
Region-DH: Region-based Deep Hashing for
Multi-Instance Aware Image Retrieval

Franck Romuald Fotso Mtope†, Bo Wei‡
†Research and Innovation, Cognitive Data System SARL, Yaoundé, Cameroon
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Abstract—This paper introduces an instance-aware hashing
approach Region-DH for large-scale multi-label image retrieval.
The accurate object bounds can significantly increase the hashing
performance of instance features. We design a unified deep neural
network that simultaneously localizes and recognizes objects
while learning the hash functions for binary codes. Region-DH
focuses on recognizing objects and building compact binary codes
that represent more foreground patterns. Region-DH can flexibly
be used with existing deep neural networks or more complex
object detectors for image hashing. Extensive experiments are
performed on benchmark datasets and show the efficacy and
robustness of the proposed Region-DH model.

Index Terms—Imaging hashing, deep learning

I. INTRODUCTION

The Content-Based Image Retrieval (CBIR) technique is
broadly used in many applications, such as fingerprint identi-
fication [2], crime prevention [21], etc. CBIR searches similar
images in a large scale database from a query image based
on a pairwise comparison of features extracted from images.
The hashing mechanism is a key technique commonly used by
CBIR to reduce feature size, improve search speed, and min-
imize storage. The hashing process mainly aims to extract a
low-dimensional features representation. Many research works
have been conducted in hashing mechanisms [11], [15], [17],
[19].

The existing hashing techniques can be categorized accord-
ing to two criteria: the nature of data use and the training
process. Regarding the nature of data use, unsupervised and
supervised methods are two main groups of image hashing
approaches. The unsupervised methods can learn hashing
functions from unlabeled training data [8], [11], [16], [20],
[22], while the supervised methods instead leverage semantic
information in training data for learning hash functions [10],
[13], [15], [17]. Motivated by the successful application of
deep learning in the imaging processing and computer vision
domain, many research works have introduced deep learning
into image hashing and taken advantage of deep Convolutional
Neural Networks (referred to as deep hashing networks) to
analyze labeled images, extract usable patterns and further
create an improved feature representation for hash functions
[12], [14], [23], [25], [26]. The existing hashing methods also
have different training strategies. Pairwise and point-wise are
two main approaches to learn hashing functions. The pairwise
approaches [12], [23], [26] use a pair of images containing
similar objects to learn the similarity between the derived

Fig. 1. Multi-instance for Hashing

patterns and features. In contrast, the point-wise approaches
[14], [25] use one image to learn features automatically during
each training iteration when using deep learning techniques.

These supervised methods have achieved remarkable perfor-
mance on single or multiple label datasets. However, according
to our best knowledge, the existing methods mainly focus
on semantic information for the similarity ranking. In other
words, these methods have a strong assumption that images
have a good quality of image labels, and the objects of
interest occupy the majority of the labeled images. However,
they cannot be directly applied for real application scenarios
without further optimization because captured images usually
contain multiple objects and Region of Interest (ROI) is only
a part of the whole image. Different from most of the existing
works, one instance-aware similarity technique [12] uses one
set of region proposals during the training process. Instances
here are the region proposals with label probabilities above
a threshold. This technique has the huge potential to be
widely deployed because of its ability to recognize objects
and analyze their similarity from ROI instead of the whole
image. However, this introduction of object proposals involves
a new challenge that inaccurate bounding boxes will result in
extra bias. To solve this problem and improve the qualities of
learned bounding boxes, instance features are considered and
leveraged for multi-label image retrieval and region proposals.

In this research, we propose Region-DH, a novel region-
based deep hashing method. The proposed method simulta-
neously learns hash functions and object bounds by taking
advantage of the deep learning techniques (as shown in Figure
1). We also propose a multi-task loss function, which involves
components required to map instance features into efficient
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binary codes for object detection. To summarize, the main
contributions in this paper are listed as follows:
• We propose an innovative unified deep neural network

for simultaneous object detection and image hashing.
• An efficient and effective instance-aware hashing is pro-

posed, which takes advantage of more accurate object
bounds with the consideration of object recognition. The
proposed method reduces the bias caused by incorrect
object proposals and improves hashing performance.

• A hash code for each image is derived using the pro-
posed method. The hash code also combines and encodes
instance information which contains the object proposals.

• We extensively evaluate Region-DH on two public multi-
label datasets. The experiments have shown that the
proposed method can successfully incorporate instance
information into compact binary codes, which outper-
forms existing state-of-the-art hashing techniques.

The following of this paper is organized as follows: Section
II shows the related works pertaining to the image retrieval
systems. Section III describes our proposed deep neural net-
work. Section IV shows the configuration and process of
our experiments, then the quantitative analysis of our results.
Section V concludes this research.

II. RELATED WORKS

A. Hashing Methods

In computer vision, hashing methods are commonly used to
compress image representation into a small vector while pre-
serving the semantic information. In this section, we introduce
the hashing methods. First, we will describe the unsupervised
methods. Unsupervised methods use a set of unlabeled data
to learn hash functions. They aim to catch common patterns
hidden in feature representation and generalize them into com-
pact hash codes while preserving similarity between images.
Representative techniques are Kernelized LSH (KLSH) [11],
Semantic Hashing [19], Anchor Graph Hashing [16], Spectral
Hashing [22] and Iterative Quantization (ITQ) [8]. Supervised
methods instead learn hash functions from labeled data to de-
rive similar binary codes from similar images [10], [13], [15],
[17]. Data are grouped by semantic to learn hash functions.
Significant techniques are Binary Reconstruction Embedding
(BRE) [10], Supervised Hashing with kernels (KSH) [15],
Minimal Loss Hashing (MLH) [17], and Column Generation
Hashing (CGHash) [13]. Moreover, deep neural networks
have also been successfully applied for hashing methods,
called deep hashing [12], [14], [23], [25], [26]. They take
advantage of deep features learned by deep neural networks
to approximate hash codes. Instance-Aware Hashing (IAH)
[12] learns instance-aware image representations for multi-
label data. Deep Multilevel Semantic Similarity Preserving
Hashing (DMSSPH) [23] takes advantage of labeled data for
supervised methods and learns compact binary codes for multi-
label data and takes the best use of supervised data in the
form of labels to maximize the distance of dissimilar pairs.
Lin et al [14] propose a deep learning framework to learn

hash codes by using a hidden layer to represent the latent
concepts that dominate each category. Instance Similarity
Deep Hashing (ISDH) [26] defines a new pair-wise similarity
metric preserving hashing into an instance similarity hashing.
The instance similarity is simultaneously used for feature
learning and hash coding. SSDH [25] learns hash functions as
a latent layer by minimizing an objective function defined over
classification error and other hash code properties. Regarding
the training process, whether data are labeled or unlabeled,
there are two main approaches: the pair-wise approach and
point-wise approach. The pair-wise (or triplet-wise) approach
consists of using two (or three) input images to learn over
the similar or dissimilar samples during the training phase.
Although this approach has shown significant performance on
previous works (e.g., [12], [23], [26]), they require a high cost
for computation and storage. The point-wise approaches [14],
[25] efficiently learn binary codes over deep features generated
via transfer learning while satisfying a classification objective.

B. Object Detection

Recently, computer vision research has observed significant
improvements with the success of deep convolutional net-
works. Well-known object detection techniques or frameworks
are Regional CNN (R-CNN) [7], SPPnet [9], Fast R-CNN
[6], Faster R-CNN [18]. R-CNN [7] aims to combine region
proposals with convolutional neural networks to localize and
segment objects. SPPnet [9] allows the sharing of convolu-
tional layers between object proposals and generates a fixed-
length representation regardless of image size. Fast R-CNN [6]
proposes a new training algorithm that fixes the downside of
R-CNN and SPPnet. Faster R-CNN [18] introduces a Region
Proposal Network (RPN) and shares full-image convolutional
features with a detection network without a huge amount of
extra cost in object proposal generation. Our paper instead
aims to increase the performance of instance-aware hashing
for a fast and efficient generation of hash codes. IAH [12]
addressed the problem of instance-aware hashing by using
object proposals, while SSDH [25] relies on strong hashing
constraints with a classification objective. Differently from
these two works, we propose a unified deep neural network
that focuses on objects detected and learns similarity beyond
the image labels.

III. REGION-BASED DEEP HASHING

A. The Overview of the Proposed Architecture

Figure 2 shows the overview of the proposed Region-Based
Deep Hashing (Region-DH) for multi-instance image retrieval.
This proposed architecture includes 4 main modules: object
location, bounding box regression, instance-level hashing, and
image-level hashing. In the following part, we will overview
these main modules.

Object Location (labeled as (1) in Figure 2): this module
involves three sequential components, i.e. a backbone deep
neural network (e.g. VGG16), a region proposal network
(RPN), and the loss functions (penalizing the regions proposed
by RPN). The backbone network in this module first learns



Fig. 2. The overview of the proposed Region-Based Deep Hashing (Region-DH) for Multi-instance image retrieval. This architecture relies on a backbone
deep neural network (DNN), e.g. VGG16 or ResNet [24], coupled with a Region Proposal Network (RPN). Region-DH takes an image as the input. The
backbone network and RPN are used to learn the features and location of objects. It also determines hashing functions via both instance-level hashing (H1)
and image-level hashing (H2).

features and extract patterns from input images. These features
are further used in an RPN. RPN will make out a set of
multiple regions of interest (denoted as rpn roi). Moreover,
two loss functions [18] Lreg1 and Lcls1 are employed here.
Lreg1 and Lcls1 measure the regression loss on proposal boxes
and the cross-entropy loss on prediction, respectively. The
main goal of this module is to predict multiple foreground
proposals for ROIs, and a proportion N of those will be
selected for the ROI pooling and fully connected layers (FC6
and FC7 in Figure 2).

Bounding Box Regression (labeled as (2) in Figure 2):
this module focuses on predicting bounding box coordinates
through features generated by FC7. These features are fed
into a fully connected layer FC8, which carries out a N × 4
matrix for the previously selected N ROIs and their predicted
coordinates. The loss function [18] Lreg2 is used here to
penalize coordinates predicted.

Instance-level Hashing and Classification: this module
(labeled as (3) in Figure 2) handles the hashing process over
the regions resulted from the previous modules. One hashing
code will be gauged for each instance. A set of hashing
functions are learned via the latent layer H1 from the fully
connected layer FC7. The latent layer H1 aims to encode FC7
activations, which have a significant impact on the instance
classification objective. An N ×K1 matrix is obtained from
the latent layer H1 for representing the K1-bits binary codes
for the N ROIs. The fully connected layer FC8, along with
a softmax activation function, produces a N × C matrix that
is imposed for the classification purpose. Specifically, FC8
conducts prediction for the N ROIs. In this module, two loss
functions LH1 and Lcls2 are used to penalize the instance
binary codes and prediction, respectively.

Cross-proposal Fusion: In this component, we aim to
embed the ROI prediction probabilities into instances features
and finalize instance-level hashing. One similar method is

suggested in [12]. We consider the ROI probabilities from the
instance-level hashing along with object recognition probabil-
ities from the classification module. In other words, this cross-
proposal fusion penalizes the embeddings with low recognition
confidence and the background proportion in one image.

Image-level Hashing: this module (labeled as (4) in Figure
2) is after the cross-proposal fusion to generate hashing code
for images. The cross-proposal fusion finalize instance-aware
embedding with a C ′ × K1 matrix, which are used to learn
hashing functions in the latent layer H2 of this module.
The latent layer H2 encodes the relevant embedding features
and produces the final K2-bits binary code representing both
the semantic information and features for images, which are
employed for further the image classification. This module also
uses two loss functions LH2 and Lcls3 to penalize the image
binary code and the image multi-label classification, respec-
tively. We finally use a softmax function for the classification
purpose.

In the following parts of this section, we demonstrate the
details of the key components of our proposed method.

B. Binary Code Learning

In this section, we will show the details of binary code
learning that is used in layers H1 and H2, as shown in Figure
2 (described in Sec. 3.2). Relying on a learning process,
this component generates binary codes for both instances and
images. To achieve this, the latent layers H1 and H2 encode the
activated weights of previous layers into binary values {0,1}.
We use a binary hashing method from [25] in H1 and H2, as
shown in the following equation:

qn =
1

2

[
sign

(
AL−1

n − 0.5
)
+ 1
]

(1)

sign(x) =

{
1 x ≥ 0

0 x < 0
(2)



where L is the index of the hashing layer, AL−1
n is the

activation matrix of the layer FC7, and qn is the approximate
values for the n-th training sample. Moreover, the binary
approximation of An values needs to follows two strong
constraints, i.e., the balance property and evenly distribution.
More details about the constraints can be found in [25].

C. Overall Learning Objective

The proposed architecture aims to realize the accurate, effi-
cient, and simultaneous ROI localization, object classification,
and hashing. To achieve these, we use the following overall
multi-task loss functions:

L = αLdet + βLcls + γLH (3)

where the weighting hyperparameters α, β, γ control the im-
pact of the ROI detection loss Ldet, the classification loss Lcls,
and the hashing loss LH , respectively. We show the definitions
for these three loss functions in the following.

Equation 4 demonstrates the loss function for ROI detection.

Ldet = α1Lreg1 + α2Lreg2 (4)

where Lreg1 and Lreg2 refer to the regression losses for
ROI detection in module (1) and (2) with their corresponding
weighting hyperparameters α1 and α2.

Equation 5 demonstrates the loss function for the compo-
nents related to classification.

Lcls = β1Lcs1 + β2Lcs2 + β3Lcls3 (5)

where Lcs1, Lcs2 and Lcls3 are multi-class cross-entropy
losses for classification purposes (described in section 3.2)
with their corresponding weighting hyperparameters β1, β2,
β3. Lcs1, Lcs2 and Lcls3 are used in modules (1) (3) (4) as
shown in Figure 2.

Equation 6 demonstrates the loss function for hashing
functions.

LH = γH1LH1
+ γH2LH2

(6)

where LH1
and LH2

are hashing losses with the weighting
hyperparameters γH1 and γH2 The loss function for hashing
LHi , i ⊂ 1, 2 is defined in the following equation:

LHi = γHi
1 EHi

1 + γHi
2 EHi

2 (7)

We use EHi
1 and EHi

2 for the hashing constraints as shown in
Equation 8 and Equation 9. i = 1 is for instance-level hashing,
while i = 2 for image-level hashing.

EHi
1 = −1

k

N∑
n=1

R∑
r=1

‖qHi
nr − 0.5e‖ (8)

EHi
2 =

N∑
n=1

R∑
r=1

‖mean(qHi
nr )− 0.5‖ (9)

where N is the number of training samples in each batch, R is
the number of ROIs found for each image, e is a k-dimensional
identity vector. qHi

nr is the binary hashing code vector from the
latent layer H1 for the n-th training sample and r-th ROI.

IV. EVALUATION

To show the performance of our proposed approach Region-
DH, we use two public datasets to demonstrate the effective-
ness and robustness of our method. We carry out extensive
experiments on different benchmarks. In this section, we will
show the details of the evaluations.

A. Datasets

In this paper, we will use the following two datasets to
evaluate the proposed methods.

VOC 2007 [4]: It is a dataset widely used for object
detection, image segmentation, and image retrieval. It consists
of 9,963 images annotated for 20 categories of objects, and
the images are multi-labeled. These images are organized as
test set (4,952 images), training set (2,501 images), training
and validation set (5,011 images), and validation set (2,510
images) to facilitate image processing and machine learning
relevant research.

VOC 2012 [5]: Similar as VOC 2007, VOC 2012 has 20
categories and 11,540 multi-labeled images. This dataset has
a training set (5,717 images), and a validation set (5,823
images). Different from VOC 2007, VOC 2012 does not
contain a test set.

B. Metrics

We use the following two commonly used evaluation met-
rics adopted: Average Cumulative Gains (ACG) and Mean
Average Precision (MAP), which are also adopted in previous
works [12], [25]. ACG is mainly used for multi-label image
retrieval as defined in Equation 10.

ACG =
1

k

k∑
i=1

s(i) (10)

It is the mean of the similarities s(i) between the query
image and each of the top-k matches or retrieved images. The
similarity s(i) is the number of shared labels between the i
retrieved image and the query image.

MAP is also commonly used by any image retrieval system
to assess the precision of the retrieval system and find k similar
images which share at least one label with the query one. MAP
is defined in Equation 11.

MAP =
1

Nr

k∑
i=1

Nr(i)

i
r(i) (11)

where Nr is the number of relevant image corresponding to
the query image. r(i) is binary to show the relevance for the
i-th image in the query image, i.e. r(i) = 1 if there is at least
one share label. Nr(j) is the number of relevant images in the
top i images.

C. Experiment Details

To conduct our experiments and evaluate the proposed
method, we adopt the following settings for the proposed
method Region-DH and baselines used for evaluations. We
mainly compare the proposed method with DLBHC [14],



SSDH [25], and IAH [12]1. Since we implement Region-
DH with TensorFlow [1] instead of Caffe from their official
code, we re-implement DLBHC and SSDH using the same
TensorFlow framework for a fair comparison of performance.
The results regarding IAH are from [12] with the use of
GoogleNet.

Concerning the implementation of our method Region-DH,
we use VGG16 [20] as the backbone network to compute con-
volutional features. The same network is used for the baselines
DLBHC and SSDH. The used backbone network weights are
initialized with a VGG16 model pretrained on ImageNet [3],
and the initial learning rate is set to 0.001. The latent layers
in the proposed model have the same configuration as [25].
Specifically, we use a fully connected layer initialized by a
normal distribution with a zero-mean and a standard deviation
of 0.005. The number of outputs of the latent layer is the length
of the binary codes. The learning algorithm is the stochastic
gradient with the momentum set to 0.9 and a weight decay of
0.0001.

For the multi-task loss function, we set all the weights to
1 for the equal consideration of every component. For the
hashing, parameters are set as γH1 = 0.05 and γH2 = 10.
When re-implementing baselines, we use the default settings
and achieve the equivalent performance in the official DLBHC
[14] and SSDH [25] implementation. These settings ensure
the convergence of the network and show the equivalent
performances in the existing studies on the test set. In our
evaluation, we train the baselines and Region-DH on three
lengths of hash code, i.e., 32, 48, and 64 bits.

D. Results

1) Ranking on VOC 2007: In the dataset VOC 2007, we
train the baselines selected and our method on the training
and validation set (5,011 images). To perform the retrieval
evaluation, we use the test set (4,952 images) as query images
and the training and validation set as the target images.

For each training process, we first use the latest checkpoint
model to extract hash codes and store them into an HDF5 file.
Then, we use each query hash code to search for the top-k
similar images in the target images. We fix k as 1,000 in our
experiment, perform queries for each image, and compare the
proposed method with baselines using the metrics ACG and
MAP introduced in Section IV-B.

Table I and Table II show the comparison between the
previous works (DLBHC, SSDH, IAH) and the proposed
method Region-DH, under evaluation metrics: ACG and MAP.
As shown in Table I for the performances in ACG, the
proposed method has an improvement of 3.18% - 4.79%
compared with IAH ,5.08% - 6.89% compared with SSDH,
and 7.37% - 12.16% compared with DLBHC. Table II shows
their performances in MAP, where it can be seen that the
proposed method has a considerable improvement of 3.3% -

1The official code for DLBHC and SSDH is publicly
available in https://github.com/kevinlin311tw/caffe-cvprw15 and
https://github.com/kevinlin311tw/Caffe-DeepBinaryCode

4.59% compared with IAH and 5.46% - 7.5% compared with
SSDH, and 7.06% - 30.67% compared with DLBHC.

TABLE I
COMPARISON OF REGION-DH AGAINST BASELINES W.R.T. ACG

Methods VOC 2007 ACG
32 bits 48 bits 64 bits

DLBHC 0.5646 0.6044 0.6311
SSDH 0.6354 0.6271 0.6359
IAH 0.6436 0.6514 0.6569
Region-DH 0.6862 0.6832 0.7048

TABLE II
COMPARISON OF REGION-DH AGAINST BASELINES W.R.T. MAP

Methods VOC 2007 MAP
32 bits 48 bits 64 bits

DLBHC 0.5965 0.7946 0.8582
SSDH 0.8282 0.8595 0.8715
IAH 0.8702 0.8765 0.8829
Region-DH 0.9032 0.9141 0.9288

2) Ranking on VOC 2012: Because there is no test set in
VOC 2012, we train our models on the train set with 5,717
images and use them as the target images for the retrieval
process. The validation set is for the queries (5,823 images)2.
Then, we apply queries images to find the best matches.

Table III and Table IV show the performance of our method
Region-DH against the baselines on the VOC 2012 dataset.
Concerning the ACG, the proposed Region-DH outperforms
the baselines with an improvement of 0.82% - 4.56% com-
pared with IAH, 3.35% - 6.41% compared with SSDH, and
7.37% - 9.04% compared with DLBHC. Concerning the MAP,
our method demonstrates an improvement of 2.92% - 5.60%
compared with IAH, 4.13% - 4.49% compared with SSDH,
and 4.84% - 24.06% compared with DLBHC.

TABLE III
COMPARISON OF REGION-DH AGAINST BASELINES W.R.T. ACG

Methods VOC 2012 ACG
32 bits 48 bits 64 bits

DLBHC 0.5741 0.5879 0.6151
SSDH 0.6143 0.6200 0.6248
IAH 0.6396 0.6465 0.6433
Region-DH 0.6478 0.6783 0.6889

TABLE IV
COMPARISON OF REGION-DH AGAINST BASELINES W.R.T. MAP

Methods VOC 2012 MAP
32 bits 48 bits 64 bits

DLBHC 0.6282 0.8273 0.8625
SSDH 0.8239 0.8616 0.8696
IAH 0.8396 0.8579 0.8549
Region-DH 0.8688 0.9041 0.9109

2The same use of the VOC 2012 dataset can also be found in [12]



Fig. 3. Visual comparison of retrieved images for Region-DH and the baselines (DLBHC & SSDH). Left: results for a query image with label “pottedplant”,
Right: results for a query image with label “sheep”. Each row represents the top-5 retrieved images (rank: from left to right). “red” highlights no shared labels
(dissimilar images), “green” highlights at least one shared label (similar images).

3) Visualization of results: Following the evaluation pro-
cess described for VOC 2007 and VOC 2012, we run queries
and select the top-5 of the best matches to show the perfor-
mance of the proposed method Region-DH visually. Figure 4
shows a visual comparison of Region-DH against the base-
lines DLBHC and SSDH. From these examples, we can see
that Region-DH leverages the instance information well and
retrieves similar images by building compact binary codes.
Specifically, from Figure 3 (left), we query an image with
label “pottedplant” and get top-5 correct retrieval with Region-
DH, while we get respectively 4 and 3 incorrect on DLBHC
and SSDH. In Figure 3 (right), we query an image with label
“sheep”, and we get accurate results with our method, while
DLBHC and SSDH show significant mistakes on the top-5
returned images.

4) Summary of Evaluation: Overall, Region-DH shows
a relative improvement of performance over the baselines
selected, i.e. DLBHC, SSDH and IAH. We demonstrate its
efficacy and robustness via the metrics (ACG, MAP) in various
datasets (VOC 2007, VOC 2012).

V. CONCLUSION

In this paper, we have described a region-based deep
hashing architecture (Region-DH), which unifies object de-
tection, classification and hashing tasks for multi-label image
retrieval. Region-DH can leverage semantic information and
patterns hidden into objects to build efficient binary codes.
The proposed Region-DH relies on a multi-task loss that aims
to improve the hashing process while correcting the locations
of objects. For future work, we plan to investigate techniques
to stabilize the learning process with additional objectives
(e.g., segmentation) into the multi-task loss. In addition, we
will assess the impact of the hashing objective on the object
detection task.
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