
Deep Reinforcement Learning for Traveling
Salesman Problem with Time Windows and

Rejections
Rongkai Zhang∗†�, Anatolii Prokhorchuk∗, Justin Dauwels∗†

∗School of Electrical and Electronic Engineering, †ST Engineering – NTU Corporate Lab
Nanyang Technological University

Singapore, Singapore
rongkai002@e.ntu.edu.sg�, anatolii001@e.ntu.edu.sg, jdauwels@ntu.edu.sg

Abstract—Recently deep reinforcement learning has shown
success in solving NP-hard combinatorial optimization problems
such as traveling salesman problems, vehicle routing problems,
job-shop scheduling problems, as well as their variants. However,
most of the problems being solved are still relatively simple
compared to the real-world scenarios. For instance, feasibility
constraints are rarely considered in the current frameworks. This
paper investigates the possibility of applying deep reinforcement
learning to tackle combinatorial optimization problems with
feasibility constraints. We propose a framework to solve such
problems by combining deep reinforcement learning with a
greedy heuristic. We demonstrate this approach for the traveling
salesman problem with time windows and rejection (TSPTWR).
The results show that our approach outperforms a commonly
employed tabu search heuristic, both in terms of the solution
quality and the inference computation time. More specifically,
the inference process is 100 to 1000 times faster than tabu
search for different size TSPTWR. The proposed approach can
be considered as a framework enhancing reinforcement learning
with heuristics for solving more complex problems.

I. INTRODUCTION

Combinatorial optimization problems (COPs) are com-
monly found in many different domains, such as transporta-
tion, operations research, logistics, and telecommunications.
The overall goal is to find an optimal solution, which can
be modeled as a sequence of actions/decisions to maxi-
mize/minimize the objective function for a specific problem.
However, once the action space becomes relatively large, the
solution space can also dramatically increase leading to the
intractability of finding the optimal solution.

Traditional approaches to tackling NP-hard graph optimiza-
tion problems can be classified into three categories: exact
algorithms, approximation algorithms, and heuristics. Exact
algorithms are based on enumeration or branch-and-bound
method with an integer programming formulation, that can
guarantee the optimality. However, in general, they cannot be
applied for large-scale problems. Polynomial-time approxima-
tion algorithms can (approximately) solve larger problems but
may suffer from weak optimality guarantees. In addition, there
are still many problems that do not have such approximations.
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Heuristics are commonly expressed as sets of rules for decision
making, which are often fast, effective algorithms for NP-hard
problems. However, they suffer from the lack of theoretical
guarantees, the requirement of problem-specific knowledge,
and manual trial-and-error design. Moreover, traditional ap-
proaches are instance-sensitive, which means that even though
instances are sampled from the same distribution for the same
problem, the algorithms will treat them as completely different
problems and solve them again and again with no knowledge
learned and shared.

With the development of deep neural networks (DNNs),
much research on supervised DNNs for learning and rep-
resenting heuristics has been conducted and yielded good
performance. However, supervised learning requires a set of
solutions to be known first to train the DNNs. A promising
method to tackle this issue is Reinforcement Learning (RL).
RL enables the algorithm to learn and evolve itself, either by
interacting with an environment [1] or by inducing knowledge
through a look-ahead search [2]. Recent research has shown
that combining DNNs and RL, also known as deep reinforce-
ment learning (DRL), is a powerful method for solving various
types of COPs, such as traveling salesman problems (TSP)
[3] [4] [5] [6] [7] [8], vehicle routing problems (VRP) [4],
maximum cut (MC) [5] and so on.

Although current research has demonstrated exciting
progress in solving COPs, those COPs are still relatively
simple. For instance, most current work does not consider
constraints. To the best of our knowledge, only recent work
by Ma et al. [9] explicitly considers constrained versions
of TSP. They propose to train a hierarchical graph pointer
network (GPN) to solve TSP with time windows. We consider
a modification of TSPTW that allows rejecting the nodes. This
allows to model real-world applications when there is a need
to balance the service levels with the service quality.

This paper proposes a framework to tackle TSPTWR, which
is one typical COP with feasible constraints by enhancing DRL
with simple heuristics. The framework can also be modified
flexibly by replacing the heuristic for different problems. In
Section 2, we give a more detailed review of DNNs and
DRL for COPs. In Section 3, we define the problem and
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introduce notations for TSPTWR. In Section 4, we illustrate
the framework and the training process. In Section 5, we
present our numerical results, whereas in Section 6, we discuss
the results, and provide suggestions for future research.

II. RELATED WORK

The application of neural networks (NNs) for COPs dates
back to 1985 when Hopfield and Tank applied a Hopfield-
network for solving small TSP instances [10]. Recently, as
deep learning became increasingly popular, many frameworks
have been proposed for COPs.

Vinyals et al. [3] introduce the Pointer Network (Ptr-Net)
as a model, which consists of a long-short term memory
(LSTM) based encoder and an LSTM based decoder. The
encoder encodes the input sequence to a higher dimensional
representation, and the decoder uses attention as a pointer to
select a member of the input sequence as the output, generating
the solution step by step. The model is trained offline to
solve TSP in a supervised learning manner. This work led
to a trend of encoder-decoder based frameworks to represent
and solve combinatorial optimization problems. To the best
of our knowledge, most of the later frameworks follow this
design type. However, there are two main limitations. The first
one is the need for training data. The lack of good example
solutions extremely limits this framework. The other is that the
constraint on visiting each node exactly once may be violated.

Bello et al. [6] tackle the first issue by introducing a rein-
forcement learning method, namely the Actor-Critic algorithm,
to train the Ptr-Net. They consider each instance as a training
sample and use the tour length of a sampled solution for an
unbiased Monte-Carlo estimate of the policy gradient. They
address the second issue by recognizing that the constraint can
be taken into account by simply masking the nodes already
visited in the action space in the decoder.

Further, Nazari et al. [4] find that the input sequence
should be irrelevant to the representation of an instance, so
they replace the LSTM encoder by element-wise projections,
such that the updated embeddings after state-changes can
be effectively computed. They also apply this model to the
various other COPs, such as the capacitated vehicle routing
problem (CVRP).

Inspired by the Transformer framework [11], Deudon et al.
[7] and Kool et al. [8] propose two self-attention based frame-
works for TSP independently, which both showed improved
performance. In [7] a deep reinforcement learning framework
is combined with a heuristic, namely 2OPT. However, in this
work, the heuristic is only utilized to improve the output
sequence from the decoder. Essentially, the framework learns a
good initial solution for 2OPT instead of the improved solution
itself. In [8], a different decoder and a rollout training algo-
rithm are proposed. The experiments show the performance
is still good enough without 2OPT. Additionally, Kool et al.
show that their framework can be modified to solve other types
of COPs by changing the input, the mask, and the decoder
context accordingly. However, as mentioned in the paper, such

modification can be hard to design and interpret for some of
the applications with feasibility constraints.

Instead of a separate encoder-decoder structure, Dai et al.
[5] propose a model based on graph embeddings. They train
the model to output the order in which nodes are inserted into
a partial tour. Using a heuristic, the nodes are inserted at the
best possible location greedily one by one. However, repeating
embedding after each state-change is needed and the additional
helper function also involves additional computations since it
enumerates all the positions in each step.

A different approach is proposed by Wu et al. [12]. They
propose to employ the DRL framework to learn the improve-
ment heuristic for TSP. They train a self-attention architecture
as a policy for selecting the next solution. Each action in their
RL framework represents a node pair and the transition to the
next state is calculated by a predetermined pairwise operator
such as 2OPT.

We combine a self-attention based framework with heuris-
tics as a whole framework. The advantages are threefold. First,
the self-attention based framework embeds the graph only
once. Second, the proposed framework is able to deal with
the different constraints separately in either the self-attention
framework or in the heuristic function. For example, in many
variants of TSP or other COPs, a common constraint is that
each node can be only visited once. We model such constraints
by a mask in the decoder (as in [7]) and we employ heuristics
for other constraints. For example, in TSPTWR, we accept and
reject nodes according to the specified time windows. Hence,
no manual design in the decoder context is needed as the
constraints are explicitly dealt with by the heuristics. Third,
the proposed framework can be applied to other combinatorial
optimization problems by changing the heuristic. Since in the
proposed approach the heuristic is inside the training loop, the
reward is calculated from the solution following the heuristic
function.

III. TSPTWR

A. Comparison of TSP and TSPTWR

Generally, TSP can be formulated as a fully connected graph
problem. A problem instance s is denoted as a graph with n
nodes, where node i ∈ {1, . . . , n} is represented by features
xi. xi is the coordinate of node i, and the goal is to find the
shortest tour π∗ to visit all the nodes exactly once and return
to the first node, namely the depot.

Hence, in TSPTWR, xi is the 2-D coordinate of node i
and the time window/deadline time of visiting node i. The
goals are twofold, which are minimizing the rejection rate R=
(rejected nodes)/(total nodes) and meanwhile minimizing the
total length of the tour L. That is when the rejection rates are
the same, the solution with the shortest length is the optimal
one, and vice versa. The comparison is shown in Table I.

TSPTWR is a more practical variant of TSPs, which is
widely applied in logistics and scheduling, such as same-day
delivery problems. It combines a common variant of TSP -
TSPTW (Travelling Salesmen Problem with Time Windows,
first mentioned in [13]) with the possibility of rejecting a



node. Carlton and Barnes [14] propose solving this problem
via tabu search. In the proposed method the rejections are not
considered explicitly but the penalty term consisting of the sum
of all time windows violations is added to the cost function.
In general, most of the literature on TSPTW focuses on
various heuristics approaches. Gendreau et al. [15] propose an
insertion heuristic to minimize travel times in TSPTW. Calvo
[16] combines a heuristic approach for an assignment problem
with a greedy insertion heuristic. Ohlmann and Thomas [17]
propose a modification to a simulated annealing algorithm -
compressed annealing. López-Ibáñez and Blum [18] describe
a novel Beam-ACO method that combines ant colony opti-
mization with beam search. TSPTWR can also be considered
as a modification of the Prize Collecting Travelling Salesmen
Problem (PCTSP, [19]). In PCTSP each node has associated
prize and penalty values. The objective is to find a circuit that
minimizes the travel cost plus the sum of penalties of unvisited
nodes subject to collecting the minimum required prize. For
an overview of this and related TSP problems, the reader is
referred to [20]. The solution space of TSPTWR is much larger

TABLE I
COMPARISON OF TSP AND TSPTWR.

Features Constraints Cost
TSP 2D coordinates Visit time Tour length
TSP
TWR

2D coordinates
+ Time window

Visit time
+Time window

Tour length
+Rejection rate

than the one of TSP due to the possibility of rejections. For an
instance with n nodes, the number of possible solutions of TSP
STSP is half of all permutation of n, i.e., n!

2 . For TSPTWR the
size of the space is even larger. In case of the largest TSPTWR
where all nodes can be visited, since rejections can be made,
the solution space consists not only of permutations of n cities,
but of permutations of all subsets of n cities. The cardinality
of the solution space is then given by:

STSPTWR =
n!

2(n−1)!
+

n

∑
i=1

n!
2(n− i)!

. (1)

B. TSPTWR as a Sequential Decision Making Problem

TSPTWR can be modeled as a sequential decision making
problem by generating the final solution consecutively based
on the partial solution. Given an instance s with n nodes,
at step i decision ai is made based on the previous deci-
sions, which is a partial solution πi−1 = {a1,a2, ...,ai−1}. In
TSPTWR, a decision can be either picking a node to visit
or rejecting a node. The policy for decision making can be
modeled by a DNN with parameter Θ. Hence the probability
of ai is modeled by PΘ(ai|πi−1,s) and the probability PΘ(π)
of a completed tour π is formulated as (2):

PΘ(π|s) = PΘ(a1|s)PΘ(a2|a1,s)PΘ(a3|a3,a2,a1,s)

...PΘ(an|an−1...,a1,s)

=
n

∏
i=1

PΘ(ai|πi−1,s).
(2)

Eventually, a well-trained DNN with the optimal parameter Θ

should make PΘ(π
∗) as large as possible. There are two ways

to obtain π∗. The first one is following the literature to design
an end-to-end framework that can accept or reject a node at
each step until termination. Let us consider a situation when
a rejection should be made. The first case is when it is not
possible to serve node x within the deadline, hence it should
be rejected. The second case occurs when accepting a node x
will cause missing other requests, and therefore, increasing the
overall rejection rate. The first one can be achieved by a simple
mask in action space. However, for the second situation, the
DNN needs a new decoder context or an even more complex
mechanism to figure out if such rejection should be made. To
overcome the difficulty in the design, we propose a different
approach, that is enhancing the DNN for TSP with a simple
heuristic helper to solve TSPTWR. First, the DNN will output
a solution for TSP and a greedy helper function will reject the
nodes that cannot be visited and give the reward based on the
rejection rate and the tour length. This reward is then used for
training the DNN for TSPTWR.

IV. OUR FRAMEWORK

A. Overall Framework

Our framework also follows the self-attention based
encoder-decoder perspective [8], capable of solving general
TSP. However, the proposed framework differs from it by the
addition of an explainable heuristic helper function that post-
processes the output sequence from the decoder. The helper
function allows the framework to assess the solution quality
(reward) correctly according to the setting of TSPTWR. The
diagram of the proposed framework is shown in Fig 1. Algo-
rithm 1 shows the process of obtaining the optimal parameters
Θ∗ for the DNN and each part is described in detail next.

B. Encoder

From the dx-dimensional input features xi, the encoder
computes initial dh-dimensional node embeddings h(0)i through
a learned linear projection with parameters Wx and bx : hi

(0) =
Wxxi +bx. For TSPTWR with deadline time constraints, dx =
3, where the features are 2-D coordinate and the deadline time
ti of each node. For TSPTWR with two-side time windows,
dx = 4, where the features are 2-D coordinate and time
windows (tstart

i , tend
i ). Here, we consider dx = 3 to illustrate the

framework. The embeddings are updated through N attention
layers, each consisting of two sublayers to hi

(N). The two
sublayers are a multi-head attention (MHA) layer that executes
message passing between the nodes and a node-wise fully
connected feed-forward (FF) layer. Each sublayer adds a skip-
connection and batch normalization. The encoder computes an
aggregated embedding h̄(N) of the input graph as the mean of
the final node embeddings. Both the node embeddings hi

(N)

and the graph embedding h̄(N) are used as input to the decoder.
Algorithm 2 shows the whole process.
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Fig. 1. The diagram of our framework.

Algorithm 1 The Whole Framework for TSPTWR
Input: Instances S, Batch Size Sbs, Training Epoch E, Update

Threshold α > 0
1: Initialize Θ, ΘBL

2: for epoch = 1:E do
3: for all S do
4: Sample Sbs instances from S
5: for Si ∈ Sbs do
6: Hi = EncoderΘ(Si),HBLi = EncoderΘBL(Si)
7: Pi = DecoderΘ(Hi),PBLi = DecoderΘBL(Hi)
8: πi = Sample(Si,Pi)
9: πBLi = GreedySample(Si,PBLi)

10: Ji = Hel per(πi)
11: JBLi = Hel per(πBLi)
12: end for
13: ∇L ∝ ∑

Sbs
1 (Ji− JBLi)∇ΘlogPi(πi)

14: Θ = Adam(Θ,∇L)
15: if Ji− JBLi <−α then
16: ΘBL = Θi
17: end if
18: end for
19: end for
20: Output Θ∗ = ΘBL

C. Decoder

The decoder selects one non-visited node at time t ∈
(1, ...,n) based on the decode context, which is the over-
all embedding h̄(N) and the visited nodes (partial tour) πt .
Following the same design as in [8], we consider the first
node and the last node in the partial tour as a representation
of πt . The decode context is obtained by the same encoder
shown previously. The selection is realized by encoding the
decoded context to a query and comparing it with the key of
each non-visited node. Then softmax is applied to compute

Algorithm 2 Encoder
Input: Features xi, i = (i, ...,n) ∈ s, Normalization Constant

dk, Layers Number N
1: Embed to high dimension: hi

(0) =Wxxi +bx
2: for l = 1:N do
3: Compute the key ki, value vi and query qi for each node:

ki =W Khi
l−1, vi =WV hi

l−1, qi =W Qhi
l−1

4: Compute the compatibilitires: ui j =
qT

i k j√
dk

, i 6= j

5: Compute the attention weights using a softmax: ai j =
eui j

∑ j eui j

6: Output from the MHA sublayer: hi′
l = ∑ j ai jv j

7: Output from FF sublayer:
hi′′

l =W f f1ReLu(W f f0 hi
l−1 +b f f0)+b f f1

8: Combine and Batch Normalize:
hi

l = BN(hi′
l +hi′′

l )
9: end for

10: Compute the aggregated embedding h̄(N) =
∑i hi

l
n

11: Final embedding hi
(N), h̄(N)

the probability of choosing each node, and according to the
probability, one node is added to the tour π sequentially.
The constraints on only visiting each node exactly once are
guaranteed by masking the visited node with zero probability
to be selected. Algorithm 3 summarizes the different steps.

D. Helper Function

After obtaining the total tour π , we should consider the
constraints on the time windows/deadline in order to obtain the
final solution for TSPTWR. From the previous discussion, we
conclude that the rejections should be made in two situations.
Here, we argue that both of them can be learned by a greedy
heuristical helper function. The helper function checks the
feasibility of each node sequentially. If a node violates the



Algorithm 3 Decoder
Input: Overall embedding h̄(N), Key for nodes K, Mask

1: Initialize two trainable place holders for step 0:
v f , vl

2: Compute initial decode context:
qd =W QdConcate(Encoder(h̄(N),v f ,vl))

3: for i = 1:n do
4: Compute the compatibilities:

udi =
qT

d k j√
dk

, i = (1, ...,n)

5: Mask the visited nodes: udi =−∞, i ∈ πt=i
6: Compute probability of visiting node i:

pdi =
eud i

∑i eud i

7: Sample a node from the probability:
πi = Sample/GreedySample(hi

(N), pdi)
8: Update v f ,vl , Mask: v f = π1,v f = πi
9: Update decode context :

qd =W QdConcate(Encoder(h̄(N),v f ,vl))
10: end for
11: Solution for TSP: π

deadline, the heuristic will reject it and check the following
nodes. Algorithm 4 shows how our helper function enhances
the DRL framework to solve TSPTWR.

Algorithm 4 Helper function
Input: Solution for TSP π , Instances S

1: Initialize time t = 0,
2: for i = 0:n−1 ∈ π do
3: t = t + ti,i+1
4: where ti,i+1 is the time needed from xi to xi+1
5: if t > ti+1 then
6: t = t− ti,i+1
7: delete xi+1 in π

8: end if
9: end for

10: Solution for TSPTWR: πTSPTWR

The reward/cost J of a solution is calculated according to
πTSPTWR:

J =C ∗RejectionRate+TourLength(πTSPTWR), (3)

where C is a tuning weight that controls the importance of
rejection. The weight C should be large enough to force the
framework not to learn tricks, such as reducing J by serving
no nodes and maintain a high level of service.

E. Training Method

To train our framework, we define the loss L(s) =
Epθ (π|s)[J(π)− JBL(π)], which is the expectation of the cost
given an instance s based on the parameter Θ in the framework.
By applying the policy gradient-based training REINFORCE

with baseline [21], [22], we can adjust Θ by Monte-Carlo
sampling to minimize the loss [23]:

∇L ∝

Sbs

∑
i=1

[(JΘ(πi)− JBL(πBLi)]∇Θ log pΘ(πi), (4)

where JBL(π) is the cost of a greedy rollout sampled from
the baseline framework. The baseline framework has the same
architecture as the agent but has different parameter ΘBL.
During the training, the parameter ΘBL is updated to Θ, if Jθ

is less than JBL. This baseline is not only exploited to adjust Θ,
but it is also able to reinforce the good solutions by increasing
the probability. The final parameter Θ∗ for inference is set to
ΘBL. The loss function L and its derivative are computed as
follows:

L(s) = Epθ (π|s)[J(π)] = ∑
π

pΘ(π|s)[JΘ(s,π)− JBL(s,π)].

∇L = ∑
π

∇Θ pΘ(π|s)[(JΘ(π)− JBL(πBL)]

= ∑
π

pΘ(π|s)∇Θ log pΘ(π|s)[(JΘ(π)− JBL(πBL))]

∝

Sbs

∑
i=1

[(JΘ(πi)− JBL(πBLi)]∇Θ log pΘ(πi).

V. EXPERIMENTS AND RESULTS

In the numerical experiments, we consider two types of
TSPTWR problems. The first one is with two-side time
windows (tstart

i , tend
i ). A node i can be visited before tend

i , but
if the agent visits the node before tstart

i , it should wait until
tstart
i to leave. The second one is only with the deadline time

constraints, which can be considered as a special case of the
two-side constraints with all tstart

i = 0. The agent can visit a
node before its deadline and leave without waiting, which is
also known as the same-day delivery problem.

A. Data Generation

We generate the training instances by sampling n nodes
uniformly at random in the unit square and setting the depot
in the center (0.5,0.5). TSPTWRn indicates that the size of
TSPTWR is n. For the first type, we consider TSPTWR30 and
TSPTWR50. According to the problem size, the start time tstart

i
is randomly generated from different uniform distributions U
and time window TW also varies. These experiments aim to
validate our DRL framework and also investigate the influence
of different weight value C. For the second type, the start time
is set as zero and the deadline time for each node is sampled
from different uniform distributions U . Larger problems are
considered to validate the scalability of our framework. Ta-
ble II summarises the setting of all the experiments.



TABLE II
EXPERIMENT SETTINGS.

n
Two-side Time Window Deadline Constraints
Start time TW Start time Deadline time

30 U=[0,3] 1,2,3 0 U=[0,3]
50 U=[0,5] 1,2,5 - -

100 - - 0 U=[0,5]
150 - - 0 U=[0,10]

We set the distance between two nodes equal to the travel
time. Examples of instances with 4 nodes are shown in Fig. 2.
The test instances are generated in the same way but with
different random seeds. For each setting, we generate 1000
instances. The performance is the overall cost and/or rejection
rate.

Fig. 2. Instances with 4 nodes for Two Different Settings.

B. Setting of Baseline and Our Framework

As a baseline we consider tabu search [24], which is a
well-known meta-heuristic and outperforms others for large
scale COPs. Since tabu search is sensitive to the random
initial solution and usually costs more time, we sample five
instances in each setting, apply tabu search to solve a test
instance 5 times and average the cost, the rejection rate, and
the computation time. The hyper-parameters in tabu search for
TSPTWR with n nodes are presented in Table III.

TABLE III
HYPERPARAMETERS FOR TABU SEARCH.

Number of Total Possible Actions NA

Tabu Length T L 0.5NA

Maximum Iterations It 200
Termination Threshold β 1∗10−6

The solutions can be manipulated by swapping, reversing,
and inserting, leading to a total number NA of possible actions
given by:

NA =
n(n−1)+(n−2)(n−3)

2
+(n−1)(n−2). (5)

The tabu length is selected as 0.5NA to balance the per-
formance and the computation time [25]. The whole search
terminates in 200 iterations or when the improvement is
smaller than 10−6.

Table IV shows the hyper-parameters for DRL training.

TABLE IV
HYPERPARAMETERS FOR DRL.

Training Dataset Size S 10240
Random Seed for Training 1

Batch Size Sbs 128
Training Epoch E 150

Learning Rate 1∗10−4

Layers Number N 3
Weight C for two-side constraints 0.1 1 10 100

Weight C for TSPTWR30 with deadline constraints 10
Weight C for TSPTWR100 with deadline constraints 20
Weight C for TSPTWR150 with deadline constraints 30

C. Results

We investigate how different weight values C influence
the rejection rate in problems with two-sided time windows.
Table V shows that increasing C will reduce the rejection rate,
which is in agreement with our design intuition. The rejection
rate obtained by tabu search, the baseline method, is also given
for comparison. Moreover, we conduct more experiments with
different time windows and weight values C. Fig. 3 illustrates
the rejection rate for problems with different combinations
of time windows and weight C. The results also reveal that
the rejection rate can be controlled by tuning C. Based on

Fig. 3. Rejection rate for TSPTWR with different settings.

our findings, we select different weights C for TSPTWR with
deadline constraints. Fig. 4 illustrates the learning curve for
TSPTWR100 with deadline constraints, where one training
step is equal to one batch. It shows that our framework can
learn and converge to a good policy to reduce the average
cost after sufficient learning steps. The training time for each
epoch increases with the size of TSPTWR, but thanks to the
parallelization of self-attention, for the largest size we consider
here, it still takes less than three minutes. Table VI shows
the performance of DRL and tabu search for TSPTWR with
deadline constraints.

In addition to evaluating the framework on randomly gen-
erated data, we investigate the performance of the model on
some popular instances for TSPTW. Specifically, we perform
tests on a subset of instances from Potvin and Bengio [26].



TABLE V
INFLUENCE OF DIFFERENT C VALUES ON REJECTION RATE IN DRL AND

TABU SEARCH FOR TSPTWR WITH TIME WINDOWS.

C DRL: Rejection Rate(%) Tabu: Rejection Rate(%)

n=30,
TW=3

0.1 50.23 45.09
1 37.09 35.62
10 4.89 11.76

100 3.73 4.81

n=50,
TW=5

0.1 56.45 54.53
1 37.28 38.93
10 4.52 15.64

100 3.11 5.17

Fig. 4. The learning curve for TSPTWR100.

These instances are based on Solomon’s RC2 instances [27],
which contain different numbers of customers sampled from a
mix of clustered and uniform distribution in a 100x100 area.
The ready times are uniform U = [0,900], time window length
is fixed at 120 and the service time is fixed at 10. We generate
the training data with the following parameters: 25 customers,
customer coordinates are distributed uniformly U = [0,100],
the depot is located at (40,50), and the others remain the same.
This results in training data being relatively similar to the
test instances. At the same time, it provides an opportunity to
investigate the generalization ability of the framework, given
the differences in location distribution. It should also be noted,
that in TSPTW the objective is to find a tour in the graph, while
the trained model is still allowed to reject some of the nodes.
To prohibit rejections as much as possible, the penalty factor
C is set to 100000 during the training. Table VII shows the
best-known value of the makespan objective for each of the
test instances and the results obtained by the proposed DRL
approach. It can be observed that for some of the instances
(rc201.1) our method achieves the same results as the best
known.

VI. DISCUSSION AND FUTURE WORK
Based on the results, it can be observed that the proposed

DRL based framework can learn a relatively good heuristic for
solving different instances within a reasonable time as long
as the distribution of instances is known. The computation

time of the tabu search increases significantly with the size
of TSPTWR. By contrast, since the inference with DRL is a
direct mapping, the computation time increases only slightly
with the dimensionality of the problem. Fig. 5 shows the
computation time for inferences for different sizes of TSPTWR
for both DRL and tabu search. The results also show that

Fig. 5. Computation time for different size TSPTWR.

our DRL framework achieves some robustness judging by
the low variance. It should also be noted that even with the
similar overall costs between the proposed method and the
tabu search, the rejection rate for the DRL framework is lower.
This can be achieved by the multi-head attention mechanism
in the encoder, because it allows nodes to communicate
relevant information over different channels, such that the node
embeddings include valuable information about the node in
the context of the graph. Such additional information helps
our framework to make better decisions than just randomly
searching, as in tabu search.

The proposed method can be seen as an exploration of how
to solve combinatorial optimization problems with constraints
via deep reinforcement learning with heuristics. The general
principle behind it is intuitive. We proposed to embed some
rules into the network architecture, and then employ a known
heuristic for other constraints. Such a divide-and-conquer
approach can greatly simplify the complexity of architecture
design and improve the interpretability of the model. More-
over, this method can be adapted for different problems by
replacing the helper (heuristic) function accordingly.

Right now we only consider one agent and one type of
constraint (time windows). In future work, we will consider
several directions. The first one is to consider more agents
and the cooperation between them, which is known as a
multi traveling salesman problem (mTSP). It can potentially
be solved by applying the proposed framework to solve one
mTSP greedily and iteratively until all the feasible requests are
served. A different direction is to consider more complex prob-
lems with more constraints, such as capacitated vehicle routing
problems with time window and rejections (CVRPTWR) or
dial-a-ride-problem (DARP).



TABLE VI
COMPARISON OF THE PERFORMANCE OF THE PROPOSED DRL FRAMEWORK AND TABU SEARCH ON TSPTWR WITH DEADLINES.

n
DRL Tabu

cost tour length rejection rate(%) time(s) cost tour length rejection rate(%) time(s)

30
8.48±0.03 2.79 56.86 0.003 8.24±0.44 1.58 66.66 0.48
8.51±0.03 2.79 57.21 0.003 8.56±0.17 1.89 66.66 0.38
8.47±0.03 2.78 56.94 0.003 8.55±0.56 2.82 57.33 0.41

100
17.85±0.04 4.95 64.52 0.021 17.85±1.04 5.01 64.20 20.70
17.88±0.04 4.95 64.64 0.021 18.13±0.89 2.93 76.00 18.46
17.87±0.04 4.94 64.63 0.020 17.98±0.66 2.82 75.80 19.70

150
24.25±0.06 8.51 52.48 0.036 24.27±3.30 5.63 62.13 167.85
24.25±0.06 8.52 52.43 0.036 24.33±4.40 4.89 64.79 150.49
24.22±0.06 8.49 52.42 0.035 24.48±1.64 4.48 66.66 151.30

TABLE VII
RESULTS FOR INSTANCES FROM POTVIN AND BENGIO [26]

Instance n Best known DRL makespan DRL rejection rate(%)
rc201.1 19 592.06 592.06 0
rc201.2 25 860.17 865.51 8.00
rc201.3 31 853.71 853.71 19.35
rc201.4 25 889.18 919.23 12.00
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[18] M. López-Ibáñez and C. Blum, “Beam-aco for the travelling sales-
man problem with time windows,” Computers & Operations Research,
vol. 37, no. 9, pp. 1570–1583, 2010.

[19] E. Balas, “The prize collecting traveling salesman problem,” Networks,
vol. 19, no. 6, pp. 621–636, 1989.

[20] D. Feillet, P. Dejax, and M. Gendreau, “Traveling salesman problems
with profits,” Transportation science, vol. 39, no. 2, pp. 188–205, 2005.

[21] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[22] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in Neural Information Processing Systems 12, 2000,
pp. 1057–1063.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[24] M. Zachariasen and M. Dam, “Tabu search on the geometric traveling
salesman problem,” in Meta-Heuristics. Springer, 1996, pp. 571–587.

[25] F. Glover and E. Taillard, “A user’s guide to tabu search,” Annals of
operations research, vol. 41, no. 1, pp. 1–28, 1993.

[26] J.-Y. Potvin and S. Bengio, “The vehicle routing problem with time
windows part ii: genetic search,” INFORMS journal on Computing,
vol. 8, no. 2, pp. 165–172, 1996.

[27] M. M. Solomon, “Algorithms for the vehicle routing and scheduling
problems with time window constraints,” Operations research, vol. 35,
no. 2, pp. 254–265, 1987.




