an effect on performance is that competitive learning could
allow individual neurons to escape local minimums. In these
situations, if a neuron is stuck in a local minimum, as long
as one of its neighbours receives a large gradient, the neuron
in question will receive a part of it and eventually escape the
local minimum. The main focus of this work was to make

CNNs more understandable while having minimal impact on
the learning which was achieved by not having any of the
median accuracies drop using our method.

B. Analysis of LGNN on the First Layer of a Network

(a) VGG-19 Baseline

(b) VGG-19 LGNN-Constant (c) VGG-19 LGNN-Decreasing

Fig. 1: Comparing the first layer of VGG-19 between the
baseline and LGNN.

Magnitudes Regular LGNN-con LGNN-dec
Min 2.1775e− 06 0.0111 0.0007
Max 2.2977 1.6394 1.9456

Std Dev of Log 3.6854 1.0199 2.0902

TABLE III: Magnitude statistics of filters in Figure 1

To further understand how LGNN affects a network, we
examine the filters for the first layer of VGG-19 for one set
of trials. The first layer for VGG-19 is used because it is
the only layer with 3 input channels which makes it easier
to visualize and VGG has more filters in the first layer. For
the other layers, visualization techniques in [16] are required.
The filter weights were normalized between [0 1] individually
and then organized to the SOM dimensions. The first layer
of VGG-19 contains 64 filters and the SOM dimensions were
[8,8].

As shown in figure 1, LGNN has a noticeable effect on the
learned filters. Compared to the baseline filters, the LGNN
filters have an organized structure where the filters with similar
appearances are grouped together locally. Looking at table III,
the LGNN filters also have a smaller range of magnitudes.
In the table, the smallest magnitude for the baseline is in the



range of 10−6 while the LGNN with constant neighbourhood
and decreasing neighbourhood have a minimum magnitude of
10−2 and 10−4. This smaller range of magnitudes points at our
method having a regularizing effect that reduces overfitting. It
is important to note that since batch normalization and weight
decay were being used in training there already was some
regularization, but LGNN seems to still positively affect the
training although minimally.

C. Analysis of LGNN on Hidden Layers of a Network

(a) Baseline Correlations

(b) Baseline Filter Visualizations

(c) LGNN-Constant Correlations

(d) LGNN-Constant Filter Visualizations

Fig. 2: Correlations between filters within the last layer of
VGG-11.

While the first layer of a network is generally the only layer
where weights can be directly mapped to color, the higher
level layers are the ones that contain more interesting semantic
filters. To visualize these filters, we use the techniques listed
by [16] in which their code is available through Google’s
Lucid toolbox. The toolkit numerically generates images that
maximally activates the filters. Our networks which were
trained in Pytorch were transferred to Tensorflow using the
Open Neural Network Exchange (ONNX) toolbox. Using the
Lucid toolbox, the image size was set to 32 × 32, fft and
decorrelate were set to True, and all other parameters were
kept at their default values.

The first analysis we perform on the higher levels is to
observe if the topology holds and if these correlations corre-
spond to clusters of filters with similar semantic information.
To see if the correlations hold, we first calculate a Gram matrix
for the filter weights of the last layer of VGG-11. Each row
of the Gram matrix represents the correlation between the
filter corresponding to that row and all the other filters. By
extracting said row and reshaping it to the SOM dimensions,
we can then represent the correlations as a heat map. We set the
main diagonal of the Gram matrix to 0 before extracting each
row so the heat maps do not saturate. (a) and (c) of Figure
2 shows the heat maps of filters [1,1], [1,3], and [1,5]. We
only show the top half of the heat maps to save space. Filter
visualizations from Google’s Lucid are also included in (b)
and (d) to give readers a better understanding. Any correlated
(red) neighbours in the heat maps have been outlined in the
filter visualizations in their respective colors.

As shown in Figure 2, the LGNN-Constant version shows
more correlations in a local area than the baseline version. In
the heat maps for the baseline (a), most of the neighbours to
each of the filters of interest are not highly correlated. Only
the middle heat map has a single instance of a correlated
neighbour. As for the heat maps for the LGNN version (c),
all the direct neighbours of the indicated filters are highly
correlated as shown by the red ’+’ in the heat map. The heat
map in the middle and right even has one of the diagonals
slightly correlated. The reason its not a red square is due to
the choice of our LPF weights that we used in LGNN. Looking
at (c) and (d), the filters in the outlined areas do indeed share
some visual similarities, especially the filters outlined in green
for (d) where the filters to the left and right are remarkably
similar.

While the previous example demonstrates the correlation
between neighbouring filters, the correlations may not neces-
sarily be strong enough to assume that the filters will activate
in clusters during inference. In Section II-B, we discussed
attribution methods as a means of seeing how filters react
to individual images. Unfortunately, getting an idea on how
clusters of filters would react on average to various examples
would be difficult for attribution methods. Instead, we look at
the average activations for a full layer for a batch of images
in one class. Since we have already shown in Figure 2 that
the baseline network does not hold any correlation between
neighbouring filters, we only show the activations for LGNN-
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Fig. 3: Heat maps for average activations of the last convolution layer for 3 tree classes in CIFAR-100: Pine (a), Maple (d),
and Palm (g) . For each class, activations were averaged over all 100 test images and then reshaped to SOM dimensions
(32,16). Filter clusters shown by (b,e,h) and (c,f,i) seem to activate together for tree images. (j) and (k) show visualizations
from Google’s Lucid toolbox for (b,e,h) and (c,f,i) respectively

Constant. We take the 100 test images for each class for 3
classes in CIFAR-100 and feed them into the network. We then
take the activations for the last convolution layer and average
over the spatial and batch dimensions. The average activations
are then mapped to the SOM dimensions and represented using
a heat map.

In Figure 3, we first visualized all of the filters in the last
layer, and found a cluster of filters that looked like trees shown
in (k). Passing the classes (a) Pine Tree, (d) Maple Tree, and
(g) Palm Tree we found that there were a few small positive
activations in this cluster, but more importantly the region in
(j) showed various filters in a larger cluster that also activated
between various tree classes. Within the cluster in (j), one
particular filter is the highest activation between the various
trees while the other filters around it activate in differing
proportions depending on the type of tree. It is important to
note that the images fed into the network were the test images
and not the training images. The test accuracies for these
classes were 70% for the pine tree, 67% for the maple tree,
and 90% for the palm tree. While observing the differences
between activation maps for the incorrect and correct outputs
would be interesting, it is outside the scope of this paper. One
important detail is that the clusters of similar looking images
correspond to correlated activations on average, and also the

fact that despite having different output labels, 3 different tree
classes had various positive activations for a specific cluster
within the LGNN filters.

V. CONCLUSION

Our proposed method for XAI, LGNN is capable of gath-
ering clusters of similar filters during training for a neural
network. These clusters can often reveal to a user which filters
respond to similar semantic concepts. Using the concept of
competitive learning and neighbourhood functions which was
inspired by SOM, our back propagation allows neurons within
the same layer to share information with each other. One great
benefit is that our system only modifies the back propagation
and leaves the model structure and forward inference in tact.
This makes our method fairly attractive if users wish to use
our method for transfer learning where the trained network is
being used only as a feature detector and a separate classifier
is being trained that could possibly be hand crafted to take
advantage of the organized filter structure.

Our experiments show reasonable success in making neural
networks more explainable. In our first analysis we show
that for different network types, the clustering from LGNN
does not impede the learning capacity of the network and in
fact offers a small accuracy increase on average. We believe



this small accuracy improvement is due to the neighbour-
hood functions being a good regularizer. The reason why
the accuracy improvement is fairly minimal could be due to
the fact that the baseline networks already contained batch
normalization and weight decay as regularizers already. In
our second analysis, we observe the effect on LGNN within
the first layer of a network. It was fairly evident that LGNN
was capable of enforcing a topology onto the filters where
clusters of neighbouring filters shared similar properties. We
also compare the range of the magnitudes of the filters and see
that LGNN does have a regularizing effect on the filters. In
our last analysis, we examined the effect of LGNN on the last
layer. The correlations between neighbouring filters still held
up for LGNN in comparison to the baseline. We also managed
to demonstrate that these correlations can lead to clusters that
activate for similar semantic concepts, like how certain clusters
activated for different types of trees even though the varieties
of trees had different output labels.

Several future improvements to the system can be made.
First of all, although our system takes concepts from SOM,
we were not able to properly incorporate ’winner takes all’
without it adversely affecting the learning. If winner takes all is
reincorporated into the learning, it could possibly force similar
filters to a singular cluster rather than several smaller clusters.
Additionally, we can investigate tuning the hyper parameters
for the neighbourhood function for each layer rather than
sharing them between all layers.
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VAE: Interpretable Discrete Representation Learning on Time Series,”
in 7th International Conference on Learning Representations (ICLR),
May 2019, p. 18.

[13] P. Esser, E. Sutter, and B. Ommer, “A Variational U-Net for Conditional
Appearance and Shape Generation,” in Conference on Computer Vision
and Pattern Recognition, Apr. 2018, arXiv: 1804.04694. [Online].
Available: http://arxiv.org/abs/1804.04694

[14] T. N. Kipf and M. Welling, “Semi-Supervised Classification With Graph
convolutional Networks,” in International Conference on Learning Rep-
resentations, 2017, p. 14.

[15] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps,”
in International Conference on Learning Representations, Apr. 2014,
arXiv: 1312.6034. [Online]. Available: http://arxiv.org/abs/1312.6034

[16] C. Olah, A. Mordvintsev, and L. Schubert, “Feature Visualization,”
Distill, vol. 2, no. 11, p. e7, Nov. 2017. [Online]. Available:
https://distill.pub/2017/feature-visualization

[17] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra, “Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization,” International Journal
of Computer Vision, Oct. 2019, arXiv: 1610.02391. [Online]. Available:
http://arxiv.org/abs/1610.02391

[18] M. D. Zeiler and R. Fergus, “Visualizing and Understanding
Convolutional Networks,” in European Conference on Computer
Vision, Nov. 2013, arXiv: 1311.2901. [Online]. Available:
http://arxiv.org/abs/1311.2901

[19] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for Simplicity: The All Convolutional Net,” in International
Conference on Learning Representations, Apr. 2015, arXiv: 1412.6806.
[Online]. Available: http://arxiv.org/abs/1412.6806

[20] Q. Zhang, Y. N. Wu, and S.-C. Zhu, “Interpretable
Convolutional Neural Networks,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. Salt Lake City,
UT: IEEE, Jun. 2018, pp. 8827–8836. [Online]. Available:
https://ieeexplore.ieee.org/document/8579018/

[21] T. Kohonen, “Essentials of the self-organizing map,” Neural
Networks, vol. 37, pp. 52–65, Jan. 2013. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0893608012002596

[22] M. Kyan, G. Sun, H. Li, L. Zhong, P. Muneesawang, N. Dong,
B. Elder, and L. Guan, “An Approach to Ballet Dance Training
through MS Kinect and Visualization in a CAVE Virtual
Reality Environment,” ACM Transactions on Intelligent Systems
and Technology, vol. 6, no. 2, pp. 1–37, Mar. 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2753829.2735951

[23] M. Wang, W. Zhou, Q. Tian, J. Pu, and H. Li, “Deep Supervised
Quantization by Self-Organizing Map,” in Proceedings of the 2017
ACM on Multimedia Conference - MM ’17. Mountain View,
California, USA: ACM Press, 2017, pp. 1707–1715. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3123266.3123415

[24] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in International Conference on
Learning Representations 2015, San Diego, CA, Sep. 2014, arXiv:
1409.1556. [Online]. Available: http://arxiv.org/abs/1409.1556

[25] S. Zagoruyko and N. Komodakis, “Wide Residual Networks,” in
Procedings of the British Machine Vision Conference 2016. York, UK:
British Machine Vision Association, 2016, pp. 87.1–87.12. [Online].
Available: http://www.bmva.org/bmvc/2016/papers/paper087/index.html

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448–456.




