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Abstract—Increasing mental disorders have emerged as an
urgent public health concern such as autism spectrum disorder
(ASD) and attention deficit hyperactivity disorder (ADHD).
Related mental disorders may share high overlap in clinical
symptoms. Therefore, their diagnosis can be challenging to mere-
ly rely on the observation of cognitive phenotypes and behavioral
manifestations. Unfortunately, there is no additional support of
biochemical markers, laboratory tests, or neuroimaging analysis,
which can be used as a diagnostic gold standard currently. Over
the past decades, resting-state functional magnetic resonance
imaging (rs-fMRI) has been considered as one of the most
promising modality to capture the intrinsic neural activation
patterns between regions in the brain. In this work, we focus
on ASD and ADHD due to their high prevalence and relevance
with the aim to exploit the multi-task learning (MTL) paradigm
for their diagnosis. To the best of our knowledge, this is the first
time to make use of the disease-specific heterogeneities for the
MTL classification of ASD and ADHD via rs-fMRI signal. We
propose a novel graph-based feature selection method to filter
out irrelevant functional connectivity features. Then an efficient
structure of multi-gate mixture-of-experts (MMOoE) is applied to
the MTL classification framework. Finally, the experiment results
demonstrate that the proposed model can achieve a reliable
classification performance in a short term, yielding the mean
accuracies of 0.687+0.005 and 0.650+0.014 in ASD and ADHD
datasets, respectively. The graph-based feature selection method
and MMOoE model are demonstrated to make great contribution
to performance improvement.

Index Terms—Autism spectrum disorder (ASD), attention d-
eficit hyperactivity disorder (ADHD), multi-task learning (MTL),
functional magnetic resonance imaging (fMRI), functional con-
nectivity (FC)

I. INTRODUCTION

Mental disorders such as Autism spectrum disorder (ASD)
and attention deficit hyperactivity disorder (ADHD) are con-
sidered to involve disturbances in the normal-range activities
of brain functional regions. Nevertheless, the diagnosis of
mental disorders is determined merely by the symptom-based
clinical interview. No existing gold standards can be offered
for definitive validation so far. With the advance of brain func-
tional neuroimaging techniques, fMRI has rapidly emerged as
a promising tool to effectively evaluate the dynamic and robust
changes among functionally interconnected regions in brain
with high spatial resolution. As one of the fMRI paradigm,
resting-state functional magnetic resonance imaging (rs-fMRI)
has gained widespread application in neuroscience research by
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exploring the modular nature of cortical function, based on
the spontaneous low frequency fluctuations in blood-oxygen-
level dependent (BOLD) signal. Investigating the alteration of
functional connectivity (FC) among regions of interest (ROIs)
in brain between disorders such as ASD and ADHD provides
new insights into their underlying mechanisms [1]. Therefore,
the remarkable changes in FC can be identified as a powerful
biomarker for classifying individual patients thanks to the big
data analytics in neuroimaging and data-driven methods in
artificial intelligence.

There has been a fair amount of work using machine
learning approaches to distinguish mental patients and typical
controls (TCs) based on the FC features [2]-[4]. Particularly,
multi-task learning (MTL) as an emerging subfield of machine
learning that aims to solve multiple related problems (“tasks”)
simultaneously, can lead to substantial improvements in clas-
sification performance. Considering the shared knowledge
exploited by MTL, it is quite beneficial in situations where the
integration of data shared highly consistent feature patterns in
conditions of between-subject [5], between-modality [6] and
between-site [7]. For examples, Marquand et al. developed a
MTL method to model the relationships between a group of
subjects using Gaussian process priors and then extracted the
subject-specific features to generate more accurate models [5].
Hu and Zeng [8] presented a MTL framework to simultane-
ously capture the site-shared and site-specific features from
three data sites for discriminating schizophrenic patients from
TCs. However, all these MTL models are learned based on one
single disorder’s data source and thus fail to take advantage
of the shared information among related mental disorders. In
other words, sufficient statistical power in deciphering subtle
but significant patterns in FC, might be difficult to obtain in
multiple homogeneous tasks only focusing on one disorder.
On the other hand, learning the pattern of one disorder is at
least somewhat noisy and thus bears the risk of overfitting
to this disorder. Through averaging the noise patterns, the
utilization of disease-specific heterogeneities across multiple
related disorders can ideally ignore the data-dependent noise
and then learn a more general representation.

To solve the above issues, we attempt to model the rela-
tionships between ASD and ADHD using a MTL framework
based on the fact that both of them are highly relevant



sharing similar patterns in several ways. First, the symptoms
of ASD and ADHD overlap and between 30% and 50%
of individuals with ASD are observed to manifest ADHD
symptoms [9]. Furthermore, both ASD and ADHD are highly
heritable. Satterstrom’s research [10] supports the idea that
they both share a similar burden of variants in high risk
genes, contributing to the underlying biological mechanisms
being involved. We expect that the MTL model for classifying
multi-disease neuroimaging data could improve the diagnosis
of related diseases by providing a more complete picture of
the their hidden common causes.

In this work, we first propose a MTL classification frame-
work to identify ASD and ADHD subjects from TCs based
on the structure of multi-gate mixture-of-experts (MMoE)
[11], which has a gating network trained to optimize each
expert submodels across all tasks. To select the remarkable
FC features distinguishing between ASD and ADHD, a graph-
based feature selection (GBFS) method is developed based on
both external and internal measures. As MTL is the concept of
knowledge transfer implying a sequentially shared representa-
tion with different levels of abstraction, the pre-trained model
without further adjustment can be used as a promising feature
extractor. We demonstrated that the pre-trained model can be
used to efficiently learn a new classification task with local
training in smaller task-specific tower networks. Compared
to training the whole MTL network, such local training
can spend only one-eighth of time to achieve convergence,
yielding a comparable classification performance. In the era of
“big data”, the proposed framework is anticipated to provide
valuable insights into the auxiliary diagnosis of highly relevant
mental disorders using rs-fMRI signal.

The rest of this paper is organized as follows. Section
IT describes the datasets and their preprocessing pipelines.
Section III explains the main idea of the proposed GBFS
method and the MTL classification framework based on the
structure of MMOoE. Section IV specifies the settings of model
structure and parameters, and shows the experimental studies
for verifying the proposed model. Some discussions are also
provided for some extensions of this work. Section V is the
conclusion of the paper.

II. DATASETS AND PREPROCESSING

To reveal the complex brain mechanisms underlying ASD
and ADHD, the scientific community dedicated to aggregate
and release two large-scale rs-fMRI collections from labora-
tories around the world.

The Autism Brain Imaging Data Exchange I (ABIDE)
database [12] includes 505 ASD samples and 530 TC
samples from 17 independent international sites. There
is no clear consensus on a best preprocessing pipeline
of raw rs-fMRI data. In an effort to open share the
preprocessed ABIDE data, the Preprocessed Connectomes
Project  (http://preprocessedconnectomes-project.org/abide/)
announced the public release from five different teams using
their preferred tools. We select the data preprocessed through
the Configurable Pipeline for the Analysis of Connectomes

(C-PAC). The preprocessing with C-PAC makes use of
AFNI, FSL, ANTs software libraries and custom python
code involving the following procedures: correction of slice
time and motion, skull stripping, global mean intensity
normalization, regressing out nuisance signal (24 motion
parameters and 5 principal components of CompCor [13])
as well as linear and quadratic trends, band-pass filtering
(0.01-0.1 Hz), functional image transformation, and spatially
smoothing with a 6-mm Gaussian kernel of full width at half
maximum (FWHW).

The ADHD-200 Consortium provides 285 ADHD samples
and 491 TC samples aggregated from 8 independent imag-
ing sites (http://fcon_1000.projects.nitrc.org/indi/adhd200/).
Through efforts of the ADHD-200 consortium, Neuro Bureau
and Virginia Tech’s ARC, the preprocessing strategy for the
Athena was performed based on AFNI and FSL software
libraries to achieve a high quality transformation between
MNI space and subject space. This pipeline is implemented as
following: removal of first 4 echo-planar image (EPI) volumes,
slice-timing correction, deoblique dataset, motion correction,
masking the dataset to exclude voxels at non-brain regions,
averaging the EPI volumes for a mean functional image, co-
registration of mean EPI image to the respective anatomic
image, spatial transformation of rs-fMRI data and mean image
into template space at 4 x 4 x 4 mm?® resolution, extraction
of the time-courses of rs-fMRI from white matter (WM)
and cerebrospinal-fluid (CSF), regressing out WM, CSF, head
motion and a low order polynomial from EPI data, band-pass
filtering (0.009-0.08 Hz), and spatial smoothing using a 6-mm
FWHW Gaussian filter.

Since the identification of nodes in brain functional net-
works is of great significance, appropriate atlases can facilitate
the quantification of brain networks by parceling the brain
into a certain number of ROIs. In this work, the Craddock
200 (CC200) atlas [14] is used to extract the mean time-series
for a set of 200 ROIs by normalized cut spectral clustering.
Such that, the four-dimensional raw rs-fMRI data can be
downsampled to a two-dimensional feature matrix 7, where
T;; represents the ith ROI’'s mean time series of jth timestamp.

III. MODEL DESIGN

As shown in Fig. 1, the proposed model can be divided into
two steps: 1) We conduct the GBFS to select the remarkable
connections of ASD and ADHD distinguishing from each
other as well as TC group, using both external and internal
measures; 2) By filtering out the irrelevant features, the input
data is fed to the MTL classification framework based on
MMOoE structure.

A. Graph-Based Feature Selection

To quantitatively characterize the correlations between time
courses of functionally linked ROIs in the brain, it is widely
to adopt the Pearson correlation coefficient (PCC) thanks
to its efficiency. In this work, 190 ROIs in CC200 atlas
are selected in order to harmonize the features setting. The
possible FC features/connections between theses 190 ROIs add
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Fig. 1. The flowchart of the proposed model.

up to 17,955 (= 129X189) retrieving from the upper triangle
values of a correlation matrix. We develop a novel graph-based
feature selection (GBFS) method to incorporate remarkable FC
features in terms of both external and internal measures.

First, as a data-drive approach, the external measure is
proposed to globally identify the unique neural patterns as-
sociated with ASD and ADHD respectively. We divide the
datasets into three groups, i.e., ASD group, ADHD group and
TC group. Their means and standard deviations (STDs) are
then calculated. The global measure selects the remarkable
connections based on two following criteria: 1) The mean
values of remarkable connections (denoted as mean(FC))
should be significantly distinctive from the average levels in
ASD group or ADHD group. 2) The selected remarkable
connections should be simultaneously distinguishable from
ASD group, ADHD group and TC group. This means that
they should be only remarkable in ASD/ADHD group while
general in TC group and ADHD/ASD group. Accordingly, the
remarkable connections for ASD group can be mathematically
subject to

[mean(FCasp(i,j)) — meanasp| > a* STDasp
|lmean(FCrc(i,j)) — meanrc|| < a % ST Dre
lmean(FCapup(i,j)) — meanapupl|l < a*x STDapup

filter factor « determines how the select-
should be highly remarkable, and the

where the
ed connections

mean(FCasp(i,j)) represents the global mean of a given
connection between the ith ROI and jth ROI in ASD group.
Likewise, the remarkable connections for ADHD group can
be mathematically selected as follows.

lmean(FCapup(i,j)) — meanapupll > a* STDapup
lmean(FCrc(i,j)) — meanrc|| < ax ST Dre
|lmean(FCasp) — meanaspl|| < o+ STDasp
2)
In this way, 56 ASD remarkable connections and 33 ADHD
remarkable connections are finally chosen for the following
internal measure.

We assume that mental disorders could dysfunction with the
collaborative activation patterns in potential associated areas,
instead of the single ROI-to-ROI connectivity interaction. To
make use of the spatial distribution information, we design
a graph normalization of K-nearest neighbors as internal
measure to detect relevances between two ROIs’ subgraphs
of each remarkable connections derived from the external
measure. The subgraph normalization is performed by incorpo-
rating those K-nearest neighbor ROIs according to Euclidean
distance. This can be considered as the “receptive field” to
append their connections between ROIs to the whole graph.
As a consequence, we only consider the edges in graph as the
final remarkable connections. Their FC features calculated by
PCC are used as an input for the classification framework of
MMOoE model.



B. MMoE Model

We present a MTL classification framework to identify ASD
and ADHD subjects from TCs using MMOoE structure, which
is inspired by the recent advance in [11], [15], [16]. As we can
see in Fig. 1, MMOoE structure consists of a group of expert
networks, as well as the gating networks and individual tower
networks for each task. The main idea of MMOE is to model
the task relationships in a sophisticated way by assembling
the expert networks with different weights, allowing to learn
different mixture patterns for different tasks. In this work, the
expert networks have the same structure as a mixture-of-expert
(MoE) layer [15] with a certain number of neuron units, which
is stacked as a basic block of artificial neural networks (ANNs)
and trained in an end-to-end way. The gating network ¢* for
each task k performs a linear transformation of the input x
with the softmax function as follows.

g"(x) = softmax(Wy,z) 3)
s.t. ng(a:) =1 4)
i=1

where W), € R™*™ is a trainable matrix to be learned, m
and n represent the numbers of expert networks and feature
dimension of z, respectively. It is easy to see that g* indicates
the confidence (probability) for the ith expert network. Then
g* can be integrated with the MoE model for the output of
task k as:

HE(z) = ng(x)h&x) (5)

where h; is the output of the ith expert network. Such that, H*
can be fed to the corresponding task-specific tower network F.
The task-specific tower networks are multi-layer ANNs with a
dropout regularization. Consequently, the final MMoE model
can be formulated for a given task k as,

y* = FF(H" (2)). (6)
IV. EXPERIMENTS & RESULTS

A. Model Structure and Parameters

In this work, as the filter factor o and the number of nearest
neighbor ROIs K are empirically set to 4 and 6 respectively, the
input dimension for the MMoE model is (33456) x (6+1)% =
4361. The MoE model have 12 expert networks where each
network is implemented as a single MoE layer with size = 400.
On the top of the bottom MoE model, the task-specific tower
networks are multi-layer ANN models with the configuration
of 400-64-10-1, where a dropout factor of 0.5 is applied to
the first layer to regularize the network. The linear activation
function is used for the final outputs. We apply the rectified
linear unit (ReLU) activation function to hidden layers of both
the MoE model and tower networks. The whole MMoE model
is trained using Adam optimizer with a learning rate of 0.001.

TABLE I
PERFORMANCE COMPARISON ON ABIDE I.

Model Classifier Validation Sample # Acc (STD)
Heinsfeld er al. 2018 DNN 10-fold CV 1035 0.700 (N.A.)
Dvornek et al. 2017 LSTM 10-fold CV 1035 0.685 (0.055)

Plitt et al. 2015 L-SVMs 10-fold CV 178 0.697 (0.027)

Chen et al. 2015 RFE-SVM 1S 252 0.660 (N.A.)

Abraham er al.2017 £2-SVC 10-fold CV 871 0.669 (0.027)

Nielsen et al. 2013 LOO linear LOOCV 964 0.600 (N.A.)

Ghiassian et al. 2016 | RBF-SVM IS 1035 0.592 (N.A.)

Our model (Mean) MMoE 10-fold CV 1035 0.687 (0.005)

Our model (Best) MMoE 10-fold CV 1035 0.694 (N.A.)

Our model (Worst) MMoE 10-fold CV 1035 0.675 (N.A.)

TABLE II
PERFORMANCE COMPARISON ON ADHD-200.

Model Classifier Validation Sample # Acc (STD)
Tan et al. 2017 Linear SVM | 10-fold CV 217 0.687 (N.A.)
Chang et al. 2012 Linear SVM | 10-fold CV 436 0.700 (N.A.)
Du et al. 2016 SVM 10-fold CV 216 0.950 (N.A.)
Ghiassian er al. 2013 RBF-SVM 1S 1069 0.630 (N.A.)
Daietal et al.2012 RBF-SVM 1S 776 0.590 (N.A.)
Eloyanetal er al. 2012 Various IS 776 0.610 (N.A.)
Ghiassian et al. 2016 RBF-SVM IN 776 0.700 (N.A.)
Dey et al. 2012 PCA-LDA 1S 734 0.700 (N.A.)
Fair et al. 2013 SVM 1S 668 0.710 (N.A.)
Colby et al. 2012 RBF-SVM 1S 776 0.550 (N.A.)
Siqueira et al. 2014 Linear SVM LOOCV 609 0.730 (N.A.)
Our model (Mean) MMoE 10-fold CV 776 0.650 (0.014)
Our model (Best) MMOoE 10-fold CV 776 0.674 (N.A.)
Our model (Worst) MMoE 10-fold CV 776 0.638 (N.A.)

B. Results

To evaluate the classification performance for ABIDE I
and ADHD-200 databases, 10-fold cross validation (CV) and
independent sets of training/validation (IS) are widely used for
the validation.

10-fold CV: First the original datasets are randomly divided
into 10 equal subsets. We keep 1 subset as validation set and
train the model using all the remaining 9 subsets. This process
is repeated 10 rounds until each subset is used as validation set
in turns. The results from all the 10 rounds are then averaged
to estimate the model’s accuracy.

IS: There are plenty of ways to split the original datasets
into independent training and validation sets. The common
way for ABIDE database is to randomly assign 80% of the
data for training and leave the remaining 20% of the data as a
validation set. As ADHD-200 database is originally released
for the ADHD-200 Global Competition, the datasets have been
officially divided into training and validation sets.

Here we choose 10-fold CV to assess the proposed model.
To reduce the bias caused by random sampling, ten times
of 10-fold CV are conducted. Our model is compared with
previous studies (including seven ABIDE-based models and
eleven ADHD-200-based models), whose results are derived
from the recent reviews [17]-[19]. Because of the sophisticated



TABLE III

COMPARISON WITH HEINSFELD’S WORK.

Model Heinsfeld et al. 2018 Our model

Acc 0.700 (SEN 74.0%, SPE 63.0%) 0.687 (SEN 68.9%, SPE 68.6%)
Time 32h52m36s 7m12s

CPU 2 Intel Cores Xeon E5-2620@2GHz | 1 Intel Core i7-8700K@3.7GHz
GPU 1 NVIDIA Tesla K40 1 NVIDIA RTX 2080 Ti
RAM 48 GB 32GB

sampling strategies such as 1Q-matched participants and simi-
lar MRI acquisition protocols, a part of previous works are re-
stricted to use relatively small datasets. Arbabshirani et al. [20]
demonstrated that the reliable, robust classification accuracies
they achieved degrade significantly as sample data increases.
The performance comparison on ABIDE I and ADHD-200 are
shown in Table. I and Table. II, respectively. As we can see
that, the results of most previous models are given from the
best case based on one-time evaluation. However, the effect of
random sampling should be considered. For a fair comparison,
our model’s performance is analyzed in three scenarios, i.e.,
the mean-case, best-case and worst-case scenarios. Besides 10-
fold CV and IS, some researchers utilized leave-one-out cross
validation (LOOCYV) for validation.

In regards to the comparison on ABIDE I, our model
obtains a reliable mean accuracy of 0.687+0.005 (sensitivity
68.9%, specificity 68.6%) comparable to Heinsfeld’s model
[19], which achieves the best accuracy of 0.700 (sensitivity
74.0%, specificity 63.0%) reported to data using the whole
ABIDE I datasets. Thanks to feature selection and simplified
model design, it allows to increase efficiency by greatly
shortening the training time. As we can see in Table. III,
based on the similar runtime environment, the average elapsed
time for training a 10-fold CV in Heinsfeld’s work is 32
hours 52 minutes 36 seconds for ABIDE I classification,
while the proposed model requires 7 minutes 12 seconds to
complete a 10-fold CV for MTL classification of ABIDE I and
ADHD-200, showing a 270X speed up. On this point, there
is great potential to further develop our model in the future.
We can take advantage of speed to allow sufficient iterations
for exploring the optimal hyperparameter settings of model
structure and training algorithm via automatic hyperparameter
tuning techniques (e.g. Bayesian optimization [21] and genetic
programming [22]). As expected, deep learning approaches
outperforms the traditional machine learning approaches. It
would benefit from their hierarchical structure with different
levels of complexity as well as non-linear transformations. As
for the comparison on ADHD-200, previous works tend to
employ support vector machine (SVM) to achieve high accu-
racies. The proposed model also achieve a high mean accuracy
of 0.65010.014 (sensitivity 76.7%, specificity 58.1%) based
on 10-fold CV using the whole ADHD-200 datasets. The
unbalanced sensitivity and specificity could be attributed to the
inherent data quality of ADHD-200. This similar phenomenon
can also be observed in several previous works. Tan’s model
[23] achieves mean accuracy of 0.69 with 78% sensitivity
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and 57% specificity in 10-fold CV and Dey’s model [24]
achieves the best accuracy of 70% with 87% sensitivity and
49% specificity in IS.

C. Effects of Features Selection and MMoE Model

The main contribution of this work is to propose a novel
GBFS method and apply MMoE model to the classification
framework. In this section, we aim to evaluate their effects
based on 10-fold CV. To better demonstrate the effectiveness
of MMOoE model, the similar architecture of single task model
(STM) and the most commonly used shared-bottom MTL
ANN model are utilized for the comparison as baseline (see
Fig. 2). Similarly, they are configured with a single fully con-
nected layer with size of 400. Since using MTL profits from
a regularization effect, i.e., making the learned representations
general across tasks, we also try to fix the pre-trained MoE
model as a feature extractor to further fine-tune the individual
towers respectively. The comparison result is shown in Fig. 3.
We can observe that the shared-bottom model is more accurate
using approximately double elapsed time compared to STM. It
reveals the fact that the MTL paradigm jointly solves multiple
tasks to achieve performance improvement by sharing induc-
tive bias between them. By replacing a fully connected layer
in shared bottom with a double-gate MoE layer, the model
achieves higher accuracies of 0.687 in ABIDE and 0.650 in



ADHD-200, which demonstrates the success of MMoE. The
more sophisticated structure of MMOoE contains larger amount
of trainable parameters within, resulting in a longer training
time (43.2s). We also use the whole FC features to train the
MMOoE model without GBFS. As expected, the higher input
dimension (17,955) leads to more training time (130.7) and
poorer performance. Finally, the pre-trained MMoE model
shows a slight improvement in accuracy spending only one-
eighth of time in local fine-tuning in tower networks.

This simulation result demonstrates great application po-
tential in common situations, where we do not have the
computational resources to train the model on large datasets.
In a practical way, off-line learning can be performed to pre-
train the MTL bottom network on large datasets in advance.
Such that, we can make a classification for a small subset in
real time by on-line learning. Namely, we use the compressed
format of the well-trained bottom network like hdf5 (instead
of loading the entire one in memory) to fine-tune the tower
networks on small training samples, which should be task
specific. It is anticipated that, the performance of MMOoE
could be further improved as we incorporate more datasets
of other related mental disorders, allowing to capture subtle
but valuable patterns in feature space. Furthermore, this idea
can also offers a feasible solution to address the cold-start
issue for a new task having small sample data.

V. CONCLUSIONS

In this paper, we proposed a MTL classification framework
for auxiliary diagnosis of ASD and ADHD based on the rs-
fMRI data of ABIDE I and ADHD-200, which are two world-
wide multi-site functional and structural brain imaging data
aggregations. First, we presented a graph-based feature selec-
tion method to find a subset of remarkable FC features that are
discriminative across ASD and ADHD using both external and
internal measures. Then an efficient MTL structure of multi-
gate mixture-of-experts was applied to simultaneously classify
ASD and ADHD subjects from TCs. Compared with the
state-of-the-art methods, the proposed model was demonstrate
to achieve a reliable classification performance in terms of
10-fold CV. Based on the similar runtime environment, the
training speed of our model is about 270 times faster than the
competitor’s. We conducted a series of experiments to estimate
the effects of using graph-based feature selection method
and MMoE model. Our experiment results demonstrated their
effectiveness as well as great potential in practical use, typical
for the scenario when we need to estimate a small subset in real
time with small training samples. The current work is expected
to provide insights into building a MTL-based intelligent
auxiliary diagnosis system for large-scale classification of
relevant mental disorders using rs-fMRI data.
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