
Regret Analysis of Stochastic Multi-armed Bandit
Problem with Clustered Information Feedback

Tianchi Zhao∗
Department of ECE

University of Arizona,
Tucson, AZ

tzhao7@email.arizona.edu

Bo Jiang∗
Department of ECE

University of Arizona,
Tucson, AZ

bjiang@email.arizona.edu

Ming Li
Department of ECE

University of Arizona,
Tucson, AZ

lim@email.arizona.edu

Ravi Tandon
Department of ECE

University of Arizona,
Tucson, AZ

tandonr@email.arizona.edu

Abstract—In this paper, we analyze the regret bound of Multi-
armed Bandit (MAB) algorithms under the setting where the
payoffs of an arbitrary-size cluster of arms are observable in
each round. Compared to the well-studied bandit or full feedback
setting, where the payoffs of the selected arm or all the arms
are observable, the clustered feedback setting can be viewed
as a generalization and a connection. We focus on two most
representative MAB algorithms: Upper Confidence Bound and
Thompson sampling, and adapt them into the clustered feedback
setting. Then, we theoretically derive the regret bound for each of
them considering the general type of payoffs (value comes from
continuous domains). We show that the regret bounds of these
two algorithms with clustered information feedback depend only
on the number of clusters. Finally, we simulate both synthetic
data and real-world data to compare the performance of these
algorithms with different numbers of observable payoffs in each
round, the results validate our analysis.

Index Terms—multi-armed bandit, regret bound, clustered
information feedback, problem-dependent bound.

I. INTRODUCTION

A multi-armed bandit problem is a sequential allocation
problem defined by a set of actions, which can be viewed as
a dynamic program without dynamic state information other
than the belief state (a state-less version of reinforcement
learning (RL) [17]). Compared to other RL algorithms such as
Q-learning, The algorithms of MAB are based on more rigors
theoretical foundation and provable worst-case performance
(regret bounds). The multi-armed bandit (MAB) model focuses
on the essential issue of addressing the trade-off between
exploration and exploitation, and this is the balance between
staying with the option that gave highest payoffs in the past
and exploring new options that might give higher payoffs in
the future. In the settings of a stochastic MAB model, there
are several selective actions (arms) available, and each action’s
reward follows a particular distribution with an unknown
mean. At each time step, a unit resource is allocated to an
action and some observable payoff is obtained based on the
feedback mechanism.

Depending on different feedback settings, the observation
at each round varies, and there are basically two different
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feedback settings in the research community: Bandit (in-
formation) feedback and full (information) feedback. Bandit
feedback means only the reward of the selected action is
observed at each round [15]. For example, a gambler at a
row of slot machines, who observes the reward of the pulled
arm at each round. Full feedback [15] means the decision-
maker observes the rewards from all actions by selecting
one action at each time step, thus, the observations do not
depend on the selected action. One real-life scenario with
full feedback is investments on a stock market: Suppose each
morning, the investor chooses one stock and invests $1 into
it. At the end of the day, we observe not only the price of
the chosen stock but the prices of all stocks. Based on this
feedback, we determine which stock to invest for the next
day. Different from these two extreme settings, in this paper,
we consider another cluster (information) feedback setting,
where the rewards of a bounded set of actions are returned
at each round. A real-world example is the online shopping
recommendation system: the user could buy an item and rate
it. Meanwhile, he would be interested in other items which are
similar to the purchased one. These clicks can be regarded as
virtual rating. In this scenario, the purchased item and clicked
items can be viewed as in the same cluster.

To tackle the MAB problems, many algorithms have been
proposed to maximize the total payoffs obtained in a se-
quence of allocations [6]. In this paper, we study two most
representative algorithms: Upper Confidence Bound (UCB1)
algorithm [3] and Thompson Sampling (TS) [16]. The UCB1

algorithm is a frequentist approach which considers capturing
the knowledge about the reward generating process by a set
of random variables, and the estimated means (or a similar
quantity) of the random variables reflect the current knowledge
of the algorithm in a condensed form and guide further
exploitation. The widths of the confidence bounds reflect
the uncertainty of the algorithm’s knowledge and will guide
further exploration. On the other hand, TS is a Bayesian
approach which consists in choosing the action that maximizes
the expected reward with respect to a randomly drawn belief,
and updates the posterior using the observed payoff. In other
words, TS chooses the action to maximize the expected reward
given the sampled parameters, the action and current context.

To evaluate the performance of bandit algorithms, expected
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cumulative regret [2] is usually applied which depends on the
distance between the mean reward of the optimal action and
the chosen action. There are basically two ways to measure
the regret in each round: The first way captures the regret by
assuming binary reward, where the returned reward in each
round only tells if the selected action has succeeded or not.
The advantage of this binary reward is a significant reduction
of computation complexity. However, this approach fails to
capture the distance of the selected action from the optimal one
which is useful for guidance of further strategies. The other
approach considers a more general setting, where the reward
value comes from a continuous domain, which means the
regret depends on the distance between the optimal action and
the selected action. To bound the cumulative regrets, bounds
considering binary reward value is usually denoted as problem-
independent bounds; bounds considering general reward value
are denoted as problem-dependent bounds [2]. In this paper,
we study problem-dependent bounds.

The main contributions of this paper are three-fold:
1) We adapt the UCB1 and TS algorithms with general re-

ward values under the clustered feedback setting, where
a cluster of actions’ rewards are observed in each round.

2) We theoretically derive the problem-dependent cumu-
lative regret bounds for the proposed UCB1 and TS
algorithms under the clustered feedback setting. We
show that the proposed algorithms and regret bounds
can be reduced to bandit or full feedback as two special
cases.

3) We simulate with both synthetic data and real-world data
to compare the performance of the two algorithms with
different cluster sizes, and the results testify our bounds.

The remainder of the paper is organized as follows. In
Section II, we introduce related works. In Section III, we
present our model with clustered feedback setting, and show
how to adapt the UCB1 and TS algorithms into the proposed
model. In Section IV, we derive cumulative regret bounds
for UCB1 and TS algorithms. In Section V, we show our
simulation results, and summarize key insights. In Section VI,
we offer concluding remarks.

II. BACKGROUND AND RELATED WORK

The expected cumulative regret can be expressed as:

E[R(T )] =

T∑
t=1

(µI∗ − µIt), (1)

where µI∗ denotes the mean reward of the optimal action, µIt
denotes the mean reward of the action chosen at t, T denotes
the time horizon.

Next, we present the original UCB1 and TS algorithms
under the bandit feedback setting followed by the their cu-
mulative regrets.

A. UCB1 algorithm

The basic idea of the UCB1 algorithm can be described as
follows: Firstly, assign each action with an upper Confidence

bound (UCB), and then, select the action with the highest
UCB. Finally, update the UCB of each action according to
the observed reward, the number of times this action has been
selected as well as the total times. Specially, Denote rt(i) as
the confidence radius for an action i at time t. Let nt(i) be
the number of times action i has been selected up to rounds t,
and µ̂t(i) is the average reward of action i up to time t. The
upper confidence bound of arm i at time t is defined as:

UCB1t(i) = µ̂t(i) + rt(i), (2)

where rt(i) =
√

2ln(T )
nt(i)

is applied to encourage exploration.
Then, the UCB1 algorithm chooses the best action based on the
optimistic estimate. The algorithm is described in algorithm 1:

Algorithm 1 UCB1 algorithm [4]
µ̂t(i) = 0, nt(i) = 0
Select each arm at least once and update µ̂t(i), nt(i)
accordingly
//Main Loop
while 1 do
Select arm i that maximizes µ̂t(i) + rt(i)
Update µ̂t(i), nt(i) for arm i
end while

Auer et al. show that under the UCB1 algorithm, after T
actions, the expected regret is upper bounded by [4]:

E[RT ] ≤
N∑
i=2

8lnT

∆i
+ 4

N∑
i=2

∆i, (3)

which depends on the number of N , the maximal distance
between the reward of the optimal arm and sub-optimal arm,
as well as the time horizon T .

B. Thompson sampling algorithm

Thompson sampling is an online learning algorithm that
has been widely applied to many decision-making problems
[5], [10], [17]. The basic idea of Thompson sampling can
be summarized as follows: It is assumed that the success
probability or mean reward of each action follows a certain dis-
tribution (with different means). In each round, the decision-
maker firstly samples each action’s reward according to the
prior distribution and then selects the one with the highest
sampled reward, he then updates corresponding posterior with
the reward rt ∈ [0, 1]. Usually, the Beta distribution is adopted
as the prior of the success probability in the Bernoulli trial
since it is the conjugate distribution. The process of the
Thompson sampling algorithm is described in algorithm 2.

Agrawal [2] gives a problem-dependent regret bound for the
Thompson sampling algorithm with a statement of: for the N -
armed stochastic bandit problem, for any constant 0 < ε ≤ 1,
Thompson sampling algorithm has an expected regret of

E[RT ] ≤ (1 + ε)2
N∑
i=2

lnT

d(µi, µ1)
∆i +O

(
N

ε2

)
, (4)



Algorithm 2 Thompson sampling algorithm [1]
Si = 0, Fi = 0
for t = 1, 2, ..., do

For each arm i = 1, . . . , N , sample θi(t) from the
Beta(Si + 1,Fi + 1) distribution
Play arm i(t) := arg max θi(t) and observe reward rt
if rt = 1 then
Si = Si + 1

else
Fi = Fi + 1

end if
end for

where T is the number of rounds played, µ1 is the mean of
the optimal action (without loss of generality, the first possible
action is assumed to be the optimal), and d(µi, µ1) is the
KL-divergence between Bernoulli distributions of µi and µ1.
∆i = µ1−µi. According to Eq. (4), we can see that, under the
bandit feedback setting and for the general reward values, the
expected regret bound mainly depends on the number of arms
and the distance of mean values between the optimal action
and sub-optimal actions.

From Equation (2) (4), we can see that the expressions of
both regrets include a summation of the number of actions.
The reason is that, the algorithm only observes the reward of
the action selected at time t. So, the cumulative regret includes
the regret of all sub-optimal actions.

Russo and Van Roy show that the problem-independent
cumulative regret bound for Thomson sampling under full
information setting does not depend on the number of actions
[15], which can be expressed as:

E[R(T )] ≤
√

1

2
H(A∗)T , (5)

where H(A∗) is the entropy of the optimal action A∗. Com-
pared to the result in the bandit information feedback,

E[R(T )] ≤
√

1

2
|N |H(A∗)T .

However, in [15], only a problem-independent case with bi-
nary reward domain was studied, also, they did not give regret
bound for other bandit algorithms. However, such observation
that whether the regret bound include the summation of arms
depends on the feedback setting motivates our work to study
in depth of the problem-dependent bounds as well as deriving
the bounds under other feedback settings.

C. Extensions of UCB1 and TS

There are also many other algorithms trying to solve the
MAB problems which can be viewed as extensions of UCB
and TS. Olivier et al. [7] present a KL-UCB algorithm,
which differs from UCB in the measurement of the confidence
of the empirical mean. Meanwhile, experimental results [8]
and theoretical analysis [12] show that it reaches the lower
bound of Lai and Robbins [14]. Kaufmann et al. [11] present

Bayesian upper confidence bounds algorithm (Bayes-UCB),
where the arm selection is determined by the quantiles of the
posterior distribution. They also give a finite-time regret bound
in the order of O(N ln(T )) for the binary reward case.

The aforementioned MAB algorithms assume that only one
arm can be played at each time step. The following bandit
problems assume the agent may play L arms simultaneously.
The first such model is called Multi-armed bandits with
Multiple Plays (MAB-MP) [18]. For a N armed MAB-MP
problem, the agent selects the top L arms to obtain the largest
cumulative reward value. Another multi-play problem is called
combinatorial Multi-Armed bandits (CMAB) [13]. In a N
armed CMAB problem, and the agent needs to pull a set
of base arms S in each round, where the combination of
S is called a super arm. The feedback is the summation of
all the rewards of the base arms, and can be viewed as the
reward of the super arm. For example, in a routing problem,
the agent chooses a super arm (routing strategy). Each super
arm contains L base arms (links). The difference between
multi-play and cluster feedback lies in whether the arms
whose rewards are observable are predefined. In multi-play
problems, the agent chooses multiple arms and each returned
reward contribute to the cumulative regret. In cluster feedback
problems, the returned rewards are predefined by clusters, the
agent selects one arm at each time and the regret depends
only on the reward of this arm, though multiple rewards
of arms within the same cluster are observable. Zhao et al.
[19] propose a hierarchical Thompson sampling (HTS), which
divides arms into clusters. A cluster is firstly sampled and
one arm inside the cluster is specified. However, HTS only
observes the selected arm’s reward and hence, is different from
clustered feedback setting. To the best of our knowledge, we
are the first to tackle clustered feedback settings.

III. PROBLEM STATEMENT AND GENERALIZED UCB1 AND
TS ALGORITHMS

In this section, we state our model setup and clarify all the
notations used throughout this paper, and then we present the
adapted versions of UCB1 and TS algorithms.

TABLE I
LIST OF SYMBOLS

N Total number of arms i index of arm
µi mean reward of arm i t index of time step

nt(Cj) Times of choosing Cj till t T Time Horizon
θi(t) sampled reward of arm i at t Cj cluster j
NC Total number of clusters Lj size of cluster j
R(T ) Cumulative regret till T r(i) reward of arm i
µ̂t(i) empirical mean reward of i at t ∆i µ1 − µi

A. Problem Statement

It is assumed that there are N arms (actions) available in the
model, the reward of each arm follows a certain probability
distribution which is unknown to the agent. Denote µi as the
mean reward of the i-th arm. At each time step, the agent
pulls an arm whose reward is returned immediately, also, the
rewards of several related arms are observed simultaneously.
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Fig. 1. Feedback settings considered in this paper.

The returned set of arms is predefined by clusters which we
will define later. Denote i(t) as the index of the selected arm
at time t, and r(it) ∈ [0, 1] as the observed reward of the i-th
arm at time t, 1 ≤ t ≤ T , where T is the time horizon. The
agent wants to select the optimal arm (the one with highest
mean value) in order to maximize the cumulative payoff or
minimize the cumulative regret, without loss of generality, in
the following, denote the first arm i = 1 as the optimal arm,
and denote ∆i as the distance between the mean reward of
arm 1 and arm i: ∆i = µ1 − µi.

Next, we define the clustered feedback setting, which is
captured by the notion of clusters. Denote Cj as a cluster
which contains Lj arms (1 ≤ Lj ≤ N ), Nc as the total number
of clusters. As a result,

∑Nc
j=1 Lj = N . Under the clustered

information feedback setting, it is assumed that, if the i-th arm
belongs to the j-th cluster, after pulling the i-th arm, all the
rewards of arms in the j-th cluster are returned. Preliminary
works about cluster applied in MAB problems can be found in
[2] and [4], however, our model assumes Lj may be different
from cluster to cluster thus can be viewed as the most general
one. Also by adjusting the size of each cluster, we are able to
reduce the cluster setting to the other two settings: when each
cluster only contains one possible arm, the feedback setting
becomes the bandit feedback; on the other hand, if there is
only one cluster holding all the arms, it becomes full feedback
setting. The feedback settings are illustrated in Fig. 1.

In the following sections, without loss of generality, it is
assumed that C1 contains the global optimal arm 1. Notations
used throughout this paper are summarized in Table I.

B. UCB1 and TS under Clustered Information Feedback

The original UCB1 and TS algorithms are studied either
in bandit or full feedback settings. Next, we adapt the two
algorithms into the clustered information feedback setting with
general reward values.

The algorithm of the UCB1 algorithm under clustered
information feedback is shown in algorithm 3. Compared to
the original UCB1 algorithm, the only difference in Algorithm
3 is the number of updated distributions due to the feedback
setting. Note that, nt(Cj) denotes the times that the algorithm
chooses an arm i ∈ Cj before t, which also means the number
of times that cluster Cj has been chosen. Under the cluster
setting, when i ∈ Cj is selected, all the rewards of arm i′ ∈ Cj
are returned, which ensures the empirical mean of µ̂t−1(i

′
) to

be an unbiased estimation of µ(i
′
). Note that, the “exploration

term” becomes rt(i) =
√

2ln(t)
nt(Cj)

, where the denominator is

determined by nt(Cj) instead of nt(i). This term is derived
from Chernoff-Hoeffding inequality, which provides an upper
bound on the probability of the sum of a random variable
deviating from its expected value. Note that the arm i ∈ Cj
updates its reward when any arm i

′ ∈ Cj is selected, as a
result, rt(i) depends on the total number of times that the
cluster j has been selected.

Algorithm 3 UCB1 algorithm with clustered feedback
µ̂t(i) = 0, nt(Cj) = 0, ∀Cj
Select each arm at least once and update µ̂t(i), nt(Cj)
accordingly
//Main Loop
while 1 do
Select arm i that maximizes µ̂t(i) + rt(i)
for ∀Cj do

if i ∈ Cj then
for ∀i′ ∈ Cj do

Observe the reward r(i
′
) ∈ [0, 1]

Update µ̂t(i
′
) =

µ̂t−1(i
′
)nt−1(Cj)+r(i

′
)

nt−1(Cj)+1

Update nt(Cj) = nt−1(Cj) + 1

Update rt(i
′
) =

√
2ln(t)
nt(Cj)

end for
end if

end for
end while

The stochastic TS algorithm under clustered information
feedback is given in Algorithm 4. Since the probability of
observing success in the Bernoulli trial is equal to its mean
reward µi. Let fi denote the pdf of the reward distribution for
the arm i. Then, the general reward with value from continous
domain can be converted to the Bernoulli distribution by [1]

Pr(rt(i) = 1) =

∫ 1

0

r̃tfi(r̃t)dr̃r(i) = µi. (6)

Note that, in Algorithm 4, there is an additional sampling
which transfers the continuous reward into a binary reward,
so that, the posterior belief of each arm can be updated by
Beta distribution. Besides that, the posteriors of all the arms
within cluster Cj are updated.

IV. REGRET BOUNDS FOR UCB1 AND TS UNDER
CLUSTERED FEEDBACK SETTING

In this Section, we theoretically derive the regret bounds
for UCB1 and TS algorithms under the clustered information



Algorithm 4 Thompson sampling with clustered feedback
Si = 0, Fi = 0
for t = 1, 2, ..., do

For each arm i = 1, . . . , N , sample θi(t) from the
Beta(Si + 1,Fi + 1) distribution
Play arm i(t) := arg max θi(t)
for ∀Cj do

if i(t) ∈ Cj then
for ∀i′ ∈ Cj do

Observe reward r̃(i′) ∈ [0, 1]
Perform a Bernoulli trial with success probabil-
ity r̃(i′) and observe output r(i′) ∈ {0, 1}
if r(i′) = 1 then
Si′ = Si′ + 1

else
Fi′ = Fi′ + 1

end if
end for

end if
end for

end for

feedback setting, and show that they achieve logarithmic regret
(depending on the number of clusters).

For the i-th arm, define two thresholds between µi and µ1.

Definition 1 (Thresholds xi, yi). we choose µi < xi < yi <
µ1 as follows: µi < xi < µ1 such that d(xi, µ1) = d(µi,µ1)

1+ε .
xi < yi < µ1 such that d(xi, yi) = d(xi,µ1)

1+ε = d(µi,µ1)
(1+ε)2 ,

0 < ε < 1.

Then, the problem-dependent expected cumulative regret
which both algorithms minimize can be expressed as:

E[R(T )]

=E

∑
i/∈C1

T∑
t=1

∆i1I(t)=i

+ E

 ∑
i∈C1,i 6=1

T∑
t=1

∆i1I(t)=i


=E

 ∑
Cj 6=C1

∑
i∈Cj

T∑
t=1

∆i1I(t)=i

+ E

 ∑
i∈C1,i 6=1

T∑
t=1

∆i1I(t)=i


≤E

 ∑
Cj 6=C1

∑
i∈Cj

T∑
t=1

∆Cj1I(t)=i

+ E

 ∑
i∈C1,i 6=1

T∑
t=1

∆C11I(t)=i


=
∑

Cj 6=C1

∆CjE

∑
i∈Cj

T∑
t=1

1I(t)=i

+ ∆C1E

 ∑
i∈C1,i 6=1

T∑
t=1

1I(t)=i

 .
(7)

Where ∆Cj = maxi∈Cj{µ1 − µi}. In the above, we divide
the event into two cases with respect to different scenarios of
selecting sub-optimal arm: Case 1, selecting the sub-optimal
arm i ∈ Cj , Cj 6= C1, and Case 2, selecting the sub-optimal
arm i ∈ C1, where i 6= 1. Next, we derive regret bounds for
UCB1 and TS according to these two cases.

The basic ideas of the following proofs are as follows:
Under each algorithm, we specify the events that cause the
selection of a sub-optimal arm for each of the two cases

described above. Then, we upper bound the probability of the
occurrence of each event. Finally, by combining all the upper
bounds of events, we derive the upper bound of the cumulative
regrets of each algorithm.

A. UCB1 algorithm

For the UCB1 algorithm, the sub-optimal arm i 6= 1
will be pulled in two cases: either arm 1 and arm i have
been insufficiently sampled so that their empirical means are
indistinguishable, or the upper confidence bounds derived from
Chernoff-Hoeffding’s inequality fails. We begin by bounding
the probability that a sub-optimal arm is selected due to
insufficient sampling. Suppose that there are two events:
At(i) : µ̂i(t) ≤ µi + rt(i). Bt(i) : µ̂1(t) ≥ µ1− rt(1). Apply-
ing Chernoff-Hoeffding’s inequality to bound the probabilities
of the complements of events At(i) and Bt(i). For the Act(i),
we have:

Pr(Act(i)) = Pr(µ̂i(t)− µi > ε) ≤ e

(
−2ε2t2∑t
i=1

(1−0)2

)
= e−2ε2t.

(8)
Plug in the bounding value ε = rt(i), then Pr(Act(i)) ≤ t−2.

Similarly, Pr(Bct (i)) ≤ t−2. According to [4], the sub-
optimal arm i is pulled at most 8ln(T )

∆2
i

times when At and
Bt hold which means i is selected if either it has not been
sampled sufficiently (less than 8ln(T )

∆2
i

) or either event At or
Bt fails. According to the algorithm 3, when an arm i ∈ Cj is
pulled, the rewards of all arms in the cluster Cj are updated
simultaneously. We choose MCj (T ) = maxi∈Cj{

8ln(T )
∆2
i
} to

ensure all arms i ∈ Cj have been pulled for sufficient times,
which means the arm with largest reward in Cj could be
distinguished from the optimal arm 1 then all the other sub-
optimal arms in Cj could be distinguishable.

We next bound the two cases defined in Eq. (7).
1) Case 1: i ∈ Cj , Cj 6= C1: The next lemma states the

upper bound of the expected number of selected sub-optimal
arms in Case 1.

Lemma 1. The expected number of pulled sub-optimal arms
from Cluster Cj is upper bounded by MCj (T ) + 4|Cj |.

Proof.

E

 T∑
t=1

∑
i∈Cj

1I(t)=i


≤MCj (T ) +

∑
i∈Cj

T∑
t=1

Pr(Act(i) ∪Bct (i))

≤MCj (T ) +
∑
i∈Cj

T∑
t=1

[Pr(Act(i)) + Pr(Bct (i))]

(a)

≤MCj (T ) +
∑
i∈Cj

T∑
t=1

(t−2 + t−2) ≤MCj (T ) + 4|Cj |.

(9)

Inequality (a) is based on the fact that
∑T
t=1 t

−2 ≤ 1 +∫∞
1
x−2dx = 1 + −1

1−2 = 2.



2) Case 2: i ∈ C1, i 6= 1: The upper bound of the expected
sub-optimal selections under Case 2 follows the next lemma.

Lemma 2. The expected number of pulled sub-optimal arms
from Cluster C1 is upper bounded by MC1

(T ) + 4|C1 − 1|.

The proof is similar to that of Case 1. The only difference is
the number of sub-optimal arms. Combining the upper bounds
of Case 1 and Case 2, we get the upper bound for UCB1 under
clustered feedback setting, which follows the next Theorem.

Theorem 1. For the NC-cluster stochastic bandit problem,
if we follow the UCB1 procedure given in Algorithm 3, the
expected regret is:

E[R(T )] ≤
NC∑
j=1

∆CjMCj (T ) + 4

NC∑
j=2

|Cj |∆Cj + 4∆C1 |C1 − 1|.

(10)

Remark 1. This expected cumulative regret for UCB1 with
clustered feedback depends on the number of clusters NC .
Under the full information feedback setting, NC = 1, and the
regret becomes:

E[R(T )] ≤ ∆maxM(T ) + 4(N − 1)∆max. (11)

where M(T ) = maxi∈{1,2,...,N}

{
8ln(T )

(µ1−µi)2

}
, ∆max =

maxi∈{1,2,...,N}{µ1 − µi}.
On the other hand, under the bandit information feedback

setting, the NC = N , take in the values of M(T ), we have:

E[RT ] ≤
N∑
i=2

8lnT

∆i
+ 4

N∑
i=2

∆i. (12)

Which is identical to eq.(3).

B. Thompson sampling for clustered feedback:
We next analysis the Thompson sampling algorithm under

the clustered feedback setting. First, we analysis the case i ∈
Cj , Cj 6= C1 and divide the event into three sub-events which
cause the selection of a sub-optimal arm. Then, we analysis
the case i ∈ C1, i 6= 1 and divide the event into sub-events
similar to the Case 1.

1) Case 1: i ∈ Cj , Cj 6= C1: For TS, we divide the event
Case 1 into three sub-events which are denoted as E1, E2 and
E3, and each of them can be expressed as:

E1 =Pr(I(t) = i, µ̂(t) > xi),

E2 =Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≥ yi),
E3 =Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≤ yi).

(13)

Where Event 1 considers the cases where the empirical mean
µi(t) is much greater than its expectation. Event 2 considers
the cases where the sampled value θi(t) is much greater than
its expectation. Event 3 considers the cases where both the
empirical mean µi(t) and the sampled value θi(t) are not much
greater than its expectations. Then, the regret in one cluster
Cj can be expressed as

E

∑
i∈Cj

T∑
t=1

1I(t)=i

 =
∑
i∈Cj

T∑
t=1

{E1 + E2 + E3} . (14)

The upper bound of the cumulative regret for Case 1 follows
the next lemma:

Lemma 3. The cumulative regret for the cluster Cj 6= C1 is
upper bounded by

∆CjM
′

Cj (T ) +O(
|Cj |
ε2

), (15)

where M
′

Cj
(T ) = maxi∈Cj{(1 + ε)2 ln(T )

d(µi,µ1)}.

Proof. Event 1: Define τi,k as the k-th time when I(t) = i.

T∑
t=1

Pr(I(t) = i, µ̂(t) > xi) ≤ 1 +

T−1∑
k=1

Pr[µ̂(τi,k) > xi]

≤ 1 +

T−1∑
k=1

e−kd(xi,µi) ≤ 1

d(xi, µi)
+ 1.

(16)
This proof follows Agrawal’s [2] Lemma 2.
Event 2: Denote kCj as the number of times that the algorithm
chooses an arm i ∈ Cj . Note that the all arm’s reward
i ∈ Cj are observed with posterior distributions updated
simultaneously. Define Li(T ) = ln(T )

d(µi,µ1) = (1 + ε)2 ln(T )
d(µi,µ1) ,

and let τ be the largest time step until kCj (t) ≤ Li(T ),

T∑
t=1

Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≥ yi)

≤
T∑
t=1

Pr(I(t) = i, θi(t) ≥ yi|µ̂(t) ≤ xi)

(a)

≤Li(T ) +

T∑
t=τ+1

e−td(µi,µ1)

(b)

≤Li(T ) +

T∑
t=τ+1

1

T

≤Li(T ) + 1.

(17)

Inequality (a) and (b) follow the Lemma 3 in [2] (based on the
Chernoff-Hoeffding bounds). For kCj (t) > Li(T ), Pr(I(t) =
i, θi(t) ≥ yi|µ̂(t) ≤ xi) ≤ 1

T .
Event 3:

T∑
t=1

Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≤ yi) = O(1). (18)

This proof also follows the Lemma 4 in [2].
Combining Event 1-3, we next derive the upper bound

of Case 1. Similar to the algorithm 3, algorithm 4 updates
all arms i

′ ∈ Cj if the algorithm chooses i ∈ Cj . Let
M
′

Cj
(T ) = maxi∈Cj{Li(T )} to ensure all arms have been

pulled for sufficient times in cluster Cj , so that ∀i ∈ Cj [2],

Pr(I(t) = i, θi(t) ≥ yi|µ̂(t) ≤ xi) ≤
1

T
. (19)



Let τCj be the largest time step until kCj (t) ≤M
′

Cj
(T ),

E

∑
i∈Cj

T∑
t=1

1I(t)=i


=
∑
i∈Cj

T∑
t=1

[Pr(I(t) = i, µ̂(t) > xi)

+ Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≥ yi)
+ Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≤ yi)]

=
∑
i∈Cj

T∑
t=1

[Pr(I(t) = i, µ̂(t) > xi)

+ Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≤ yi)]

+

τCj∑
t=1

∑
i∈Cj

Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≥ yi)

+
∑
i∈Cj

T∑
t=τCj+1

Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≥ yi)

(a)

≤
∑
i∈Cj

[
1

d(xi, µi)
+ 1 + 1 + 1

]
+M

′
Cj (T ) ≤M

′
Cj (T ) +O(

|Cj |
ε2

).

(20)
Inequality (a) is because the algorithm only chooses one arm

at each time slot, so the summation
∑τCj
t=1

∑
i∈Cj Pr(I(t) =

i, µ̂(t) ≤ xi, θi(t) ≥ yi) ≤M
′

Cj
(T ).

2) Case 2: i ∈ C1, i 6= 1: The upper bound of the
cumulative regret of Case 2 follows the next lemma:

Lemma 4. The cumulative regret within the cluster C1 is
upper bounded by

∆C1
M
′

C1
(T ) +O(

|C1| − 1

ε2
), (21)

where M
′

C1
(T ) = maxi∈C1,i6=1

{
(1 + ε)2 ln(T )

d(µi,µ1)

}
.

Proof.

E

 ∑
i∈C1,i6=1

T∑
t=1

1(I(t) = i)


=

∑
i∈C1,i6=1

T∑
t=1

{Pr(I(t) = i, µ̂(t) > xi)

+ Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≥ yi)
+ Pr(I(t) = i, µ̂(t) ≤ xi, θi(t) ≤ yi)}

(a)

≤
∑

i∈C1,i6=1

{
[1 +

1

d(xi, µi)
] + 1 + 1

}
+M

′

C1
(T )

≤M
′

C1
(T ) +O(

|C1| − 1

ε2
).

(22)

Inequality (a) follows the result from case 1.

Combining the upper bounds of Case 1 and Case 2, we
get the upper bound for TS under clustered feedback setting,
which corresponds to the following Theorem.

Theorem 2. For the NC-cluster stochastic bandit problem,
if we follow the Thompson sampling procedure given in
Algorithm 4, the expected regret is:

E[R(T )] ≤
NC∑
j=1

∆CjM
′

Cj (T ) +O(
N

ε2
), (23)

where M
′

Cj
(T ) = maxi∈Cj

{
(1 + ε)2 ln(T )

d(µi,µ1)

}
.

Remark 2. This result shows that the regret bound depends
on the number of clusters NC , this feedback setting can be
viewed as general because, when L = 1, it becomes bandit
information feedback setting. The regret bound congruous with
the results from [2] under the same setting. When L = N ,
it becomes the full information feedback setting. The regret
bound becomes:

E[R(T )] ≤ ∆maxM
′
(T ) +O(

N

ε2
), (24)

where M
′
(T ) = maxi∈{1,2,...,N}

{
(1 + ε)2 ln(T )

d(µi,µ1)

}
, and

∆max = maxi∈{1,2,...,N}(µ1 − µi). This result shows that the
regret bound does not depend on the number of arms, because
no matter which action the decision-maker selects, the rewards
of all actions are returned and the parameters for these arms
are updated simultaneously.

V. NUMERICAL ANALYSIS

In this section, we simulate to validate our analysis. In the
first experiment, we compare the algorithms of Thompson
sampling and UCB1 under different feedback settings with
Bernoulli rewards. In the second experiment, we further apply
these algorithms to a real-world dataset and compare the
performance of each algorithm under different settings.

A. Bernoulli Settings

We first use binary rewards to compare with UCB1 and
Thompson sampling. We first randomly generate K = 15
arms with mean values uniformly chosen from [0.1,0.9]. In
the simulation, once an arm i is played, a random reward
is drawn from a Bernoulli distribution according to its mean
value and independent of previous rewards. For the clustered
feedback setting, we divide arms into NC clusters randomly
(NC = 3, 5), and each cluster Cj contains L arms (L = 5, 3).
We denote the total number of plays T = 5000, and compare
the cumulative regret of different algorithms. Each algorithm
runs 10 times, and the results are shown in Figure 2. The
x-axis represents the time slot, and the y-axis represents
the cumulative regret. From the simulation result, we can
see that the algorithms in full information feedback setting
(L = 15) outperform the clustered information feedback
setting (L = 3, 5) and bandit feedback setting (L = 1).
Meanwhile, in the clustered information setting, L = 5 has
better performance than L = 3 scenario. The reason is that
the expected regret is depended on the number of cluster NC .
L = 5 has NC = 3 clusters, and L = 3 has NC = 5 clusters.
These results conform to the regret bound in our analysis.
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Fig. 2. Comparison of full information setting and clustered feedback setting
with Bernoulli rewards.
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Fig. 3. Comparison of full information setting and clustered information
setting with jester dataset.

B. Jester dataset

In the second experiment, we apply the algorithms to a
subset of jester dataset [9]. The original dataset includes 2.3
million continuous ratings of 81 jokes from 25K users (be-
tween April 1999 - May 2003). Similar to the first simulation,
we divide arms into NC clusters randomly (NC = 9.27). Each
user rated several jokes and each rating is a real number be-
tween −10.00 and 10.00 (We can normalize the rating between
−1.00 and 1.00). From Figure 3, we can see that algorithms
with full information feedback (L = 81) outperform the ones
under clustered information feedback settings (L = 3, 9). We
also observe that the Thompson sampling algorithm has a
better performance than the UCB1 algorithm. The cumulative
regret of the full information feedback setting is closer to
the 1

81 of the bandit feedback setting, and L = 9 has better
performance than the L = 3 scenario. It is an expected result
since the full information setting does not depend on the
number of arms and the clustered information setting depends
on the number of clusters NC .

VI. CONCLUSION

In this paper, we study the MAB algorithms under the
clustered information feedback setting, where the rewards of
a cluster of arms are observable in each round. We upper
bound the problem-dependent cumulative regret for UCB1 and

Thompson sampling algorithms under this setting. Theoretical
analysis shows that the cumulative regret depends on the
number of cluster NC . Simulation and experiment results
validate our theoretical analysis.

In terms of further works, a possible direction is to analyze
the regret bound of another bandit algorithm (e.g. KL-UCB).
As the upper bounds of the MAB problems are typically very
loose, next, we will analyze the lower bound of each algorithm
in the clustered information feedback setting.
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