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Abstract—In a deep neural network (DNN), the number of the
parameters is usually huge to get high learning performances.
For that reason, it costs a lot of memory and substantial computa-
tional resources, and also causes overfitting. It is known that some
parameters are redundant and can be removed from the network
without decreasing performance. Many sparse regularization cri-
teria have been proposed to solve this problem. In a convolutional
neural network (CNN), group sparse regularizations are often
used to remove unnecessary subsets of the weights, such as filters
or channels. When we apply a group sparse regularization for
the weights connected to a neuron as a group, each convolution
filter is not treated as a target group in the regularization. In this
paper, we introduce the concept of hierarchical grouping to solve
this problem, and we propose several hierarchical group sparse
regularization criteria for CNNs. Our proposed the hierarchical
group sparse regularization can treat the weight for the input-
neuron or the output-neuron as a group and convolutional filter
as a group in the same group to prune the unnecessary subsets of
weights. As a result, we can prune the weights more adequately
depending on the structure of the network and the number
of channels keeping high performance. In the experiment, we
investigate the effectiveness of the proposed sparse regularizations
through intensive comparison experiments on public datasets
with several network architectures.

Index Terms—group sparse regularization, convolutional neu-
ral network, image classification, pruning

I. INTRODUCTION

Interest in methods of enforcing the network sparsity is
increasing in the field of deep neural networks (DNN). By
making the network sparse, we can reduce the necessary
computational resources, and improve the generalization per-
formance of the trained network.

Tibshirami [1] proposed the most simple non-structural
sparse regularization lasso. Zou and Hastie [2] also proposed
an elastic net that combined L2 regularization and L1 regular-
ization as a weighted sum. Yuan and Lin [3] and Schmidt
[4] proposed group lasso regularization to neglect a group
of parameters in the model. Kim and Xing [5] proposed
tree-guided group lasso, which is based on group lasso, but
groups are defined for a tree structure for a sparse multi-task
regression. Friedman et al. [6] and Simon et al. [7] proposed
sparse group lasso for linear regression, which combines L1
regularization and group lasso.

This work was partly supported by JSPS KAKENHI Grant Number
16K00239.

Recently, some methods of pruning unnecessary weights
of deep neural networks were proposed by many researchers.
Wen et al. [8] proposed a structured sparsity learning (SSL)
method to regularize the structures of deep neural networks.
SSL can learn a compact structure from a bigger DNN to
reduce computation cost, obtain a hardware-friendly structured
sparsity of DNN, and regularize the DNN to improve classi-
fication accuracy.

Alvarez and Salzmann [9] introduced an approach to auto-
matically determine the number of neurons in each layer of
a DNN during learning by using sparse group regularization.
This method can reduce the number of parameters by up to
80% while retaining or even improving the network accuracy.
Scardapane et al. [10] also proposed group sparse regulariza-
tion for deep neural networks.

Zhou et al. [11] and Kong et al. [12] proposed exclusive
lasso. Exclusive lasso introduces competition among variables
in the same group. Yoon and Hwang et al. [13] proposed
a combined group and exclusive sparsity (CGES) for deep
neural networks. CGES enforces the network to be sparse and
removes any redundancies in the features to fully utilize the
capacity of the network.

Xu et al. [14] [15] [16] proposed L1/2 regularization. L1/2

regularization can enforce the network to be more sparse than
L1 regularization and much simpler than L0 regularization.
Fan et al. [17] [18] applied L1/2 regularization for sparsifi-
cation of hidden layers of feed forward neural networks. Li
et al. [19] [20] proposed group L1/2 regularization for feed
forward neural networks.

Li et al. [21] proposed Out-In-Channel Sparse Regulariza-
tion (OICSR) for compact deep neural networks. Ma et al. [22]
proposed non-convex integrated transformed L1 regularization
for learning sparse deep neural networks. This method simul-
taneously promotes connection-level and neuron-level sparsity
for DNNs.

These regularizations can make the weights of a deep neural
network sparse at the individual weight level and the grouped
weights level. In a convolutional neural network (CNN), we
can consider the weights of a neuron as a group. However,
we can also consider each convolution filter as a group. To
treat these groupings simultaneously, we have to introduce the
concept of the hierarchical grouping. In this paper, we propose
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several hierarchical group sparse regularization criteria for
deep neural network pruning and evaluate the performance
of regularization criteria through intensive comparison exper-
iments.

II. RELATED WORKS

In this section, we review previous works on weight pruning
methods of deep neural networks in terms of the pruning
criteria.

Assume that we have a training set with N instances
D = {(xi, yi)}Ni=1, where xi ∈ Rd is a d-dimensional
input feature vector and yi ∈ {1, . . . ,K} is a class label
from one of the K classes. Then the objective function with
sparse regularization for a deep neural network, especially for
classification by convolutional neural networks (CNNs), can
be represented as

J(W ) = loss(W |D) + λ

L∑
l=1

R(W l) (1)

where loss(W |D) is the standard loss for the CNN, W is the
set of trainable weights for all L layers in the CNN and R(W l)
is the regularization term at lth layer for pruning the set of
weights, {W l}. The parameter λ is used to balance the loss
and the pruning criterion. If the lth layer is fully connected, we
assume that the weight is given by W l ∈ Rocl×icl , where ocl
and icl are the dimensions of W l along the axes of out-channel
and in-channel respectively. Also, we assume the weights as
W l ∈ Rocl×icl×Hl×Wl when the lth layer is a convolutional
layer, where Hl and Wl are the height and width of the kernel
respectively.

The most often used sparse regularization is L2 regulariza-
tion, defined as ‖W l‖22. This regularization is often used in
deep neural networks as weight decay to suppress over fitting.

Tibshirami [1] proposed a simple non-structural sparse
regularization as an L1 regularization for a linear model, which
is defined as ‖W l‖1. L1 regularization prevents overfitting by
neglecting individual parameters in both convolution layers
and fully connected layers. However, with L1 regularization,
it is difficult to remove subsets of weights such as filters or
channels in a CNN.

A. Group Lasso Regularization

Yuan and Lin [3] and Schmidt [4] proposed group lasso
regularization. In order to reduce subsets of weights like filters
or channels, it is necessary to treat the subsets as groups in
the regularization criterion. Yuan and Lin [3] and Schmidt [4]
proposed this regularization for a linear model that can treat
sets of parameters as a group in the criterion. Group lasso
forces subsets of unnecessary parameters to be simultaneously
zero. The regularization criterion of group lass is defined as

RGL(W
l) =

∑
g∈G
‖W l

g‖2 =
∑
g∈G

√∑
i

wl
g,i

2
, (2)

where g ∈ G is a group in the set of groups G, W l
g is the

weight matrix or the weight vector for the group g that is a

sub matrix or sub vector in W l and wl
g,i is a weight with

index i in the group g. Group lasso introduces sparseness at
the group level and can reduce the number of active neurons
or active filters. Alvarez et al. [9] proposed an approach to
automatically determine the number of neurons in each layer
of a DNN during learning, and they showed that group lasso
regularization could reduce the number of parameters and even
improve network accuracy. Wen et al. [8] proposed a structured
sparsity learning (SSL) method to regularize the structures
of deep neural networks by group lasso as structured sparse
regularization. They introduced several structures of group
lasso.

B. Sparse Group Lasso Regularization

Friedman et al. [6] and Simon et al. [7] proposed sparse
group lasso by combining L1 regularization and group lasso,
applied to linear regression. Sparse group lasso forces param-
eters to be zero at both the group and the individual feature
level. Scardapane et al. [10] proposed to use sparse group
lasso for deep neural networks. The criterion of the sparse
group lasso is written as

RSGL(W
l) = α

∑
g∈G
‖W l

g‖2 + (1− α)‖W l‖1, (3)

where α is a balancing parameter to control strength of
both group lasso and L1 regularization. By this combination,
unnecessary parameters in the network can be pruned at both
the group level and the individual feature level.

C. Exclusive Sparse Regularization

Zhou et al. [11] and Kong et al. [12] proposed exclu-
sive lasso for multi-task feature selection. Exclusive lasso
introduces competition among parameters in the same group
and can prune neurons in neural networks. It is also called
exclusive sparsity and the regularization criterion is defined as

RES(W
l) =

1

2

∑
g∈G
‖W l

g‖21 =
1

2

∑
g∈G

(∑
i

|wl
g,i|

)2

. (4)

D. Combined Group and Exclusive Sparse Regularization

Yoon and Hwang et al. [13] proposed a pruning criterion
called combined group and exclusive sparsity (CGES) for deep
neural networks, which combines group lasso and exclusive
sparse regularization. The authors claim that CGES can make
the network sparse and also remove any redundancies among
the features to fully utilize the capacity of the network.

E. Group L1/2 Regularization

L1/2 regularization, proposed by Xu et al. [14] [15] [16],
can make the network to be more sparse than L1 regularization
and much simpler than L0 regularization. Fan et al. [17] [18]
applied L1/2 regularization for pruning the neurons in the
hidden layer of feedforward neural networks. Li et al. [19]
[20] also applied a group L1/2 regularization for feedforward
neural networks. L1/2 regularization can make not only the
redundant hidden nodes to be zero but also the redundant



(a) group lasso (b) exclusive sparsity (c) group L1/2 regularization

Fig. 1: The shape of three different regularization terms (a) group lasso regularization (b) exclusive sparse regularization (c)
group L1/2 regularization

weights of the surviving hidden nodes of the neural networks
to be zero. In this paper, we define the criterion of the group
L1/2 regularization for deep neural network as

RGL1/2
(W l) =

∑
g∈G
‖W l

g‖
1/2
1 =

∑
g∈G

√∑
i

|wl
g,i|. (5)

F. Out-In-Channel Sparse Regularization
Li et al. [21] proposed Out-In-Channel Sparse Regulariza-

tion (OICSR) for compact deep neural networks. In OICSR,
the correlations between successive layers are taken into
consideration to keep the predictive power of the compact
network.

III. PROPOSED METHOD

A. Structured sparse regularization
In this paper, we investigate the effectiveness of the

structured sparse regularization criteria such as group lasso,
exclusive sparsity, and group L1/2 regularization for the
convolutional neural network through intensive comparison
experiments. The definitions of these regularization criteria
are shown as equations (2), (4), and (5) respectively. The
visualization of these functions are shown in Fig. 1.

SSL proposed by Wen et al. [8] introduces various ways
of grouping for structured sparse regularization. In this paper,
we also investigate the effectiveness of the ways of grouping
through intensive comparison experiments. In the following
explanations, we will show the ways of grouping by using the
criteria for group lasso, but we can also define the criteria for
exclusive sparsity and group L1/2 regularization.

In the case of a convolutional layer, we can consider three
types of grouping for structured sparse regularization. The way
of grouping for a convolutional layer are shown in Fig. 2. The
first one is the filter-wise grouping which is defined as

RGL(W
l) =

ocl∑
i=1

icl∑
j=1

√√√√ Hl∑
h=1

Wl∑
w=1

wl
i,j,h,w

2
. (6)

This criterion prunes unnecessary filters in the convolution
layers.

The second one is the neuron-wise grouping which is
defined as

RGL(W
l) =

ocl∑
i=1

√√√√ icl∑
j=1

Hl∑
h=1

Wl∑
w=1

wl
i,j,h,w

2
. (7)

(a) the filter-wise (b) the neuron-wise

(c) the feature-wise

Fig. 2: The way of grouping for convolutional filters. (a) Each
filter is considered as a group. We call this grouping the filter-
wise grouping. By this grouping, we can prune unnecessary
filters. (b) The weights connected to a output neuron are
consider as a group. We call this grouping the neuron-wise
grouping. By this grouping, we can prune unnecessary output
neurons. (c) The weights connected to a input neuron are
considered as a group. We call this grouping the feature-wise
grouping. By this grouping, we can prune unnecessary the
output channels in (l− 1)th layer (the input channels in (l)th

layer).

This criterion prunes unnecessary output neurons at each
convolution layer. As a result, the number of out-channels is
reduced in each convolution layer.

Last one is the feature-wise grouping which is defined as

RGL(W
l) =

icl∑
j=1

√√√√ ocl∑
i=1

Hl∑
h=1

Wl∑
w=1

wl
i,j,h,w

2
. (8)

This criterion prunes unnecessary input neurons of the con-
volutional layer. As a result, we can remove unnecessary out-
channel in (l − 1)th layer by making the unnecessary input
neurons in lth layer zero.



B. Hierarchical Group Sparse Regularization

In the fully connected layer, weights are not structured, and
we can apply sparse regularization to prune unnecessary input
neurons or output neurons.

On the other hand, the weights of the convolutional layer
are structured as convolution filters, and there are three types
of grouping, namely the filter-wise grouping, the neuron-wise
grouping and the feature-wise grouping.

However, mutual interaction between filters in the group
is not taken into account in the neuron-wise grouping or the
feature-wise grouping. To introduce such interactions in the
sparse regularization criterion, we propose hierarchical group
sparse regularization.

There are several possibilities to define the hierarchical
interactions between filters in the group for structured sparse
regularization. In this paper, we consider two ways of the
integration, namely the square root of the sub-groups and
the square of the sub-groups. Thus, we can propose a set of
hierarchical group sparse regularization criteria using group
lasso regularization, exclusive sparsity, and group L1/2 regu-
larization based on the neuron-wise grouping or the feature-
wise grouping. In the following, we explain the hierarchical
group sparse regularization criteria based on the feature-wise
grouping. However, we can easily define the hierarchical
group sparse regularization criteria based on the neuron-wise
grouping.

The hierarchical group lasso regularization criterion based
on the feature-wise groupings is defined as

RHSQRT−GL(W
l) =

icl∑
j=1

√√√√√ ocl∑
i=1

√√√√ Hl∑
h=1

Wl∑
w=1

wl
i,j,h,w

2
. (9)

In this criterion, the square root of the sub-groups (the feature-
wise groupings) are taken to defined the sparse regularization
criterion.

The hierarchical group lasso regularization criterion based
on the feature-wise groupings is also defined by taking the
square of the sub-groups as

RHSQ−GL(W
l) =

icl∑
j=1

 ocl∑
i=1

√√√√ Hl∑
h=1

Wl∑
w=1

wl
i,j,h,w

2

2

. (10)

It is expected that these hierarchical group lasso criteria can
prune unnecessary output neurons and input neurons simulta-
neously.

Similarly, the hierarchical exclusive sparse regularization
criterion is define as

RHSQRT−ES(W
l) =

icl∑
j=1

√√√√ ocl∑
i=1

(
Hl∑
h=1

Wl∑
w=1

|wl
i,j,h,w|

)2

(11)

and

RHSQ−ES(W
l) =

icl∑
j=1

 ocl∑
i=1

(
Hl∑
h=1

Wl∑
w=1

|wl
i,j,h,w|

)2
2

(12)
The hierarchical group L1/2 regularization criterion is also

defined as

RHSQRT−GL1/2
(W l) =

icl∑
j=1

√√√√√ ocl∑
i=1

√√√√ Hl∑
h=1

Wl∑
w=1

|wl
i,j,h,w|

(13)
and

RHSQ−GL1/2
(W l) =

icl∑
j=1

 ocl∑
i=1

√√√√ Hl∑
h=1

Wl∑
w=1

|wl
i,j,h,w|

2

.

(14)
It is also possible to combine the L1 regularization with

the hierarchical group sparse regularization criteria in order to
prune unnecessary individual weights.

In the next section, we investigate the effectiveness of the
each criterion through intensive comparison experiments.

IV. EXPERIMENTS

A. The Sparse Regularization Criteria

We have performed experiments with the convolutional
neural network to compare the effectiveness of the sparse regu-
larization criteria explained in this paper. They are summarized
in the table I. The regularization is applied to the weights
except for the bias term in all convolutional layers.

TABLE I: Summary of the sparse regularization criteria

abbreviation sparse regularization criteria
L2 L2 regularization
L1 L1 regularization [1]
GL Group lasso regularization [3] [4]
ES Exclusive sparse regularization [11] [12]

GL1/2 Group L1/2 regularization [19] [20]
SGL Sparse group lasso regularization [10]

SGL1/2 Combined GL1/2 and L1
CGES CGES regularization [13]

OICSR-GL Combined OICSR and GL [21]
HSQRT-GL Hierarchical square rooted GL

HSQ-GL Hierarchical squared GL
HSQRT-ES Hierarchical square rooted ES

HSQ-ES Hierarchical squared ES
HSQRT-GL1/2 Hierarchical square rooted GL1/2

HSQ-GL1/2 Hierarchical squared GL1/2

SHSQRT-GL1/2 Combined HSQRT-GL1/2 and L1
SHSQ-GL1/2 Combined HSQ-GL1/2 and L1

B. Networks and Datasets

To confirm the robustness to the variations of the charac-
teristics of the data, we have performed experiments using
five datasets MNIST, Fashion-MNIST, CIFAR-10, CIFAR-
100, and STL-10. A simple CNN, AlexNet [23], ResNet [24]
and VGG nets [25] are used as the base network and they
are trained from the scratch. The number of channels of



the network at each layer is adjusted to prevent overfitting,
depending on each dataset.

MNIST contains 70,000 grayscale images of handwritten
digits. So the number of classes is 10. The size of the image
is 28 × 28 pixels. They are divided into 60,000 training
images and 10,000 testing images. The simple CNN with two
convolutional layers and two fully connected layers is trained
by using the training images of MNIST dataset.

Fashion-MNIST contains 70,000 grayscale images of ten
different fashion items. The size of the image is 28 × 28
pixels. They are divided into 60,000 training images and
10,000 testing images. Similar to the MNIST, the simple CNN
with two convolutional layers and three fully connected layers
is trained by using the training images of Fashion-MNIST
datasets.

CIFAR-10 contains 60,000 color images of ten different
animals and vehicles. The size of the image is 32 × 32
pixels. They are divided into 50,000 training images and
10,000 testing images. For CIFAR-10, we trained AlexNet
with 5 convolutional layers and three fully connected layers
and ResNet18 with 17 convolutional layers and one fully-
connected layer with batch normalization layers. The number
of channels of AlexNet is set to [ 8, 16, 32, 16, 16, 128, 128,
10] and [ 8, 8, 8, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 64, 64,
64, 64, 10] for ResNet18.

CIFAR-100 contains 60,000 color images of 100 different
categories. The size of the image is 32 × 32 pixels. They
are divided into 50,000 training images and 10,000 testing
images. For CIFAR-100, we trained VGG11bn, that has eight
convolutional layers and three fully connected layers with
batch normalization layers. The number of channels is set to
[ 16, 32, 64, 64, 128, 128, 128, 128, 128, 128, 10].

STL-10 contains 13,000 color images of animals and vehi-
cles. (airplane, bird, car, cat, deer, dog, horse, monkey, ship,
truck). The size of the image is 96×96 pixels. They are divided
into 5,000 training images and 8,000 testing images. For
STL-10 dataset, we trained AlexNet with five convolutional
layers and three fully connected layers and ResNet18 with 17
convolutional layers and one fully-connected layer with batch
normalization layers. The number of channels is set to [ 16,
32, 64, 32, 32, 512, 512, 10] for AlexNet, and [ 8, 8, 8, 8, 8,
16, 16, 16, 16, 32, 32, 32, 32, 64, 64, 64, 64, 10] for ResNet18.

C. Experimental Setting

All the base networks are trained by using SGD optimizer
with a momentum of 0.9. Also, we used the weight decay
with the strength of 10−4 to prevent overfitting. For MNIST
and Fashion-MNIST, the networks are trained for 30 epochs
with the sparse regularization using a mini-batch size 256. For
CIFAR-10 and CIFAR-100, we trained the networks for 100
epochs with the sparse regularization using a mini-batch size
128. For STL-10, the network is trained for 100 epochs with
the sparse regularization using a mini-batch size 64.

The hyper-parameter λ, which balances the cross-entropy
loss and the sparse regularization criterion, is experimentally
determined by grid search in the range from 10−1 to 10−6. For

SGL, SGL1/2, SHSQRT-GL1/2, SHSQ-GL1/2 and OICSR-
GL, we set the parameter α, which balances the L1 regu-
larization and the group sparse regularization criterion, to be
0.5. Also, we set m = 0.8 for CGES.

D. Preliminary Experiments
using MNIST and Fashion-MNIST datasets

TABLE II: Accuracy and sparsity with simple CNN on MNIST
and Fashion-MNIST datasets. Top 2 sparsity are shown in
boldface.

Dataset MNIST Fashion-MNIST
Method Accuracy Sparsity Accuracy Sparsity

L2(Baseline) 99.03% 1.81% 87.90% 1.73%
L1 99.18% 39.29% 89.15% 95.39%
GL 99.20% 1.82% 89.50% 68.66%
ES 99.14% 52.98% 88.32% 98.76%

GL1/2 99.16% 50.33% 89.10% 96.61%
SGL 99.22% 19.62% 88.38% 99.20%

SGL1/2 99.24% 21.70% 88.26% 99.45%
CGES 99.05% 58.94% 89.69% 62.42%

OICSR-GL 99.24% 1.89% 89.50% 67.21%
HSQRT-GL 99.22% 2.20% 89.40% 87.95%

HSQ-GL 99.17% 20.55% 88.86% 86.05%
HSQRT-ES 99.09% 58.80% 88.78% 96.23%

HSQ-ES 99.10% 19.75% 88.05% 80.98%
HSQRT-GL1/2 99.25% 26.83% 87.97% 99.67%

HSQ-GL1/2 99.13% 77.60% 88.61% 99.54%
SHSQRT-GL1/2 99.20% 21.09% 88.39% 99.43%

SHSQ-GL1/2 99.04% 94.08% 88.82% 99.38%

At first, we have performed preliminary experiments to
investigate the effectiveness of the proposed hierarchical group
sparse regularization for the simple CNN using MNIST and
Fashion-MNIST datasets, which include gray-scale images.

Results of the simple CNN for MNIST and Fashion-MNIST
with the hierarchical group sparse regularizations and the other
sparse regularizations are shown in Tab. II. The ratio of the
zero weights is calculated by assuming the weights whose
absolute value is less than 10−3 are zero to evaluate the
sparsity of the trained network.

From this table, it is noticed that all the test accuracies are
higher than the baseline (L2) after the sparse regularizations
are introduced. For the MNIST dataset, the sparse regular-
izations SHSQ-GL1/2 and HSQ-GL1/2 achieved the sparsity
of 94.08% and 77.60%. For the Fashion-MNIST dataset, the
sparse regularizations HSQRT-GL1/2, HSQ-GL1/2, SGL1/2,
SHSQRT-GL1/2, and SHSQ-GL1/2 achieved the sparsity more
than 99%. These results show the effectiveness of the proposed
hierarchical group sparse regularizations. Also, it is noticed
that the group L1/2 base regularizations are effective in
increasing the sparseness.

From these results, we can say that the parameters of the
CNN are very redundant, and more than 90% of the weights
are not necessary to achieve the classification accuracy of the
baseline CNN without pruning.

We visualized the convolutional filters of each network after
the training for the MNIST dataset with the structured sparse
regularizations. Fig. 3 shows the filters in the 1st convolutional
layer and the 2nd convolutional layer for the baseline CNN and



(a) Filters of trained network without regularization (b) Filters of trained network with neuron-wise
HSQRT-GL

(c) Filters of trained network with feature-wise
HSQRT-GL

Fig. 3: Visualization of the 1st convolutional layer filer (showed at above) and 2nd convolutional layer filter for a input neuron
(showed at below) from the network trained on MNIST dataset. The numbers of channels of each layer are [ 16, 32, 128, 10].
All filters are shown in 1st convolutional layer and 2nd convolutional layer. (a) Filters of trained network without regularization.
Sparsity of the filters at the 1st convolutional layer and 2nd convolutional layer are 00.25%, 1.86% respectively. (b) Filters of
trained network with neuron-wise HSQRT-GL. Sparsity of the filters at the 1st convolutional layer and 2nd convolutional layer
are 63.50%, 99.22% respectively. (c) Filters of trained network with feature-wise HSQRT-GL. Sparsity of the filters at the 1st
convolutional layer and 2nd convolutional layer are 93.75%, 97.75% respectively.

the networks trained with the neuron-wise HSQRT-GL and the
feature-wise HSQRT-GL.

As shown in Fig. 3a, the weights of the trained filters
without sparse regularization becomes active at almost all
locations and show various patterns. However, the filters
trained with the hierarchical group sparse regularization are
sparse in which many of the weights become almost zero,
as shown in Fig. 3b and Fig. 3c. Notably, only one filter
remains active in the 1st convolutional layer, and this filter
works as a blurring filter. Also, only a few filters are survived
in the 2nd convolutional layer. These filters work as directional
edge detection filters to the blurred input image processed
by the filter in the 1st convolution layer. Interestingly, the
effectiveness of the features obtained by the combinations
of the directional edge filers and blurring is well known in
character recognition, and there is a correspondence with the
network trained with the structured sparse regularizations. We
can get this structure automatically by training with sparse
regularizations.

Similar results are also obtained for the MNIST dataset
and the Fashion-MNIST dataset by using the other structured
sparse regularizations. These results show that the network
structure of a combination of the blurring filter and edge
filters is fundamental for MNIST and Fashion-MNIST. It is
interesting to consider the reason why this network structure
is fundamental for gray image classification tasks.

Fig. 3b and Fig. 3c show the visualizations of the filters
obtained by the neuron-wise grouping with HSQRT-GL and
the filters by feature-wise grouping with HSQRT-GL. In the
neuron-wise grouping, the weights connected to a output
neuron are considered as a group, and the structured sparse
regularization removes the neuron if the neuron is not neces-

sary for the classification task. On the other hand, the weights
to a input neuron are considered as a group, and the structured
sparse regularization removes the neuron if the neuron is not
necessary for the classification task.

From the experiments, in both grouping methods, we found
that the network trained with structured sparse regularization
can remove unnecessary neurons enforcing the subset of the
weights to be zero. Thus, the trained filters with the neuron-
wise grouping and the feature-wise grouping are similar. In
the following experiments, we show the results for the case of
the feature-wise grouping.

E. Hierarchical vs Non-Hierarchical

The training results of AlexNet, ResNet18, and VGG11bn
with the sparse regularizations for the CIFAR-10, the CIFAR-
100, and the STL-10 datasets are shown in Tab. III.

By comparing the proposed hierarchical group sparse reg-
ularizations (HSQRT-GL, HSQ-GL, HSQRT-ES, HSQ-ES,
HSQRT-GL1/2, and HSQ-GL1/2) with the corresponding non-
hierarchical group sparse regularization (GL, ES, and GL1/2),
it is noticed that the networks trained with the hierarchi-
cal group sparse regularization are sparser than the non-
hierarchical group sparse regularizations. Especially, the hi-
erarchical squared sparse regularizations can make the trained
networks more sparse by keeping the accuracy the same as
the baseline network.

For all datasets and all network structures, HSQ-GL1/2

shows the highest sparsity keeping high accuracy. These results
show that HSQ-GL1/2 is the most effective in terms of
sparseness.

We also compare the ways of grouping with filter-wise
grouping that the simplest grouping, feature-wise grouping that



TABLE III: Results for AlexNet, ResNet18 and VGG11bn nets on CIFAR-10/100 and STL-10 dataset. Ave rank shows the
average of the ranks of the sparsity. The best sparsity is shown in boldface.

Network AlexNet ResNet18 VGG11bn Ave
rankDataset CIFAR-10 STL-10 CIFAR-10 STL-10 CIFAR-100

Method Accuracy Sparsity Accuracy Sparsity Accuracy Sparsity Accuracy Sparsity Accuracy Sparsity
L2(Baseline) 75.50% 0.50% 66.90% 1.52% 72.43% 1.59% 70.69% 1.13% 57.20% 1.09% -

L1 76.00% 5.53% 69.92% 12.34% 72.98% 72.82% 73.22% 73.75% 58.30% 39.32% 7.4
GL 76.03% 0.67% 69.53% 1.68% 73.44% 42.72% 74.66% 22.52% 58.59% 1.63% 14.4
ES 75.70% 10.05% 69.39% 14.05% 72.79% 78.10% 72.84% 64.65% 58.87% 13.68% 7.8

GL1/2 75.76% 9.38% 69.33% 29.62% 73.29% 24.29% 71.62% 15.63% 57.44% 49.47% 8.8
SGL 75.91% 2.20% 67.36% 71.93% 73.48% 64.57% 72.12% 53.27% 58.56% 19.49% 9

SGL1/2 75.55% 2.58% 67.04% 76.98% 73.16% 67.09% 71.56% 62.42% 58.49% 21.88% 7.4
CGES 76.04% 2.46% 68.56% 30.21% 72.48% 88.14% 72.26% 10.01% 59.10% 1.29% 10

OICSR-GL 76.23% 0.61% 69.54% 1.59% 73.69% 47.68% 75.02% 24.92% 59.03% 1.78% 14.2
HSQRT-GL 76.02% 0.88% 69.49% 6.03% 73.03% 71.02% 70.94% 1.37% 58.91% 3.49% 13

HSQ-GL 76.12% 3.16% 69.04% 23.11% 73.98% 67.96% 73.72% 40.52% 59.40% 7.35% 9.8
HSQRT-ES 75.80% 13.04% 70.10% 14.65% 73.02% 76.93% 71.40% 79.50% 58.46% 28.80% 5.6

HSQ-ES 75.60% 10.25% 68.05% 17.66% 73.54% 58.49% 72.64% 25.22% 57.31% 14.97% 9.4
HSQRT-GL1/2 75.77% 5.63% 69.01% 28.02% 73.07% 83.54% 71.33% 9.66% 58.11% 43.61% 7.4

HSQ-GL1/2 75.54% 26.30% 67.91% 63.20% 72.89% 89.05% 70.71% 93.73% 57.69% 62.79% 1.6
SHSQRT-GL1/2 75.80% 2.51% 67.06% 78.56% 73.20% 68.11% 71.25% 67.39% 58.63% 21.79% 6.8

SHSQ-GL1/2 75.67% 12.72% 69.10% 43.28% 72.80% 84.01% 72.67% 89.23% 57.72% 39.40% 3.4

(a) filter-wise GL1/2 (b) feature-wise GL1/2 (c) feature-wise HSQ-GL1/2

(d) filter-wise GL1/2 (e) feature-wise GL1/2 (f) feature-wise HSQ-GL1/2

Fig. 4: The sparsity of each of the layers in the trained network with sparse regularization. (a)-(c) Sparsity of the trained
AlexNet on CIFAR-10 with the group-wise GL1/2. The number of channels of the network are [ 8, 16, 32, 16, 16, 128, 10].
The sparsity of the trained AlexNet is around 30%. The accuracy and sparsity are 78.23%, 0.56%. (d)-(f) Sparsity the trained
ResNet18 on STL-10 with group-wise GL1/2. The number of channels of the network are [ 64, 64, 64, 64, 64, 128, 128,
128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 10]. The sparsity is around 80%. The accuracy and sparsity are 75.97%,
3.93%. (a) AlexNet on CIFAR-10 with the filter-wise GL1/2 regularization, accuracy and sparsity are 78.99%, 30.04%. (b)
AlexNet on CIFAR-10 with the feature-wise GL1/2 regularization, accuracy and sparsity are 78.68%, 33.67%. (c) AlexNet
on CIFAR-10 with the feature-wise HSQ-GL1/2 regularization, accuracy and sparsity are 79.25%, 31.46%. (d) ResNet on
STL-10 with the filter-wise GL1/2 regularization, accuracy and sparsity are 78.48%, 81.07%. (e) ResNet on STL-10 with the
feature-wise GL1/2 regularization, accuracy and sparsity are 78.36%, 82.20%. (f) ResNet18 on STL-10 with the feature-wise
HSQ-GL1/2 regularization, accuracy and sparsity are 78.51%, 80.85%.



can consider the weight for the input neuron as a group and
hierarchical feature-wise grouping that can consider the weight
for the input neuron as a group and convolutional filter as a
group in the same group.

Fig. 4 shows the sparsity at each layer in AlexNet for
CIFAR-10 and ResNet18 for STL-10 after training with the
filter-wise GL1/2, the feature-wise GL1/2, and the feature-wise
HSQ-GL1/2.

In AlexNet, the number of channels increases from the first
layer to the third layer, and then it decreases at the forth
layer. The network trained with the filter-wise GL1/2 or the
feature-wise GL1/2 regularizations becomes sparse only in
the later layers. On the other hand, the middle layers of the
network trained with the feature-wise HSQ-GL1/2 are also
sparse. These results suggest that we do not need to increase
the number of channels in the later layers in AlexNet.

ResNet18 consists of four blocks of the layers. In each
block, the number of channels is the same in each layer. The
number of channels increases as the block becomes closer to
the output layer. The sparseness of each layer in the network
trained with the filter-wise GL1/2 regularization or the feature-
wise GL1/2 regularization increases as the layer is closer to
the output. Also, the sparseness of the layers in each block
is different. On the other hand, the sparseness of the layers
is almost the same within each block when the network was
trained with HSQ-GL1/2 regularization. This result also shows
that we do not need to increase the number of channels in
ResNet18.

From these results, we think that the proposed hierarchical
group sparse regularizations can effectively prune the unnec-
essary subsets of weights more adequately depending on the
structure of the network and the number of channels.

F. Comparison with the previous works

From Tab. II and Tab. III, it is obvious that the sparseness
of the network trained with the proposed hierarchical group
sparse regularization criteria is higher than the previous sparse
regularization criteria, including CGES and OICSR-GL. It is
noticed that higher sparsity keeping better accuracy than the
base networks is obtained by the hierarchical group sparse
regularization criteria, which use L1 regularization in the hi-
erarchical grouping. Especially HSQ-GL1/2 gives the highest
sparsity for almost all network architectures and datasets.
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