
On the Role of Reward Functions for Reinforcement
Learning in the Traffic Assignment Problem

Ricardo Grunitzki
Mobile Innovation Lab

SIDIA Institute of Science and Technology
Manaus, Brazil

ricardo.grunitzki@sidia.com

Gabriel de Oliveira Ramos
Graduate Program in Applied Computing

Universidade do Vale do Rio dos Sinos - UNISINOS
São Leopoldo, Brazil
gdoramos@unisinos.br

Abstract—The traffic assignment problem (TAP) consists of
assigning routes to road users in order to minimize traffic
congestion. Traditional methods for solving the TAP assume
the existence of a central authority who computes and dictates
routes to road users. Multi-agent reinforcement learning (MARL)
approaches are more realistic in solving this kind of problem
because they consider that road users (agents) have complete
autonomy for choosing routes. However, MARL approaches
usually require a long training period in order to compute
the optimal routes, which could be a major limitation in more
realistic traffic scenarios. In this paper, we tackle this problem
by evaluating the performance of three conceptually different
reward functions, namely: expert-designed rewards, difference
rewards, and intrinsically motivated rewards. In particular, our
focus lies on providing a deeper understanding of the impact
of these reward functions on the agents’ performance, thus
contributing towards reducing congestion levels. To this end, we
perform an extensive experimental evaluation on different road
networks, including up to 360,600 concurrently learning agents.
Our results show that, although the adopted reward functions
were not able to speed up the learning process, the correct reward
function choice plays an important role in the quality of the
learned solution.

I. INTRODUCTION
Traffic assignment plays a role in the classical planning

and modeling of transportation systems [22]. A transportation
system can be described by two elements: supply and de-
mand. The former represents the transportation infrastructure
(i.e., road network), while the latter represents the users
(i.e., drivers) of such infrastructure. The traffic assignment
problem (TAP) aims at connecting supply and demand while
minimizing a particular objective function (e.g., average travel
time). Specifically, traffic assignment methods select routes
and assign them to road users considering their origins and
destinations.

Several efficient methods for dealing with the TAP are
available in the literature, including TAPAS [3] and algorithm
B [9]. However, such methods assume the existence of a
central authority who computes and assigns routes to the road
users. In real scenarios, however, such an assumption is not
valid because a traffic authority cannot directly control the
behavior of self-interested road users regarding route choice
[25].

An alternative for dealing with individual decision-making
in the TAP is provided by multi-agent reinforcement learn-

ing (MARL), where road users are modeled as independent
learning agents. Reinforcement learning (RL) deals with the
problem of an agent learning a behavior to accomplish a task
through successive interactions with the environment [34].
When multiple agents are learning concurrently in a shared
environment, the problem is known as MARL. In any such
case, the agent’s behavior involves mapping situations (states)
to actions, in a manner that maximizes some numerical utility
or reward. Differently from other machine learning methods,
an RL agent is not told what action to take in each situation.
Rather, it must discover what actions maximize its reward by
experiencing them.

Existing MARL-based approaches for the TAP differ pri-
marily in the way agents’ knowledge-base is modelled and
in the employed MARL algorithm. This paper focuses on
two approaches: route-based Q-learning and edge-based Q-
learning. Both methods deal with the TAP in a decentralized
perspective, in which each driver individually learns its route.
These methods consider that agents neither have a complete
observation of the network traffic condition nor consider the
choices of other agents in their decision-making process. This
discussion is necessary because complex scenarios, such as
transportation, may present the following challenges: (i) a
large number of concurrently learning agents—implying that
agents must handle the influence of the actions of other agents
in their decision-making process; (ii) large networks (in terms
of topology)—increasing the search space associated with
agents’ choices. We remark that both approaches use the Q-
Learning algorithm [37] to learn optimal policies. However,
they differ in the way the search space is structured. The
route-based Q-learning (route-based-QL) learns from a pre-
computed subset of routes. On the other hand, the edge-based
Q-Learning (edge-based-QL) learns a route from scratch (i.e.,
without prior knowledge about the road network), which may
result in a larger space of possible routes.

In previous works [12], [25], [2], [24], edge-based-QL and
route-based-QL were compared against classical centralized
methods for the TAP, showing that their performance is
sensitive to the features relative to the scenarios. As the
number of agents and the search space increase, the learning
task becomes harder for the agents. This is because agents’
actions are highly coupled and because they share a common

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

environment, thus making their reward signals highly noisy.
One way to mitigate such problems and to improve the
performance of MARL agents—as well as reduce the amount
of sub-optimal actions taken by them—is through the correct
definition of the reward functions.

In this paper, we investigate ways of improving the agents
performance and convergence in solving the TAP through the
design of better reward functions. We use three strategies for
rewarding edge-based and route-based-QL agents. The first
strategy uses expert-designed reward functions, which is the
strategy most typically adopted by MARL system design-
ers. The second strategy uses intrinsically-motivated reward
functions, obtained by solving the extended-optimal reward
problem (EORP) [12]. The third strategy uses difference
rewards (DR) [36] to promote cooperation among the agents.
These methods are evaluated in three scenarios that differ in
the number of agents (including up to 360,600 concurrently
learning agents) and the network topology (including up to
528 combinations of origins and destinations). Experimental
results show that, for the evaluated scenarios, the three reward
functions are very similar concerning convergence time. How-
ever, in terms of resulting average travel time, the difference
rewards function has shown superior in smaller scenarios.

The rest of this paper is organized as follows. In Section II,
the background and literature review are presented. Section III
details the learning algorithms. In Section IV, the reward
functions, scenarios, and experimental results are presented.
Main conclusions and future work directions are discussed in
Section V.

II. BACKGROUND AND RELATED WORK

This section discusses the theoretical background upon
which we build our work. Section II-A introduces the TAP and
related concepts. Section II-B presents the MARL concept as
well as its main approaches for solving the TAP. Section II-C
discusses the automated strategies for designing reward func-
tions.

A. Traffic assignment problem

A transportation system is composed by supply and demand.
The supply can be modeled as a directed graph G (V,E), with
the set of vertices V representing intersections, and the set
of edges (or links) E representing the roads between these
intersections. The weight of an edge e ∈ E represents the cost
ce associated with crossing it (e.g., the cost could represent
travel time, fuel spent, travel distance). In general, the cost
of crossing an edge is abstracted by a volume-delay function
(VDF), which maps the flow of vehicles using an edge to a
travel time. An example of a VDF is shown in Equation 1 [6],
where ce represents the travel time on edge e, t0e is the free-
flow travel time on edge e (i.e., the minimum travel time
assuming a zero flow), fe is the flow of vehicles using edge e,
Ce is the edge capacity, and A and B are parameters defined
for each edge, giving its physical characteristics.

ce(fe) = t0e

[
1 +A

(
fe
Ce

)B]
(1)

The second part of the transportation system—the
demand—represents the users of the infrastructure. The de-
mand can be represented by an origin-destination (OD) matrix.
An OD-matrix T contains I lines (origin vertices/zones) and
J columns (destination vertices/zones). Each element Tij
represents the number of trips from vertex i to vertex j in
a given time interval. It is said that i ∈ I and j ∈ J form an
OD-pair.

The TAP consists of connecting the supply and demand
by assigning routes to each road user. A route consists of
a sequence of connected edges, forming a route between an
origin and a destination. The cost of route p is defined by
c (p) =

∑
e∈Ep ce, which represents the sum of costs ce of all

edges e ∈ Ep comprising route p.
The output of traffic assignment methods describes the state

of a transportation system, which is a relevant input for traffic
authorities to evaluate the dynamics of traffic and the possible
consequences of changes in the physical infrastructure [22]. To
evaluate the quality of an assignment, the literature presents
two main solution concepts. The first is the user equilibrium
(UE), which states that under UE condition, no road user can
unilaterally reduce her travel time by shifting to another route.
The UE does not ensure the system travel time is minimum.
The total system travel time can be fund minimum under the
system optimum (SO) condition, which is desirable from the
traffic authorities point of view.

B. Multi-agent reinforcement learning

MARL deals with the problem of multiple agents learning
in a shared environment. A well-know and more scalable
MARL technique is that of multiple independent learners
(MIL) [7]. This technique implements the agents’ decision-
making process in an individual manner, i.e., joint-actions are
not considered [8]. In particular, agents consider each others’
behaviour as the environment’s underlying dynamics. This
kind of modelling is particularly suitable in traffic settings,
where drivers have no knowledge about other drivers’ be-
haviour and about the overall traffic conditions, thus requiring
them to make decisions independently, concurrently, and in
the absence of a central authority dictating them what to do.

The agent’s decision-making process can be modeled as a
Markov decision process (MDP). An MDP is composed by a
set of states S, a set of actions A, a state transition function
T : S ×A→ Π (S), where Π (S) is a probability distribution
over S, and a reward function R : S×A→ < that returns the
reward R (s, a) received after a given action a ∈ A (s) has
been taken in state s ∈ S, where A (s) is the set of available
actions in s.

The learning task in an MDP is to find a policy π : S → A
that maximizes the agent’s cummulative reward. To maximize
the reward received throughout all interactions, the agent
must select each action according to a strategy that balances

exploration (gain of knowledge) and exploitation (use of
knowledge). A well-known exploration strategy is the ε-greedy
(with a decreasing rate ε), which consists in choosing random
actions (exploration) with probability ε ∈ [0, 1] or choosing
best actions (exploitation) with probability 1 − ε. In general,
ε starts with a high value (say, 1.0), which translates into
high exploration, and decreases exponentially for each episode
λ ∈ Λ according to ελ = ε ∗ (∆ε)

λ, where ∆ε represents the
epsilon decay rate in the interval [0, 1].

The Q-learning algorithm, presented by [37], is a traditional
model-free algorithm used to learn value functions indepen-
dently of the policy being followed. Its update rule is shown in
Equation 2, where (s, a, s′, r) is an experience tuple, meaning
that the agent performed action a in state s, reaching s′, and
receiving reward r. Action a′ is one of the possible actions
on s, α ∈ (0, 1] is the learning rate, and γ ∈ (0, 1] is the
discount factor. Q (s, a) is an entry indexed by state s and
action a in the MDP, which stores the value functions (or Q-
values) of each state-action pair. The Q-value Q (s, a) is the
expected discounted reward for executing action a at state s
and following policy π thereafter.

Q (s, a)← (1− α)Q (s, a) + α
[
r + γmax

a′
Q (s′, a′)

]
(2)

Transportation scenarios represent a challenging testbed
for MARL algorithms given its distributed nature and the
dynamics resulting from agents self-interestedness. The most
common learning tasks in a transportation system are the route
learning [12], [5], [14] (as in the case of the TAP) and the
traffic signal timing learning [18], [23], [10].

C. Methods for reward function design

The reward function is the element of the RL framework
that defines and represents a specific learning task [19]. The
system designer1 is responsible for designing a function to
efficiently guide the learning process. There is no general rule
for the definition of a reward function. In practice, the system
designer defines a reward function empirically, based on her
intuition. In this present paper, we will refer to this kind of
reward functions as expert-designed reward functions.

The literature also presents methods such as the extended
optimal reward problem (EORP) [13], difference rewards
(DR) [36], inverse reinforcement learning [39], and reward
shaping [19], which can all support, at least partially, the
system designer in the task of modeling reward functions.
However, inverse reinforcement learning and reward shaping
do not fit our goals of designing efficient reward functions
for the TAP due to the following reasons. Reward shaping
methods just provide additional rewards to agents, through an
additional reward function, in order to speed-up the learning
convergence without modifying the optimal policy [19]. It
assumes that a reward function is given by the system designer,
while EORP and DR provide such a reward function. The

1The system designer here represents the expert or team who is modeling
the MARL solution for TAP.

inverse RL technique deals with the problem of identifying
the reward function being optimized by an agent, given
observations of its activity [28]. We do not have such a
set of observations representing the trajectory of the agents
performing the TAP task. Therefore, the only methods that fit
our needs are EORP and DR. The following sections describe
them in detail.

1) Extended-optimal reward problem: In the classical RL
framework the reward function represents two purposes: (i)
defining the preferences of the system designer by representing
a fitness function; and (ii) guiding the behavior of the agent by
representing the guidance reward function. The use of a single
function has shown to confound these two purposes [4], [32].

By definition, the standard RL framework assumes that
goals of both agent and designer should be the same. Some
works [30], [31] suggested that both reward function and
fitness function must be separated. During the modeling stage
of an RL solution, it is assumed that the fitness function is
known by the designer. However, the correct definition of
reward functions is not so direct in complex problems. The
authors present the Optimal Reward Problem (ORP), that is
the problem of finding an optimal reward function (ORF) that
maximizes the fitness function.

The work of [30], [31] focuses on the theoretical formu-
lation of ORP. Following works on ORP present methods to
find approximated solutions for the ORP [21], [33], but they
were limited to single-agent problems. Further works [17],
[27] emerged to fell the gap of multi-agent problems. From
these two approaches, we choose the extended-ORP (EORP)
[27], because this is the only ORP variation capable of dealing
with multi-agent non-cooperative tasks such as the TAP.

The EORP is formally defined as follows. At each time
step, an agent i ∈ I receives an observation o ∈ O from its
environment M, takes action a ∈ A, produces a history hi,
and repeats this process for a certain time horizon. The agent’s
goals are represented by a reward function R. The designer’s
goals are represented by a multi-objective evaluation function
F , which produces a return vector FR (H) for a reward
function R over a set of histories H . This set of histories
represents all histories hi generated by agents i ∈ I learning
with a given reward function R. The EORP is formalized
in Equation 3, where R∗ is an optimal reward function that
maximizes the designer expected evaluation function F of a
set of agents I in some environment M; the optimization
is over a set of reward functions in a reward design space
R (J). J is the set of reward features that compose the search
space of reward functions. The expectation operator is denoted
by E. The notation H ∼ M〈I (R)〉 denotes that H is a set
of all sample histories generated when agents i ∈ I acts in
environmentM. This formulation provides two main changes
with respect to the original ORP: i) a reward design space,
R (J), corresponding to the space of reward functions spanned
by a given set of feature states J ; and ii) a multi-objective
function F , called evaluation function.

R∗ = arg max
R∈R(J)

E [FR0 (H) | H ∼M〈I (R)〉] (3)

In the reward design space, R (J), more than one function
R ∈ R (J) can produce the same fitness FR, but under
different learning effort. For instance, one reward function
may allow the agent to learn an optimal policy in fewer
steps because it provides the agent with more informative
guidelines about the effectiveness of its current behavior. For
the designer, it is interesting to identify a reward function that,
when optimized, results in the agent more rapidly learning
to solve the task. The EORP considers that the designer has
multiple goals to be maximized, such as fitness and learning
effort. The function F evaluates the fitness (f1) and effort (f2)
produced by H and returns a 2-dimensional vector F (H) =
[f1 (H) , f2 (H)]. The fitness function measures the quality of
the final learned behavior achieved when maximizing a given
reward function, while the learning effort function evaluates
the amount of effort spent by the agent (e.g., time until
convergence) during its lifetime. The designer must define both
functions to represent his goals for a given learning task.

The reward design space R (J) represents the set of all
possible reward functions spanned by a given set of features
J . A feature can be seen as a situation in which the agent may
be rewarded. A reward function R ∈ R (J) is represented
as R =

∑
j∈J s (j)w (j)P (j), where for each feature j,

s (j) ∈ {0, 1} indicates that the feature j is activated or not
in state s, w (j) = {x ∈ R | −1 ≤ x ≤ 1} represents the
contribution to the reward signal of j, and P (j) = {x ∈ N |
0 ≤ x ≤ 1} is an indicator function reflecting if j is used to
compose or not R. Given a set of n features, a search space
R (J) ⊂ R2n = [{w (j0) , . . . , w (jn)}, {p (j0) , . . . , p (jn)}]
contains n = |J | indicator features P (j) and n reward signals,
w (j). The number of decision variables of an EORP with such
search space is 2n. Our method optimizes a single reward
function that is used by all collective of learning agents I
interacting in a given problem. This way, independently of
the amount of agents, the dimensionality of the optimization
problem is always given by the amount of features (|J |) in the
state space of one individual agent.

Solving the EORP consists in finding the set of Pareto
optimal solutions, R∗ ∈ R (J), that maximize F . Any multi-
objective optimization algorithm that deals with real and
integer decision variables can be used. EORF produces only
one EORP solution per set of agents, so that every agent i ∈ I
will learn using an instance of this function.

2) Difference rewards: In multi-agent cooperative prob-
lems, the function normally rewards each agent according to
the overall system performance. However, according to [36],
such reward structure may lead to slow learning in some
domains. Given that reinforcement learning agents aim at
maximizing their own rewards, a critical task is to create
good agents’ rewards, or rewards that when pursued by the
agents lead to good overall system’s performance. The full
performance of the system can be measured by a system’s

utility function G (z), where z is a variable that represents the
state-action pairs of all agents in the system.

DR are functions proposed by [36], which aim at providing
reward signals that are both sensitive to the agents’ actions and
aligned with the overall system’s reward. Consider the DR as
in Equation 4, z−i is the state-action pairs for a theoretical
system without the contribution of agent i. All components
of z that are affected by agent i are replaced with the fixed
constant ci.

Di ≡ G (z)−G (z−i + ci) (4)

Using a null vector in ci is equivalent to taking agent i
out of the system. Intuitively, this causes the second term of
the DR to evaluate the performance of the system without
i. Therefore, Di can be seen as the contribution of agent
i to the system’s performance. According to [36], there are
two advantages using Equation 4 for rewarding agents. First,
the second term removes a significant portion of the impact
of the other agents in the system and provides an agent
with a cleaner signal than G. This benefit has been dubbed
learnability [1], [35]. Second, the second term does not depend
on the actions of agent i. In other words, any action taken by
agent i that improves D, also improves G. This term measures
the alignment between the two rewards. As such, it has been
dubbed factoredness [1], [35].

DR can be applied to any linear or nonlinear system’s utility
function. However, its effectiveness depends on the domain,
and on the interaction among the agents’ utility function [36].
In addition, this method deals only with cooperative tasks.

III. LEARNING ALGORITHMS

In this paper, we address the TAP from the MARL perspec-
tive using two approaches: edge-based-QL [12], [2] and route-
based-QL [25], [24], [2]. Both methods model the agent’s
decision-making process as an MDP. The main difference
between these two approaches is that route-based-QL restricts
the agents’ action space to a pre-computed subset of shortest
routes. Although this modelling may seem realistic (since real
drivers usually know a few shortest routes for their daily trips),
it relies on prior knowledge about the road network to generate
the set of routes. On the other hand, edge-based-QL does not
restrict the agents’ action space. Rather, it allows agents to
explore roads in particular, thus enabling agents to explore all
possible routes within the road network.

As typical in the literature, we assume that each learning
agent is a road user associated with a trip in an OD-matrix.
Each agent can learn a route between its origin state (s−)
and destination state (s+). For both edge-based-QL and route-
based-QL, the learning process is organized in episodes (trials)
and time steps (time unit). An episode i ends in tmax time steps
or when all agents reach they terminal state s+, whichever
comes first.

Also following the literature (which abstracts the network
as a graph), we model traffic from a macroscopic perspective
[22], [29], where each unit of time step t ≤ tmax represents

a hop in the graph. For instance, the route p = (v0, v1, v2)
that connects v0 to v2, takes t = (|p| − 1) time steps to be
traveled.

The following sections detail each MARL approach.

A. Edge-based Q-Learning

In the edge-based approach, agent’s actions correspond to
the edges of the road network. When an agent is learning with
this method, it can find a policy from the set of all routes
available in the search space. The agent’s MDP is modeled
as follows. A state s is a vertex v ∈ V of the road network
in which the agent is located. Each state s ∈ S has a set of
available actions A (s), which is represented by the outgoing
edges of the corresponding vertex of s. The reward received
by the agent after taking action a in state s and transitioning
to state s′ is given by R(s, a, s′).

If we consider that agents can drive in loops, this approach
may present infinite routes. To handle this issue, the agent’s
search space is limited to a maximum number of time step
tmax. Thus, if the agents do not find a route from s− to
s+ in tmax time steps, then the current episode is stopped.
Even though the stopped route belongs to an invalid set of
routes Pinvalid, it is also a possible solution experienced by the
agent in search space. In this manner, the set of all possible
routes for a edge-based-QL agent is defined as in Equation 5,
where Pvalid =

{
p

(s−,s+)
i,j (ti) | i = 1, . . . ,M ; j = 1, . . . , Ni

}
,

where M is the current simulation time step, and Ni is the
number of routes from s− to s+ in ti steps; and Pinvalid ={
p
(S,Vti)
i,j (t′i) | i = 1, . . . ,M ′; j = 1, . . . , N ′i

}
, where M ′ is

the current simulation time step, and N ′i is the number of
routes from si to vt′i in t′i steps. An important property of P
for this approach is that Pvalid ∩ Pinvalid = ∅, i.e., every route
is either valid or invalid.

P (s−,s+,tmax) = Pvalid ∪ Pinvalid (5)

B. Route-based Q-Learning

As opposed to edge-based-QL, in route-based-QL the
agent’s action represents a complete route connecting its origin
to its destination. The search space P is restricted to a
predefined subset of possible routes, as shown in Equation 6,
where j is the index of the j-th lowest cost route. This subset
of routes is pre-processed before the learning process begins.
Thus, each agent receives |P | pre-computed routes from s−
to s+.

P (s−,s+) = {pi, p2, . . . , pj} (6)

The set of actions is defined according to the number of
predefined routes used. A parameter K = |P | must be defined
to determine the number of routes to be calculated. These
routes are the K-lowest cost routes of the agent’s OD-pair
under no congestion. These routes are computed in the graph
using the algorithm K Shortest Loopless Paths [38], which
can find the K shortest routes without loops for an OD-pair.

The agent’s MDP is modeled as follows. The set of states
contains only the initial and terminal states. At its initial state,
the agent has A (s−) = P actions. Each action is a route
that connects s− to s+. When the agent reaches the terminal
state, it receives a reward according to the cost of traveling the
route, which is given by R(s−, pa, s+), where pa represents
the route taken from A (s−).

In this approach, an episode finishes when all agents reach
a terminal state. The tmax parameter is disregarded here
because no route has loops. This approach presents a major
disadvantage when compared against edge-based-QL, which
is the extra parameter (|P |). Furthermore, even though the
search space restriction can simplify the learning process, it
may underestimate the ability of the agent to learn the most
appropriate policy if the search space was set incorrectly.

IV. EXPERIMENTS

We now present an experimental evaluation of the methods
presented above. In particular, the aim here is to show that:
• The proper choice of the learning algorithm impacts the

quality of the learned behaviour as well as in the learning
period it takes to converge;

• The proper choice of the reward function can improve
the performance of existing MARL algorithms for traffic
assignment;

• The results obtained by difference rewards can be
achieved by more simpler methods that do not make use
of global information; and

• The use of intrinsically-motivated reward functions is
beneficial in traffic assignment domain.

A. Methodology

In order to evaluate the proposed approaches for the TAP,
we use three scenarios that differ regarding network topology
and number of agents. The first scenario, named OW, was
proposed in [22, Chapter 10]. Its network topology contains
13 vertices and 24 edges, which is used by a constant flow of
1,700 trips distributed over 4 OD-pair. The cost function for
each edge e is ce = t0e + Ve × 0.02, where ce is the travel
time in minutes to cross edge e; t0e is the free-flow travel time
for edge e; Ve is the flow using e. The travel time increases
linearly in 0.02 minutes per vehicle using the edge.

The second scenario is an adaptation of the network pre-
sented by [20], named ND. We modified the original road
network so that all roads are two-way to provide more options
of routes. The resulting graph has 13 vertices and 38 edges.
The demand is composed of 2,000 trips distributed over 4
OD-pairs.

The third and larger scenario is the Sioux Falls (SF) [16].
This is a well-known transportation problem used in the
literature as a testbed for traffic assignment methods. The
road network has 24 vertices and 76 edges. The demand is
comprised of 360,600 trips distributed among 528 OD-pairs.
The cost function for the edges is the VDF presented in
Equation 1.

TABLE I
RELEVANT ASPECTS OF SCENARIOS OW, ND AND SF.

Aspect OW scenario ND scenario SF scenario
Trips 1,700 2,000 360,600

OD-pairs 4 4 528
Vertices 13 13 24
Edges 24 38 76

UE ≈ 67.16 ≈ 50.28 ≈ 20.78
SO ≈ 66.92 ≈ 50.01 ≈ 19.95

Relevant aspects of the scenarios are summarized in Ta-
ble I2. This table also present for each scenario their average
travel time (in minutes) under user equilibrium (UE). Note
that SF represents a more challenging scenario for MARL
than OW and ND, since it has a larger network topology,
a demand up to 200 times larger, and a higher number of
OD-pairs than others scenarios. From the point of view of
individual decision-making, SF scenario is harder than OW
and ND scenario because agents need to learn in a larger and
more dynamic environment.

B. Reward functions

This section presents the definition of the three reward
functions considered in the present work.

1) Expert-designed: For this class of reward function, we
will use the reward functions presented in [12], [14], [11],
[5], [26]. In this strategy, the travel time resulting by an
agent’s action is used to compose the reward signal. For edge-
based-QL, the expert-designed reward function is given as in
Equation 7. By learning with this reward function, at each
action performed, the agent is rewarded by the negative travel
cost (ce) of the traveled edge corresponding to agent’s action.

R = −ce (7)

The expert-designed reward function for route-based-QL is
defined as in Equation 8, where Ep is the set of edges that
composes route p. This is similar to the reward function in
Equation 7. The difference is that, in route-based-QL, the
feedback received by an agent’s action refers to the negative
travel cost of a route and not of a single edge.

R =
∑
e∈Ep

−ce (8)

2) Difference rewards: For both edge-based and route-
based-QL, the DR function in given as in Equation 4, where

G (z) =

∑
i∈I c (pi)

|I|
represents the average travel time of the

traveled routes of all agent in I; and G (z−i) represents the
average travel time of the routes of all agent in I \{i}, i.e., the
travel time of agent i is disregarded from the average travel
time in G (z−i).

2All data sets containing networks, demands and cost functions for the three
scenarios are available at http://github.com/goramos/transportation networks.

3) Extended-optimal reward problem: For obtaining opti-
mal reward functions through EORP, we need to: (i) define the
reward design space R (J); (ii) define the evaluation function
F (H); and (iii) solve the EORP.

The reward design space for the TAP is defined as follows.
In Table II, we present the set of reward features (column
J) manually extracted for each learning algorithm. This space
captures the most common situations faced by the agents in the
TAP. The set of reward functions available for edge-based-QL
is different from the one of route-based-QL. This is because
edge-based-QL abstracts less environment information in its
action structure than route-based-QL does. These features
represent real or binary variables (column type). The reward
design space of both algorithms is given by R (J) ⊂ R|J|,
where J is the set of reward features. The reward function
R =

∑|J|
k=1 s (jk)w (jk)P (jk) returns a reward signal based

on the values of the reward features activated in a given state.
We define the multi-objective evaluation function F (H) =

[f1 (H) ,−f2 (H)] as follows. The fitness function of each
agent i is given by f1 (hi) = −C (pi), which represents the
negative cost of its learned route pi. This function considers
only the fitness produced in a given episode. By using this
function, the fitness is maximized when the travel time of the
agent is minimized. The effort function is given by f2 (hi) =∑|Λ|

λ=0 tλ
|Λ| , which represents the average number of decisions

taken during the lifetime of the agent. Both MARL algorithms
use such evaluation function.

The next step is solving the EORP. We opted for using
a multi-objective version of the Covariance Matrix Adapta-
tion Evolutionary Strategy (CMA-ES)[15] to solve the EORP
because it has been shown successful in solving other RL
applications [13]. We defined the set of CMA-ES parameters
as in the work of [13], which uses a population size of 20
elements and a stopping criteria in 1000 evaluations.

Solving the EORP for edge-based-QL produced 25 Pareto-
optimal reward functions. For comparison purposes, Table III
shows one (arbitrarily chosen) of such reward functions. For
route-based-QL, the EORP returned just a single reward
function because in edge-based-QL the learning agents always
performs just one action per episode, resulting in learning
effort always equals to 1.

C. Parameters setting

For the Q-learning algorithm and the employed exploration
strategy, four parameters have to be set: learning rate (α),
discount factor (γ), number of episodes (Λ), and exploration
rate (ε). This paper considers a fixed learning horizon of
Λ = 1000 episodes. The rest of the parameters were set
empirically. Consider α = 0.5 and γ = 0.99. For route-base-
QL, consider |P | = 10. The exploration policy utilized is the
ε-decreasing, with ε = 1.0 and ∆ε = 0.99. All experiments
presented in this paper were repeated 30 times. In order
to measure the performance of an algorithm, we used the
normalized average travel time (NATT), as follows:

φ(v, v∗) =
v

v∗
, (9)

TABLE II
SET OF REWARD FEATURES (J) AVAILABLE FOR EDGE-BASED AND ROUTE-BASED-QL. COLUMN type DESCRIBES THE VARIABLE TYPE THAT

REPRESENTS EACH REWARD FEATURE.

J Description Type Edge-based-QL Route-based-QL
j0 edge takes the agent to its origin vertex? Binary 3 7
j1 edge takes the agent to its destination vertex? Binary 3 7
j2 edge was already traveled by the agent? Binary 3 7
j3 traveled distance Real 3 3
j4 travel cost under free-flow condition Real 3 3
j5 flow of vehicles Real 3 3
j6 travel time Real 3 3

TABLE III
DETAIL OF AN OPTIMAL REWARD FUNCTION FOR EDGE-BASED AND

ROUTE-BASED-QL IN THE THREE TAP SCENARIOS.

reward feature edge-based-QL route-based-QL
j0 0.52 N/a
j1 -0.55 N/a
j2 -0.58 N/a
j3 - -
j4 0 -0.28
j5 - -
j6 -1 -0.61

TABLE IV
AVERAGE PERFORMANCE (AND STANDARD DEVIATION) OF THE

CONSIDERED METHODS ON DIFFERENT SCENARIOS IN TERMS OF THE
NORMALIZED AVERAGE TRAVEL TIME. LOWER IS BETTER. BEST RESULTS

HIGHLIGHTED IN BOLD. ON AVERAGE, ROUTE-BASED APPROACHES
FARED BETTER THAN EDGE-BASED ONES IN MOST CASES.

Method Scenario
OW ND SF

EBQL-ED 1.0034 (0.0003) 1.0045 (0.0008) 1.0998 (0.0049)
EBQL-DR 1.0009 (0.0004) 1.0068 (0.0011) 1.0967 (0.0060)
EBQL-EORP 1.0058 (0.0005) 1.0062 (0.0009) 1.0987 (0.0045)
RBQL-ED 1.0035 (0.0002) 1.0049 (0.0001) 1.0323 (0.0034)
RBQL-DR 1.0015 (0.0031) 1.0004 (0.0000) 1.0391 (0.0049)
RBQL-EORP 1.0038 (0.0011) 1.0049 (0.0001) 1.0305 (0.0030)

where v denotes the average travel time at the last episode of
the simulation, and v∗ denotes the optimal reference value, as
reported in Table I. The lowest the value of φ, the better.

D. Results

To evaluate and compare the performance of edge-based-
QL and route-based-QL under the guidance of expert-designed
(ED), DR and EORP reward functions, we use the three sce-
narios presented in Section IV-A. Two analyses are performed
here. In the first analysis, we compare the obtained results
of all methods regarding the normalized average travel time
(NATT). In the second analysis, the convergence curve of each
algorithm is analyzed in a representative scenario. The results
concerning NATT for each approach are presented in Table IV.

In the OW scenario, the performance of all methods was
closer to the optimum. In all cases, however, the DR reward
function yielded slightly better results. As the OW scenario
has only a few options of possible routes, it creates a lot of
competition among selfish-agents for specific parts of the road
network. In such situations, the DR function is capable of
achieving a better NATT because it elicits cooperation among

agents. Such cooperation reduces the competition for the most
attractive edges and benefits the system as a whole.

For the ND scenario, again all approaches achieved close-
to-optimum NATT. The best performance was achieved using
the route-based-QL approaches, especially with DR. This is
due to the fact that the ND scenario is more challenging than
OW. In particular, as the network topology and demand in
the ND scenario are greater than in OW, the learning task
becomes harder for edge-based-QL, since the search space is
considerably larger and the reward signals are noisier.

In the SF scenario, the learning algorithm played a major
role in performance than the reward function did. Regardless
of the reward function used, route-based-QL yielded a NATT
closer to the optimum. The massive demand and number of
OD-pairs make the reward signals extremely noisy for the
agents. However, even under such circumstances, the search
space restriction provided by route-based-QL made it possible
for the agents to learn more appropriate routes. For edge-
based-QL, the three reward functions yielded a NATT worse
than the ones obtained by route-based-QL. This is because the
larger network topology of scenario SF increases the search
space in the case of edge-based-QL.

The results presented so far indicate that the three reward
functions are robust in solving the TAP. In larger scenarios, as
in the SF presented here, regardless of the employed reward
function, the edge-based-QL ends up limiting the learning
capacity of agents. It is harder for the learning agents to learn
optimal policies in the larger and highly dynamic search space
proved by edge-based-QL. For overcoming such limitation,
these results suggest that, in larger scenarios, it is more
appropriate to use route-based-QL than edge-based-QL.

In order to better evaluate the proposed approaches, the
learning curves—NATT along episodes—of the learning meth-
ods and reward functions are presented in Figure 1 for the SF.
As can be observed, route-based-QL converges faster than
edge-based-QL, independently of the reward function being
used. In the early episodes, edge-based-QL agents have no
knowledge in their MPD, and the exploration rate is very high.
Consequently, agents have a high probability of converging to
invalid policies. Despite this, after some episodes, the learning
curves of both methods converge to similar solutions in all
scenarios.

In the first experiment, we showed that the three used
reward functions are robust in guiding the learning process
of TAP agents. In small scenarios such as OW and ND, the

200 400 600 800 1000
episode

100

101

102

103

104

105

av
er

ag
e

tra
ve

l t
im

e
(m

)

1.025

1.050

1.075

1.100EBQL-ED
EBQL-DR
EBQL-EORP
RBQL-ED
RBQL-DR
RBQL-EORP

Fig. 1. Performance (based on normalized average travel time) of the tested
methods along episodes on the SF scenario. Lower is better. Route-based
approaches fared better than edge-based ones. EORP reward functions lead
to best results.

DR function was able to yield slightly better NATT. In spite
of this, it was evident that the learning algorithm has a more
considerable influence on the performance of the agents than
the reward functions we used. The second experiment further
concluded that all reward functions have similar performance
regarding of convergence.

The three reward functions evaluated here are very sim-
ilar concerning the obtained NATT and convergence time.
However, EORP and DR reward functions are not trivially
applicable in TAP. EORP reward functions require a lot
of work during the definition and resolution of the EORP,
while DR functions assume a communication channel among
agents by which they obtain the necessary information for
the calculation of system’s performance. The expert-designed
reward function seems to be a more adequate reward function
for TAP because its definition is more straightforward than
others.

V. CONCLUDING REMARKS

This paper deals with the traffic assignment problem (TAP)
in a distributed perspective, in which the road users are
capable of learning the most appropriate routes by their own.
Two multi-agent reinforcement learning (MARL) approaches
that differ in search space restriction are considered. The
first, edge-based-QL, uses the whole search space in agents
decision-making process. The second, route-based-QL, re-
stricts the search space of the agents to a subset of precom-
puted solutions. Both learning algorithms were evaluated under
the guidance of three different strategies for defining reward
functions: expert-designed, difference rewards and extended-
optimal reward problem-based (EORP). These approaches are
evaluated in scenarios that differ in the number of agents (road
users) and search space size (network topology).

Experimental results showed that, for the evaluated scenar-
ios, the three reward functions are very similar concerning
their obtained ATT and convergence time. However, expert-
designed reward functions are simpler and more straightfor-
ward to be acquired and/or computed than DR and EORP-
based reward functions. Independently of the reward function
being used, the learning capability of the agents is sensitive
to some features of the problem such as the number of agents
and size of the search space. Any of the three reward function
strategies used here was able to mitigate this problem in
edge-based-QL, suggesting that the search space restriction
provided by route-based-QL is still a more efficient alternative
to deal with such larger scenarios.

ACKNOWLEDGEMENTS

The authors are partially supported by CNPq, FAPERGS
and SIDIA Institute of Science and Technology.

REFERENCES

[1] Adrian Agogino and Kagan Tumer, ‘Multi–agent reward analysis for
learning in noisy domains’, in AAMAS ’05: Proceedings of the 4th
International Joint Conference on Autonomous Agents and Multiagent
Systems, eds., Frank Dignum, Virginia Dignum, Sven Koenig, Sarit
Kraus, Munindar P. Singh, and Michael Wooldridge, volume II, pp. 81–
88, New York, NY, (July 2005). acm.

[2] Baruch Awerbuch and Robert D. Kleinberg, ‘Adaptive routing with
end-to-end feedback: distributed learning and geometric approaches’,
in Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing - STOC ’04, pp. 45–53, New York, New York, USA, (2004).
ACM Press.

[3] Hillel Bar-Gera, ‘Traffic assignment by paired alternative segments’,
Transportation Research Part B: Methodological, 44(8-9), 1022–1046,
(sep 2010).

[4] Andrew G Barto, Satinder Singh, and Nuttapong Chentanez, ‘Intrinsi-
cally motivated learning of hierarchical collections of skills’, in Proc.
3rd Int. Conf. Development Learn, pp. 112–119, (2004).

[5] Ana L. C. Bazzan and R. Grunitzki, ‘A multiagent reinforcement
learning approach to en-route trip building’, in 2016 International Joint
Conference on Neural Networks (IJCNN), pp. 5288–5295, (July 2016).

[6] of Public Roads Bureau, Bureau of Public Roads: Traffic Assignment
Manual, 1964.

[7] L. Buşoniu, R. Babuska, and B. De Schutter, ‘A comprehensive survey
of multiagent reinforcement learning’, Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, 38(2), 156–
172, (2008).

[8] Caroline Claus and Craig Boutilier, ‘The dynamics of reinforcement
learning in cooperative multiagent systems’, in Proceedings of the
Fifteenth National Conference on Artificial Intelligence, pp. 746–752,
(1998).

[9] Robert B. Dial, ‘path-based user-equilibrium traffic assignment al-
gorithm that obviates path storage and enumeration’, Transportation
Research Part B: Methodological, 40(10), 917–936, (dec 2006).

[10] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, ‘Multiagent reinforce-
ment learning for integrated network of adaptive traffic signal controllers
(marlin-atsc): Methodology and large-scale application on downtown
toronto’, Intelligent Transportation Systems, IEEE Transactions on,
14(3), 1140–1150, (Sept 2013).

[11] Ricardo Grunitzki and Ana L. C. Bazzan, ‘Combining car-to-
infrastructure communication and multi-agent reinforcement learning in
route choice’, in Proceedings of the Ninth Workshop on Agents in Traffic
and Transportation (ATT-2016), eds., Ana L. C. Bazzan, Franziska
Klügl, Sascha Ossowski, and Giuseppe Vizzari, New York, (July 2016).
CEUR-WS.org.

[12] Ricardo Grunitzki and Ana L. C. Bazzan, ‘Comparing two multiagent
reinforcement learning approaches for the traffic assignment problem’,
in Intelligent Systems (BRACIS), 2017 Brazilian Conference on, (Oct
2017).

[13] Ricardo Grunitzki, Bruno C. da Silva, and Ana L. C. Bazzan, ‘A flexible
approach for designing optimal reward functions’, in Proceedings of the
16th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2017), eds., S. Das, E. Durfee, K. Larson, and
M. Winikoff, pp. 1559–1560, São Paulo, (May 2017). IFAAMAS.

[14] Ricardo Grunitzki, Gabriel de O. Ramos, and Ana L. C. Bazzan,
‘Individual versus difference rewards on reinforcement learning for route
choice’, in Intelligent Systems (BRACIS), 2014 Brazilian Conference on,
pp. 253–258, (Oct 2014).

[15] Christian Igel, Nikolaus Hansen, and Stefan Roth, ‘Covariance matrix
adaptation for multi-objective optimization’, Evolutionary computation,
15(1), 1–28, (2007).

[16] Larry J LeBlanc, Edward K Morlok, and William P Pierskalla, ‘An effi-
cient approach to solving the road network equilibrium traffic assignment
problem’, Transportation Research, 9(5), 309–318, (1975).

[17] Bingyao Liu, S Baveja, RL Lewis, and Shiyin Qin, ‘Optimal Rewards
for Cooperative Agents’, Autonomous Mental Development, IEEE Trans-
actions on, 11(4), (2014).

[18] Patrick Mannion, Jim Duggan, and Enda Howley, ‘An experimen-
tal review of reinforcement learning algorithms for adaptive traffic
signal control’, in Autonomic Road Transport Support Systems, eds.,
Leo Thomas McCluskey, Apostolos Kotsialos, P. Jörg Müller, Franziska
Klügl, Omer Rana, and René Schumann, 47–66, Springer, (2016).

[19] Andrew Y. Ng, Daishi Harada, and Stuart Russell, ‘Policy invariance un-
der reward transformations: Theory and application to reward shaping’,
in In Proceedings of the Sixteenth International Conference on Machine
Learning, pp. 278–287. Morgan Kaufmann, (1999).

[20] Sang Nguyen and Clermont Dupuis, ‘An efficient method for computing
traffic equilibria in networks with asymmetric transportation costs’,
Transportation Science, 18(2), 185–202, (1984).

[21] Scott Niekum, A.G. Barto, and Lee Spector, ‘Genetic Programming for
Reward Function Search’, IEEE Transactions on Autonomous Mental
Development, 2(2), 83–90, (2010).

[22] Juan de Dios Ortúzar and Luis G. Willumsen, Modelling transport, John
Wiley & Sons, Chichester, UK, 4 edn., 2011.

[23] KJ Prabuchandran, AN Hemanth Kumar, and Shalabh Bhatnagar, ‘Multi-
agent reinforcement learning for traffic signal control’, in Intelligent
Transportation Systems (ITSC), 2014 IEEE 17th International Confer-
ence on, pp. 2529–2534. IEEE, (2014).

[24] Gabriel Ramos, Roxana Radulescu, and Ann Nowé, ‘A Budged-
Balanced Tolling Scheme for Efficient Equilibria under Heterogeneous
Preferences’, in Proceedings of the Adaptive Learning Agents Workshop
2019 (ALA-19), Montreal, (2019).

[25] Gabriel de O. Ramos, Bruno C. da Silva, and Ana L. C. Bazzan,
‘Learning to minimise regret in route choice’, in Proc. of the 16th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2017), pp. 846–855, São Paulo, (2017). IFAAMAS.

[26] Gabriel de O. Ramos and Ricardo Grunitzki, ‘An improved learning
automata approach for the route choice problem’, in Agent Technology
for Intelligent Mobile Services and Smart Societies, eds., Fernando Koch,
Felipe Meneguzzi, and Kiran Lakkaraju, volume 498 of Communications
in Computer and Information Science, 56–67, Springer Berlin Heidel-
berg, (2015).

[27] Ricardo Grunitzki, Bruno C. da Silva, Ana L. C. Bazzan, and Jorge
C. Chamby-Diaz, ‘Towards Designing Optimal Reward Functions in
Multi-Agent Reinforcement Learning Problems’, in 2018 IEEE Joint
Conference on Neural Networks, Rio de Janeiro, (2018).

[28] Stuart Russell, ‘Learning agents for uncertain environments (extended
abstract)’, in Proceedings of the Eleventh Annual Conference on Com-
putational Learning Theory, COLT’ 98, pp. 101–103, New York, NY,
USA, (1998). ACM.

[29] Guni Sharon, Michael W. Levin, Josiah P. Hanna, Tarun Rambha,
Stephen D. Boyles, and Peter Stone, ‘Network-wide adaptive tolling
for connected and automated vehicles’, Transportation Research Part
C: Emerging Technologies, 84, 142 – 157, (2017).

[30] Satinder Singh, Richard L Lewis, and Andrew G Barto, ‘Where do
rewards come from’, in Proceedings of the annual conference of the
cognitive science society, pp. 2601–2606, (2009).

[31] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan
Sorg, ‘Intrinsically motivated reinforcement learning: An evolutionary
perspective’, Autonomous Mental Development, IEEE Transactions on,
2(2), 70–82, (2010).

[32] Satinder P Singh, Andrew G Barto, and Nuttapong Chentanez, ‘In-
trinsically motivated reinforcement learning.’, in Advances in Neural

Information Processing Systems 17 (NIPS 2004), volume 17, pp. 1281–
1288, (2004).

[33] Jonathan Sorg, Richard L Lewis, and Satinder P Singh, ‘Reward
Design via Online Gradient Ascent’, in Advances in Neural Information
Processing Systems 23, eds., J D Lafferty, C K I Williams, J Shawe-
Taylor, R S Zemel, and A Culotta, 2190–2198, Curran Associates, Inc.,
(2010).

[34] Richard S Sutton and Andrew G Barto, Reinforcement learning: An
introduction, MIT press, 2018.

[35] K. Tumer and D. Wolpert, ‘A survey of collectives’, in Collectives and
the Design of Complex Systems, eds., K. Tumer and D. Wolpert, 1–42,
Springer, (2004).

[36] Kagan Tumer and Adrian Agogino, ‘Distributed agent-based air traffic
flow management’, in Proceedings of the 6th international joint con-
ference on Autonomous agents and multiagent systems, pp. 1–8, New
York, NY, USA, (2007). ACM.

[37] Christopher J. C. H. Watkins and Peter Dayan, ‘Q-learning’, Machine
Learning, 8(3), 279–292, (1992).

[38] Jin Y. Yen, ‘Finding the k shortest loopless paths in a network’,
Management Science, 17(11), 712–716, (1971).

[39] Shao Zhifei and Er Meng Joo, ‘A review of inverse reinforcement
learning theory and recent advances’, in 2012 IEEE Congress on
Evolutionary Computation, pp. 1–8. IEEE, (jun 2012).

