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Abstract—Reinforcement learning aims to discover an optimal
policy that maximizes reward based on the feedback signal.
Although the method succeeds in numerous systems, it may
not apply to safe-critical systems due to the absence of safety
protection mechanism. Besides, the agent is unable to model
the environment accurately if getting biased observation. We
present a safe algorithm called Safe Control with Supervisor
(SCS) for addressing the limitation. If the model is accurate, the
supervisor monitors the system and repairs the action of the agent
at runtime, which guides the system to obey the specification
described by probabilistic timed Computation Tree Logic (ptCTL).
If not, the supervisor would maximize the probability of satisfying
a given task specification. We validate our method through
experiments of adaptive cruise control under uncertainty.

Index Terms—Reinforcement learning, Probabilistic timed
computation tree logic, Safe control

I. INTRODUCTION

Reinforcement Learning (RL) [1], [2], provides a method for
autonomous agents to explore policies that maximize long-
term reward. RL succeeds in finding solutions for decision
problems. However, there is no safety guarantee during ex-
ploring and executing stages in traditional RL. It is fatal to
some systems, particularly in which safety is critical. For
instance, the mobile robot navigation system and adaptive
cruise controller. In these systems, not only maximizing long-
term reward should be considered, but also avoiding damage.
The safety concept, in many works, has taken various forms
in the RL area, is not always refers to physical issues, even
optimal policy. However, most are related to the stochasticity
of the environment [3].

Traditional RL algorithms aim to find a function that
specifies an action or a strategy for some states of the system
to optimize a criterion. The optimization criterion may be to
maximize rewards, to minimize time or any other cost metric,
etc.. There are some optimization criterions of safe RL in
research, such as worst-case criterion, risk-sensitive criterion,
constrained criterion [3].

A exploring or executing process is capable of being called
safe, which means that no unsafe states are visited during the
process. There are two common ways to modify exploration
process to avoid accessing undesirable states: incorporating
external knowledge and risk-directed exploration [4], [5].

In this paper, we propose a framework, which allows
implementing RL to safe control system. The heart of the
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framework is a logic called probabilistic timed Computation
Tree Logic (ptCTL), a probability and timed extension of
Computation Tree Logic (CTL). ptCTL provides a method to
express constraints to the system, such as safety and reliability.

We contribute an algorithm called Safe Control with Super-
visor (SCS), combines traditional RL with a formal analysis
at runtime. The mechanism of SCS is shown in Fig. 1. The
supervisor monitors the chosen action and modifies it only if
the action is unsafe. The purpose of the algorithm is generating
a safe and optimal control policy π. Furthermore, there is a
distinct advantage in that SCS does not concentrate on details
of RL algorithms. The independence implies that no matter
how complex inner mechanisms of RL algorithms are, SCS
may still ensure the system following the given specification.

For accurate models, SCS converts formal verification re-
sults into the control strategy. The verification result deter-
mines whether the selected action can be taken in the current
state. If not, the controller would replace it with a safe action
and fix the policy.

However, if the uncertain environment that the agent ob-
served is not accurate, that means the observed state of the en-
vironment is not exactly in line with reality. It causes difficulty
of optimizing the policy by interacting with the environment.
Therefore, we introduce the concept of safety threshold. The
optimization criterion is maximizing the probability of safety
via quantitive verification. We ensure that the probability that
the optimal strategy being safe beyond the threshold.

To validate our approach, we establish an evaluation en-
vironment Adaptive Cruise Control (ACC) and conduct four
experiments of the environment. Experiments measure the
performance of the algorithm in different conditions whose
model is respectively accurate or not.
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Summarily, our main contributions in this paper are:
• Framework for safe RL under uncertainty, provides a

way for safe controlling of hybrid dynamical systems by
combining formal analysis and RL.

• Proposal and formal definition of ptCTL, a branching
time-interval logic with stochastic factor. It provides a
manner to express stochastic properties of systems.

• An extended evaluation environment of RL based on
OpenAI gym. A model for measuring the performance
of RL algorithms.

The remainder of this paper is as follows. In the next
section, we discuss the related work about safe RL and safe
control. Then we introduce the theories and technologies
used in Section III. In Section IV, we define the syntax and
semantics of ptCTL. Subsequently, we show our algorithm
after the definition of safety threshold and controller monitor
in Section V. We construct a new evaluation environment and
validate our method base on the environment in Section VI.
Finally, we conclude this paper in Section VII.

II. RELATED WORK

In recent years, there has been increasing interest in safe
artificial intelligence. A variety of methods and algorithms for
strengthening the safety of RL is explored recently [3].

Numerous strategies for safe RL are based on optimizing
constrained criteria, that is, excluding unsafe states from state
space. The agent only visits the states in the safe state set that
satisfies the given specification. In those methods, temporal
logic is popular due to their strong ability of expression. One
of the most popular temporal logic is Linear Temporal Logic
(LTL), which provides an approach to express the safety,
reliability, and liveness of the system. The reactive system
would monitor the states and actions of the agent, and corrects
only if the chosen action violates the given specification [6]–
[8]. Another popular one is CTL, which is used to describe the
properties of branching systems. Recently, some novel logic
of specification are emerging for safe RL, e.g. Probabilistic
Signal Temporal Logic (PrSTL) is used for safe control under
uncertainty [9]. Methods below establish risky bound of the
system to ensure its safety. Once the agent damages either
environment or itself, policies would be repaired [10].

However, temporal logic and their probabilistic versions re-
quire space and time discrete, which is not often met in Cyber-
physical systems (CPS). Especially, in branching systems that
contain several state transition relationships at a state. In those
systems, the methods mentioned above are unable to fulfill all
requirements well. Our method may satisfy the requirements
in hybrid probabilistic branching systems. Besides, ptCTL can
express specifications that over a specific period due to the
introduction of the time interval operator. If the environment
observed is not precise, the previously mentioned method does
not perform well. Compared with them, our method is more
robust. Even though the perceived environment is not accurate,
the algorithm still guarantees the safety of the system.

Another optimal criterion for safe learning is worst-case cri-
terion. Q̂-Learning is based on dynamic programming for the

minimax criterion. The minimax criterion exclusively focuses
on risk-avoidance policies, agent maximizes the reward related
to the worst-case policy [11]. In risk-sensitive RL, the agent
has to balance between maximizing reward and minimizing
the possibility of damage even if risks occur with a minuscule
probability. The risk-sensitive criterion based on the usage of
exponential utility functions includes a scalar parameter that
provides the risk tolerance level to be dominated [12].

Another category for safe RL is modifying the exploration
process. Incorporate external knowledge is one of the available
methods. Providing initial knowledge [4], [13], initializes prior
knowledge of the problem to the agent, for learning more
efficient and reducing time spent on random action. Deriving
a policy from a finite set of demonstrations is also a method to
incorporate external knowledge [14]. A teacher demonstrates
the mission, and the state-action tuples of the demonstration
are recorded before the learning process [15]. There are two
ways for advising by the teacher. First, the teacher guide agent
to act in promising space, that suggested by the teacher’s
policy. In the second method, the teacher advises the learner
for avoiding damage only if the teacher deems it essential.
The methods above can restrict the agent to a safe state and
action space before the learning process.

Risk-directed Exploration [5] is another practical approach
to modify the learning process. Take controllability as the
reward of the agent means inspiring the agent to explore
controllable policy. The method renders the agent explore with
a defined risk metric based on controllability. Our work is
more closely to teacher-advising RL, due to the supervisor is
similar to a teacher, which monitors the agent and generate
safe actions. Different from the methods above, our method is
monitoring and repair the agent at runtime. The algorithm is
more efficient and avoids vast state exploration.

Recently, an interesting concept is proposed, that is runtime
monitoring [16], [17]. We adopt this idea and propose our
method to guarantee the safety of systems at runtime.

III. BACKGROUND

In this section, we introduce notations and definitions used
throughout this paper. We introduce a description of the hybrid
dynamical system and the CTL, then describe the RL.

A. Hybrid Dynamical System
In a continuous state dynamical control system, there ex-

ist both discrete and continuous variables. Its behaviors are
widely mixed with discrete control signals and continuous
real-valued states so that behaviors are complex and challeng-
ing to master and control. Mathematically, the lower layer of
the system and controller are modeled together as a differential
equation evolving in real-time. However, the lower layer is
considered as a discrete system consists of events traces
that unfold in logical time. For maintaining consistency, it is
necessary that correlating two models [18].

Hybrid model semantics combines the continuous and dis-
crete variables by a differential equation:

.
xt = ft(x) =

dx

dt
(1)



where
.
xt is a discrete variable of system at time t, ft(x) is

a differential function of x, dx is the change of continuous
variable x in the time interval dt.

Example 1: Let us consider a hybrid dynamical model (A
model of a car driving on a straight road):

.
xt =

dx

dt
= vt ;

.
vt =

dv

dt
= at (2)

Equation 2 describes a model of a car driving on a straight
road. The car can choose to accelerate with discrete accel-
eration: a = A(A > 0), a = 0 or a = B(B < 0), and then
follows the differential equation above. In the Equation 2, v,
x, and t are continuous variables, the value of a is discrete.
This continuous system can be discretized using time interval
dt > 0.

.
x is the differential of x on dt, equals to the velocity

v, whose differential
.
v represents the acceleration of the car.

B. Computation Tree Logic

CTL is a branching logic for expressing finite model prop-
erties using path quantifiers [19]. The timed model of CTL is
not determined. Formally, the CTL formula is defined as:

φ ::= ⊥ | > | p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ |
AXφ|EXφ|AFφ|AGφ|EGφ|A(φUφ)|E(φUφ)

(3)

where φ is a CTL formula, composing of predicates and
Boolean operators. > and ⊥ are Boolean constants for True
and False, p is atom formula, ¬ is a negation which means
not, ∧ is a conjunction which indicates and, ∨ is a disjunction
which representsor, U is the Until temporal operator, F is
the Future temporal operator, G is the Globally temporal
operator. E and A are path quantifiers, E is the Exist
path quantifiers that means there exists a path satifies target
properties, A is the All path quantifiers that means for all
paths in the model satisfy given properties.

The specification described by CTL allows the expression
of system properties. However, it is not capable of expressing
task missions under uncertainty and requires variables in the
model to be discrete.

C. Reinforcement Learning

Reinforcement learning is a method to maximize rewards
in Markov Decision Processes (MDPs) that defined as a tuple
M = (S,A, T,R). In the tuple, S is a finite set of system
states, a unique initial state s0 ∈ S; A is a finite set of available
actions of the agent while under a state s ∈ S; T (s, s′) denotes
a probable transition function from state s ∈ S to s′ ∈ S by
action a ∈ A: S×A→ S, R is an immediate reward function
related to transition t ∈ T , S ×A× S → R.

The objective of RL is to explore an optimal policy π : S →
A that makes rewards maximum. Policies consist of a set of
selection strategies for choosing actions based on the current
state. Mechanism of standard RL as shown in Fig. 2 [1]. In
standard RL, the agent consists of three parts: observer I ,
learner L and decision-maker D. I transforms the observation
from the environment into internal arguments i, L updates the
policy according to reward from the environment and i from

Fig. 2. Standard reinforcement learning

I , then D would choose the most suitable action based on
internal argument i and current state.

Q-learning is a form of model-free reinforcement learning.
Agent adjusts Q-values via Bellman equation [20]:

Q(s, a)← Q(s, a)+α [r + γmaxa′Q (s′, a′)−Q(s, a)] (4)

where α ∈ (0, 1] is the learning rate and γ ∈ [0, 1] is the
discounter factor that trades off the importance of immediate
and later rewards. By selecting the highest value action in each
state, the optimal strategy can be easily derived.

Unlike traditional techniques, Q-network stores Q-values
through a network instead of Q-table to solve the problem
since Q-table cannot read the Q-value fastly if the number of
states is too large.

IV. PROBABILISTIC TIMED COMPUTATION TREE LOGIC

We propose a probabilistic timed extension of CTL, that
supports stochastic temporal properties on real-value and
dense-time states, and offers a quantitative measure for prob-
abilistic specification. ptCTL has a new ability that specifies
stochastic properties during a time stage, applies to constrain
synthesis controller. A mission specification defined by ptCTL
is capable of expressing safety, reliability, and other compli-
cated properties based on the stochastic models.

A. Syntax

ptCTL is defined with respect to discrete valued time t. The
syntax of ptCTL is defined using Backus Naur normal form
as:

ϕ ::= ⊥ |>|¬ϕ|ϕ1 ∨ ϕ2|ϕ1 ∧ ϕ2|ψ|Eψ|Aψ|P∼λ[ϕ] (5)
ψ ::= µ|¬ψ|Xψ|ψ1U[a,b]ψ2|F[a,b]ψ|G[a,b]ψ (6)

Here, ϕ,ϕ1, ϕ2 are ptCTL formulae, ψ,ψ1, ψ2 are ptCTL
formulae without probabilistic operators. Formulae are com-
posing of predicates and Boolean operators. > and ⊥ are
Boolean constants for True and False, µ is a atom formula,
¬ is a negation, which means not, ∧ is a conjunction, which
means and, ∨ is a disjunction, which means or, U is the Until
trmporal operator, F is the Future temporal operator, G is
the Globally temporal operator, scopes that all state in the
current path. E and A are path operators, E is the Exist
operator, A is the All. Different from CTL, there are additional



stochastic and time factors., P∼λ is probabilistic operator,
∼∈ {<,≤,≥, >}, λ ∈ [0, 1] is a constant. [a, b] denotes the
time period from a to b after current state, a, b ∈ [0,+∞) and
b ≥ a. With atomic propositions and operators, complex tasks
specifications can be defined.

B. Semantics

(M, s, t) � ϕ implies that the model M in state s satisfies
the formula ϕ at time t. For expressing stochastic properties
of the model, we introduce the probabilistic statement P∼λ[·]
with the stochastic factor λ:

(M, s, t) � P∼λ[ψ] ⇔ Pr((M, s, t) � ψ) ∼ λ (7)

Here, ψ is a ptCTL formula without probabilistic operator,
λ ∈ [0, 1] is a constant, determines the tolerance level in
satisfaction of the probabilistic properties, ∼∈ {<,≤,≥, >}.
For instance, formula (M, s′, t′) � P≥p′ [ψ′] holds means the
probability that in state s′ the modelM satisfying ψ′ is higher
than p′ at time t′. The probability of the formula holding
is accessible to be obtained by iterate the value of λ and
determine if the formula holds. P∼λ[·] is used to determines
weather the probability of satisfying the given specification
holds true for ∼ λ. Pr(·) computes the probability of the
event holding by:

Pr((M, s, t) � ψ[a,b]) =
∏t+b
t+a(Prt′(ψ)) (8)

where ψ[a,b] is the properties ψ during the time interval [t +
a, t + b], Prt′(ψ) is the probability of M � ψ at time t′ ∈
[t+ a, t+ b]. The probability of the formula ψ holding is the
product of the possibility of ψ holding in every time step t′.

Moreover, we define the semantics of ptCTL with a
satisfaction relation � over the states and paths of a MDP
model M = (S,A, T,R), the satisfaction relation defined as:
(M, s, t) � µ ⇔ at time t, µ ∈ L(s)
(M, s, t) � ¬ϕ ⇔ (M, s, t) 6� ϕ
(M, s, t) � ϕ1∧ϕ2 ⇔ (M, s, t) � ϕ1∧ (M, s, t) � ϕ2

(M, s, t) � ϕ1∨ϕ2 ⇔ (M, s, t) � ϕ1∨ (M, s, t) � ϕ2

(M, s, t) � P∼λ[ϕ] ⇔ Pr((M, s, t) � ϕ) ∼ λ
(M, s, t) � Xϕ ⇔ (M, s′, t′) � ϕ,

(s′, t′) is the next state of (s, t)
(M, s, t) � G[a,b]ϕ ⇔ ∀t′ ∈ [t+a, t+b], (M, s, t′) � ϕ
(M, s, t) � F[a,b]ϕ ⇔ ∃t′ ∈ [t+a, t+b], (M, s, t′) � ϕ
(M, s, t) � ϕ1U[a,b]ϕ2 ⇔ ∃t′ ∈ [t+ a, t+ b], (M, s′, t′) � ϕ2

∧ ∀t′′ ∈ [t, t′] , (M, s′′, t′′) � ϕ1

(M, s, t) � E ϕ ⇔ Existing a path start at state s satisfies
∀t′ ∈ [t,+∞], (M, s′, t′) � ϕ

(M, s, t) � A ϕ ⇔ For all paths start at state s satisfies
∀t′ ∈ [t,+∞], (M, s′, t′) � ϕ

In ptCTL formulae, (M, s, t) � ϕ means ϕ is satisfied by
modelM at state s and time point t. For any time t ∈ [0,+∞)
and state s ∈ S in model M, we can determine satisfaction
status by the semantics above.

Example 2: (Safety specification of a car driving on a
straight road)

EG[0,+∞)(dis > 0 ∧ v ≥ 0) (9)

Equation 9 represents a safety specification of a car driving
on a straight road. dis represents the distance between the
vehicle and others in front, v is the velocity of the car. The
specification means that there is at least one running path
throughout the driving, makes the distance of the vehicle from
other vehicles is greater than 0 and that the vehicle speed
must be greater than 0.

Given a MDP model M = (S,A, T,R), and a ptCTL
formula ϕ, we use the probabilistic model checking (PMC)
for determine if (M, s, t) � ϕ(s ∈ S), t is the time point of
state s. PMC is decidable in time exponential in linear in the
size of M and the size of ϕ [21], [22].

V. SAFE LEARNING

In this section, we define the concept of the safety threshold
and establish the controller monitor to monitor the system.
Based on the above definitions and techniques, we detail
the complete method for controlling a hybrid system in an
uncertain environment.

Safe Control with Supervisor (SCS) is a risk-sensitive
method based on constrained criterion optimization. This
method does not concentrate on specific RL algorithms. It
is available for most of RL algorithms, from Q-learning to
DQN, even Double-DQN [23]. An action is unsafe at the
current state implies that the action would cause the agent
to visit an undesirable state. We hope to guarantee that the
probability of performing an unsafe action is very low in M.
This amounts shows that the probability of reaching safe states
is reachable high, because ϕ abstracts all the properties desired
during learning or executing.

Definition 1: Safety Threshold A probability factor α ∈
(0, 1] is the safety threshold that describes the safe level to
guarantee that the optimal solution is upper than the lower
safety bound. The safety threshold applied to ptCTL formally
defined as:

(M, s, t) � P≥α(ϕ) (10)

It implies the probability of formula ϕ holding is higher than
α. ϕ can express safety, reliability, and other system properties.
Typical assertions that can be checked in this context, e.g., the
probability of a failure being less than 5% is equivalent to the
formula for verifying that (M, s, t) � P≥0.95(ϕsafe) holds,
where ϕsafe expresses the safety property.

A. Generic Safe Control Algorithm with Supervisor

The SCS algorithm assures two properties: safety and
interference-minimization. SCS balances between safety and
reward via quantifying risk. The supervisor monitors states
and actions of the system at runtime and intervenes when the
hazard is foreseen.

Definition 2: Controller Monitor is a Boolean function
that determines whether the chosen action violates the given
specification in the current state. The monitor has two inputs:
current state s ∈ S, chosen action a ∈ A, and ptCTL formula
ϕ. The function can be written as:

(s, a, ϕ)→ bool (11)



Algorithm 1 Safe Control with Supervisor
Input: MDP model M = (S,A, T,R), ptCTL formula ϕ =

P≥α[ψ]
Output: policy π

1: Initilize(π)
2: s = s0; a = NOP
3: while (s! = done) do
4: A′ = A;Aϕ = pmc(A);
5: a = choose(A′);
6: while is danger(s, a) do
7: A′ = A′ − a;
8: if A′! = ∅ then
9: a = choose(A′ϕ);

10: else
11: if model is accurate then
12: a = choose(A);
13: else
14: a = argmax(Pr[ψ](A));

15: action = a;
16: update(π, s, action);

In hybrid systems, the monitor converts the continuous vari-
able to the discrete control signal through the hybrid semantics
described in Section III-A. Combining the control signal
and the specification of the MDP model, the monitor would
calculate and output the verification result easily.

Our method takes different strategies for accurate models
and inaccurate models. Once the agent chooses an action, it
would be judged whether dangerous. If the observed model
is accurate, the monitor would verify that the action selected
by the agent conforms to the specification and then modify
the action based on the verification result. On the contrary, in
an inaccurate environment, if the selected action is dangerous,
the synthesis controller would replace the originally selected
action by the safest action (the probability of being safe is the
highest) in the action space.

The content below describes a generic safe control algorithm
with supervisor. The inputs of the algorithm are MDP model
M = (S,A, T,R), ptCTL formula ϕ express the constraints
to the system. Finally, the algorithm would output an optimal
policy that complies with the given specification.

Algorithm 1 describes a generic safe control algorithm. The
inputs of the algorithm are MDP modelM = (S,A, T,R) and
ptCTL formula ϕ = P≥α[ψ] which express the constraints to
the system. Finally, the algorithm would output an optimal
policy π that complies with the given specification.

We show our strategy of safe control under the uncertainty
in Algorithm 1. The supervisor monitors at runtime to ensure
that, when the system is accurately modeled, only the safe
actions are taken. Starting with the initializing policy π, state
s and action a (Line 1-2). The state done means the current
state is terminal (Line 3). A′ is a copy of A, Aϕ is a set
that extract actions in A would obeys the specification ϕ via
pmc(·)(Line 4). After the agent selecting an action from action

set by the fuction choose(·) (Line 5). The controller would
verify whether the action follows the specification(Line 6) by a
function is danger(·) which is the manifestation of controller
monitor. The function is danger(·) returns true when the
action a in the state s would cause damage and cannot avoid
in some future states. If it is dangerous and A′ is not empty,
controller would select a safe action from the set A′ϕ that
include actions in A′ would obeys the specification ϕ (Line 7-
9). If the set A′ is empty the model can be modeled accurately,
the action would be original choice in Line 5 (Line 11-12).

In the case of an inaccurate modeling environment, we adopt
a strategy that is not the same as the one in the accurate
model. The method ensures that only the safest actions are
taken when the obsevation is not precise. Similarly, as long as
the set A′ is not empty, SCS would choose an action which
is the safest in A′. On the contrary, if whole actions in the
set A may not satisfy the specification, the controller would
select the safest in A (Line 14) via quantifying risk. Pr[ϕ](·)
represents the probability of formula ϕ holds. On the principle
of interference-minimization, if the action is not dangerous, the
agent would take original action without a doubt (Line 15).
Finally, update the policy π (Line 16).

The SCS algorithm ensures the learned controller is intelli-
gent enough to avoid entering an unsafe state as far as possible.
If the model is accurate, only verified safe actions can be taken.
If not, the algorithm assures that the safest actions would be
taken for the expected number n time steps. The final output of
the algorithm is the policy π. After the period of safe learning,
the agent would extract a safe and optimal policy.

VI. EXPERIMENTS

In this section, we implement our safe control algorithm to
a simple ACC model we establish. In the first experiment,
the agent can observe the environment without error. The
second is a challenging environment that the agent cannot
perceive the external environment accurately, there are errors
between the observed state and the actual state. We validate
the robustness of SCS by analyzing the performance of the
algorithm in inaccurate models with different error rate. For
each experiment, we accumulate and record rewards obtained
by agent with the SCS. Additionally, we study the relationship
between the specification and the safety.

Q-leaning is a generic and efficient method for RL, and it is
simple enough to validate our approach lightly. The setting of
the model is a new environment based on OpenAI gym [24].

A. Adaptive Cruise Control

ACC (shown in Fig. 3) is a dynamic hybrid uncertain
environment and is a challenging task due to the complexity to
predict behaviors of other cars. ACC requires the car to adjust
its action based on state of the leader. The safety property
of the system is to avoid collisions between two cars. Other
complex properties may also be specified for the system, such
as reliability and liveness. The remainder left in this paper as
our future work. In this paper, we only consider safety.
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Fig. 3. Adaptive Cruise Control

In our experiments, the envoironment is a MDP modelM =
(S,A, T,R). State s ∈ S is a tuple of relative position and
relative velocity between two cars that can be measured by:

s := (posrel, velrel) (12)
posrel := posleader − posfollower (13)
velrel := velleader − velfollower (14)

where posrel is relative distance between position of leader car
and follower car, velrel is relative velocity between two cars
that come from solving the differential equation

.
x = v,

.
v = a.

For simplifying action space, there are three actions can be
taken: accelerate with the acceleration a, driving at a constant
speed, or decelerate with the deceleration d. Action space is:

A = {acc, con, dec} (15)

The relative position of two cars after next time step may
be calculated according to current state and action:

posrel := posrel −
1

2
arel ∗ t2 − velrel ∗ t (16)

arel := afollower − aleader (17)

where t = nT is expected time interval of n time steps T ,
arel is a relative measure of acceraleration of two cars that
represented respectively by afollower and aleader.

Furthermore, we build an inaccurate environment that agent
cannot observe the system states precisely. There is an error
between actual position and observed position of the leader
car. We can manipulate the error magnitude by assigning error
rate, and the environment would raise or reduce actual position
as observed position randomly, within the range of error rate:

posleader :=posleader + error

:=posfollower + (posleader − posfollower)
∗ random(−error rate,+error rate)

(18)

In every step, the environment would calculate the current
state according to the mechanism above fastly. And then the
environment would select an action for the leader car. Once the
agent enters an unsafe state, it would get a huge penalty and
the iteration would be stoped immediately. For encouraging the
car to keep up with vehicle ahead, the environment punish the
follower if it falls behind, but the penalty is much smaller than
collision. We implement penalties by deducting rewards, and
the amount of deduction depends on the type of punishment.

B. Experiments Setup and Results
This section presents four experiments. The first experiment

validates the safety of learned agent in the accurate envi-
ronment. The second verifies the validation of SCS in the
inaccurate environment. Besides, we study the performance of
the algorithm in the environment with different error rate.
Extracted policies are evaluated in the same environments, to
measure the safety of the policy learned by SCS. We imple-
ment the SCS algorithm using Q-network, which supports a
vast number of states and actions. Then, the effect of ptCTL
specification is considered. In our experiment, we use a simple
Q-network structure that consists of three layers: input layer
contains 2 nodes, hidden layer contains 8 nodes, and output
layer contains 3 nodes.

When the environment can be modeled accurately, we
assign the probability λ in specification λ = 1, means
the constraint munst be satisfied. If not, λ = 0.95 due to
errors between actual state and the observed. Additionally, we
evaluate the effect of different count of expected time steps in
the specification.

1) SCS in Accurate Environment: The first experiment
validates the algorithm by performance of SCS in a pre-
cise model. We run training of agent for episode =
300, 500, 1000, 1500, 2000. The specification is:

P≥1(EG[0,5T ](pos > 0 ∧ v ≥ 0 ∧ v ≤ 100)) (19)

Equation 19 is the constraint point that, in the next 5 time
steps (time step number determined by experiment in section
VI-B3), that relative position must greater than 0 and the
velocity of follower car is between 0 and 100.

Then we test the learned policies in the same environments
and record the number of collisions. After that, we compare
the learning process and test result of SCS with the normal
Q-learning for reflecting the performance improvement.

Accumulated reward per episode in early 200 episodes that
represent the trend of learning shown in Fig. 4. Accumulated
reward is the cumulative sum of the rewards that have been
obtained at previous steps. We compare the learning process
of SCS (blue, solid) and normal Q-learning (red, dotted). The
result implies that the agent with SCS can avoid the collision
effectively after enough episodes of training. Although the
normal version can avoid the crash to some extent after
more episodes, it still has some collisions. The frequency
of collisions is not ignorable and is intolerable in the real
system. After training, the learned policies would be tested in
the environment. Table I shows the comparison of different
algorithms’ performance.

Table I indicates that the agent never visits any unsafe state
after a certain number of SCS training episodes. However,
Fig. 4 shows that the follower car falls behind the leader
car in a few states. Although the states are not unsafe, it is
not desired states, a fly in the ointment. The performance of
the normal algorithm is unacceptable and collisions still occur
after a sizable number of training episodes. In summary, SCS
guarantees the safety of the system effectively in the accurate
ACC environment.
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Fig. 4. Accumulated Rewards per episode in Accurate Environment

TABLE I
SCS VS. NORMAL Q-LEARNING IN ACCURATE ENVIRONMENT

(test episodes = 1000)

Train episodes SCS Normal

Crash Fall-behind Crash Fall-behind

300 0 0 63 6
500 0 3 16 28

1000 0 1 12 2
1500 0 0 1 6
2000 0 0 0 12

2) SCS in Inaccurate Environment: For validating that the
SCS is a robust algorithm that can perform well even if the
model is not accurate, this experiment considers an agent with
the SCS algorithm to explore the policy in the inaccurate
model. Similar to the accurate, we run training of agent for
episode = 300, 500, 1000, 1500, 2000 and test the learned
policy. But the specification is different:

P≥0.95(EG[0,5T ](pos > 0 ∧ v ≥ 0 ∧ v ≤ 100)) (20)

The specification (Equation 20) requires the probability of
constraint satisfying is higher than 0.95. Then we implement
the learned policies to the same environment and record the
number of accidents. Finally, we compare the learning process
and evaluation result of SCS (blue, solid) with the normal Q-
learning (red, dotted).

Fig. 5 implies that the agent after training of SCS can
avoid collisions efficiently. SCS enables the agent to get more
rewards than normal Q-learning. The normal algorithm in-
creases the accumulated rewards obtained by the agent through
the training but still crashes after training. After training, the
learned strategies would be estimated in the same environment,
the result of performance is shown in Table II.

Table II lists number of collisions in testing policies learned
by different methods. SCS can avoid most of collisions, yet
due to incorrect observations, the agent inevitably enters a few
unsafe states occasionally. The normal algorithm exhibits poor
performance when observations are not entirely precise.

Besides, we compare the performance of the proposed algo-
rithm in inaccurate environments with different error rate.
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Fig. 5. Accumulated Rewards per episode in Inaccurate Environment
(error rate = 0.1)

TABLE II
SCS VS. NORMAL Q-LEARNING IN INACCURATE

ENVIRONMENT(test episodes = 1000, error rate = 0.1)

Train episodes SCS Normal

Crash Fall-behind Crash Fall-behind

300 13 98 194 356
500 9 29 93 128

1000 0 1 59 161
1500 0 0 73 134
2000 0 3 24 56

Table III presents that SCS performs well and much better
than the normal algorithm when the error is not large. With
the error increasing, although the frequency of crash increases,
SCS still works much better than the normal, confirms the
robustness of the algorithm.

3) SCS with Different Specification: For studying the influ-
ence of ptCTL specification to the system, we adopt different
ptCTL formula as the constraint to the system. The difference
between those formulae is unequal expected time steps n. We
use the time steps of n = 1, 2, ..., 10 to train the agent, then
evaluate the policy in the ACC environment.

Fig. 6 describes the crash numbers of distinct specifications
with different expected time steps. When n is too small, there
is no enough time to prevent the coming danger, although the
supervisor has already realized that danger would appear. With
the growing of n, the safety improves. The agent may need
to consider more time steps in the model if the environment
cannot be observed accurately. However, n does not need
to be too large to avoid unnecessary computation and other
unexpected problems.

VII. CONCLUSION

We present an algorithm SCS to guarantee the safety of
RL. The method combines reinforcement learning with formal
verification to monitor and correct system behavior. The main
contributions include proposing ptCTL, a logic to express
complex stochastic task specifications and properties. Besides,
we establish a simple evaluation environment of safe learning
based on OpenAI gym. Through experiments, we validate the



TABLE III
COLLISION OF SCS VS. NORMAL Q-LEARNING IN

INACCURATE ENVIRONMENT WITH DIFFERENT error rate
(train episodes = 500, test episodes = 1000)

error rate
SCS Normal

Crash Fall-behind Crash Fall-behind

0.05 0 1 36 105
0.1 9 29 93 128
0.15 22 95 234 84
0.2 18 47 225 109
0.3 41 72 316 86
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Fig. 6. Relationship between specification and safety (train episodes =
1000, test episodes = 1000)

availability and robustness of the method. SCS ensures the
safety of hybrid dynamical systems. The performance of SCS
is much better than classical Q-learning regardless of whether
the model is accurate or not.

Furthermore, the algorithm may be extended easily to be
appropriate for other complex systems and RL algorithms.
Even the approach can be extended to implement to other
research areas, not limited to RL and safe control.
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