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Abstract—Several state-of-the-art neural graph embedding
methods are based on short random walks (stochastic processes)
because of their ease of computation, simplicity in capturing
complex local graph properties, scalability, and interpretibility. In
this work, we are interested in studying how much a probabilistic
bias in this stochastic process affects the quality of the nodes
picked by the process. In particular, our biased walk, with
a certain probability, favors movement towards nodes whose
neighborhoods bear a structural resemblance to the current
node’s neighborhood. We succinctly capture this neighborhood
as a probability measure based on the spectrum of the node’s
neighborhood subgraph represented as a normalized Laplacian
matrix. We propose the use of a paragraph vector model with a
novel Wasserstein regularization term. We empirically evaluate
our approach against several state-of-the-art node embedding
techniques on a wide variety of real-world datasets and demon-
strate that our proposed method significantly improves upon
existing methods on both link prediction and node classification
tasks.

Index Terms—link prediction, node classification, random
walks, Wasserstein regularizer

I. INTRODUCTION

Graph embedding methods have gained prominence in a
wide variety of tasks including pattern recognition [1], low-
dimensional embedding [2], [3], node classification [4]–[6], and
link prediction [5], [7], to name a few. In machine learning, the
task of producing graph embeddings entails capturing local and
global graph statistics and encoding them as vectors that best
preserve these statistics in a computationally efficient manner.
Among the numerous graph embedding methods, we focus on
unsupervised graph embedding models, which can be broadly
classified as heuristics and random walk based models.

Heuristic based models compute node similarity scores based
on vertex neighborhoods and are further categorized based
on the maximum number of k-hop neighbors they consider
around each vertex1. Recently, Zhang et. al. [7] proposed a
graph neural network (GNN) based framework that required
enclosing subgraphs around each edge in the graph. They
showed that most higher order heuristics (k > 2) are a special
case of their proposed γ-decaying heuristic. While their method
outperforms the heuristic based methods on link prediction, it
nevertheless computes all walks of length at most k (i.e., the
size of the neighborhood) around each edge, which is quite

1 “vertex” and “node” will be used interchangeably.

prohibitive and results in being able to only process small and
sparse graphs.

In comparison, random walk based models are scalable and
have been shown to produce good quality embeddings. These
methods generate several short random walks originating from
each node and then embed a pair of nodes close to one another
in feature space, if they co-occur more frequently in several
such walks. This is achieved by treating each random walk as a
sequence of words appearing in a sentence and feeding this to
a word-embedding model like word2vec [8]. Deepwalk [6] first
proposed this approach, after which many works [4], [9], [10]
followed suit. Recently, WYS [5] presented a graph attention
(GAT) model that is based on simple random walks and learning
a context distribution, which is the probability of encountering
a vertex in a variable sized context window, centered around
a fixed anchor node. An important appeal of random walks
is that they concisely capture the underlying graph structure
surrounding a vertex. Yet, further important structure remains
uncaptured. For example, heuristic methods rely on the intuition
that vertices with similar k-hop neighborhoods should also be
closer in feature space, while simple random walks cannot
guarantee the preservation of any such grouping. In WYS,
under certain settings of the context window size, vertices with
structurally similar neighborhoods can easily be omitted and
hence overlooked.

In our work, we incorporate such a grouping of structurally
similar nodes directly into our random walks. Our novel
methodology opens avenues to a richer class of vertex grouping
schemes. To do so, we introduce biased random walks [11],
[12] that favor, with a certain probability, moves to adjacent
vertices with similar k-hop neighborhoods.

First, we capture the structural information in a vertex’s
neighborhood by assigning it a probability measure. This is
achieved by initially computing the spectrum of the normalized
Laplacian of the k-hop subgraph surrounding a vertex, followed
by assigning a Dirac measure to it. Later, we define a
spectral distance between two k-hop neighborhoods as the p-th
Wasserstein distance between their corresponding probability
measures.

Second, we introduce a bias in the random walk, that with a
certain probability, chooses the next vertex with least spectral
distance to it. This allows our “neighborhood-aware” walks
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to reach nodes of interest much quicker and pack more such
nodes in a walk of fixed length. We refer to our biased walks
as spectral-biased random walks.

Finally, we learn embeddings for each spectral-biased walk
in addition to node embeddings using a paragraph vector
model [13], such that each walk which starts at a node
considers its own surrounding context within the same walk
and does not share context across all the walks, in contrast to
a wordvec model [8]. Additionally, we also add a Wasserstein
regularization term to the the objective function so that
node pairs with lower spectral distance co-locate in the final
embedding.
Our contributions

1) We propose a spectral-biased random walk that integrates
neighborhood structure into the walks and makes each
walk more aware of the quality of the nodes it visits.

2) We propose the use of paragraph vectors and a novel
Wasserstein regularization term to learn embeddings for
the random walks originating from a node and ensure that
spectrally similar nodes are closer in the final embedding.

3) We evaluate our method on challenging real-world datasets
for tasks such as link prediction and node classification. On
many datasets, we significantly outperform our baseline
methods. For example, our method outperforms state-of-
the-art methods for two difficult datasets Power and Road
by a margin of 6.23 and 6.93 in AUC, respectively.

II. RELATED WORK

Recently, several variants have been introduced to learn
node embeddings for link prediction. These methods can be
broadly classified as (i) heuristic, (ii) matrix factorization, (iii)
Weisfeiler-Lehman based, (iv) random walks based, and (v)
graph neural network (GNN) methods.

Common neighbors (CN), Adamic-adar (AA) [14], PageR-
ank [15], SimRank [16], resource allocation (RA) [17], prefer-
ential attachment (PA) [18], Katz and resistance distance are
some popular examples of heuristic methods. These methods
compute a heuristic similarity measure between nodes to predict
if they are likely to have a link [19] [20] between them or
not. Heuristic methods can be further categorized into first-
order, second-order and higher-order methods based on using
information from the 1-hop, 2-hop and k-hop (for k > 2)
neighborhood of target nodes, respectively. In practice, heuristic
methods perform well but are based on strong assumptions
for the likelihood of links, which can be beneficial in the case
of social networks, but does not generalize well to arbitrary
networks.

Similarly, a matrix factorization based approach, i.e., like
spectral clustering (SC) [21] also makes a strong assumption
about the graph cuts being useful for classification. However,
it is unsatisfactory to generalize across diverse networks.

Weisfeiler-Lehman graph kernel (WLK) [22] and Weisfeiler-
Lehman Neural Machine (WLNM) [23] form an interesting
class of heuristic learning methods. They are Weisfeiler-Lehman
graph kernel based methods, which learn embeddings from

enclosing subgraphs in which the distance between a pair of
graphs is defined as a function of the number of common
rooted subtrees between both graphs. These methods have
been shown to perform much better than the aforementioned
traditional heuristic methods.

Other category of random walks based methods consist of
DeepWalk [6] and Node2Vec [4], which have been proven to
perform well as it pushes co-occuring nodes in a walk closer to
one another in the final node embeddings. Although DeepWalk
is a special case of the Node2Vec model, both of these methods
produce node embeddings by feeding simple random walks to
a word2vec skip-gram model [8].

Finally, for both link prediction and node classification tasks,
recent works are mainly graph neural networks (GNNs) based
architectures. VGAE [24], WYS [5], and SEAL [7] are some
of the most recent and notable methods that fall under this
category. VGAE [24] is a variational auto-encoder with a graph
convolution network [25] as an encoder. In this, the decoder is
defined by a simple inner product computed at the end. It is a
node-level GNN to learn node embeddings. While WYS [5]
uses an attention model that learns context distribution on the
power series of a transition matrix, SEAL [7] uses a graph-level
GNN and extracts enclosing subgraphs for each edge in the
graph. It learns via a decaying heuristic a mapping function
for link prediction. Computing subgraphs for all edges makes
it inefficient to process large and dense graphs.

III. SPECTRA OF VERTEX NEIGHBORHOODS

In this section, we describe a spectral neighborhood of
an arbitrary vertex in a graph. We start by outlining some
background definitions that are relevant to our study. An
undirected and unweighted graph is denoted by G = (V,E),
where V is a set of vertices and edge-set E represents a set
of pairs (u, v), where u, v ∈ V . Additionally, n and m denote
the number of vertices and edges in the graph, respectively.
In an undirected graph (u, v) = (v, u). Additionally, when
edge (u, v) exists, we say that vertices u and v are adjacent,
or that u and v are neighbors. The degree dv of vertex v is
the total number of vertices adjacent to v. By convention, we
disallow self-loops and multiple edges connecting the same
pair of vertices. Given a vertex v and a fixed integer k > 0,
the graph neighborhood G(v, k) of v is the subgraph induced
by the k closest vertices (i.e., in terms of shortest paths on G)
that are reachable from v.

Now, the graph neighborhood G(v, k) of a vertex v is
represented in matrix form as a normalized Laplacian matrix
L(v) = (lij)

k
i,j=1 ∈ Rk

2

. Given L(v), its sequence of k real
eigenvalues (λ1(L(v)) ≥ · · · ≥ λk(L(v))) is known as the
spectrum of the neighborhood L(v) and is denoted by σ(L(v))).
We also know that all the eigenvalues in σ(L(v))) lie in an
interval Ω ⊂ R. Let µσ(L(v)) denote the probability measure
on Ω that is associated to the spectrum σ(L(v)) and is defined
as the Dirac mass concentrated on each eigenvalue in the
spectrum. Furthermore, let P (Ω) denote the set of probability
measures on Ω. We now define the p-th Wasserstein distance



between measures, which will be used later to define our
distance between node neighborhoods.

Definition 1. [26] Let p ∈ [1,∞) and let c : Ω × Ω −→
[0,+∞] be the cost function between the probability measures
µ, ν ∈ P (Ω). Then, the p-th Wasserstein distance between
measures µ and ν is given by the formula

Wp(µ, ν) =

inf
γ

∫
Ω×Ω

c(x, y)pdγ | γ ∈ Π(µ, ν)

 1
p

(1)

where Π(µ, ν) is the set of transport plans, i.e., the set of all
joint probabilities defined on Ω× Ω with marginals µ and ν.

We now define the spectral distance between two vertices
u and v, along with their respective neighborhoods L(u) and
L(v), as

W p(u, v) := Wp(µσ(L(u)), µσ(L(v))) (2)

IV. RANDOM WALKS ON VERTEX NEIGHBORHOODS

A. Simple random walk between vertices

A simple random walk on G begins with the choice of an
initial vertex v0 chosen from an initial probability distribution
on V at time t0. For each time t ≥ 0, the next vertex to move
to is chosen uniformly at random from the current vertex’s
1-hop neighbors. Hence, the probability of transition pij from
vertex i to its 1-hop neighbor j is 1/di and 0 otherwise. This
stochastic process is a finite Markov chain and the non-negative
matrix P = (pij)

n
i,j=1 ∈ Rn×n is its corresponding transition

matrix. We will focus on ergodic finite Markov chains with a
stationary distribution πT = (π1, . . . , πn), i.e., πTP = πT and∑n
i=1 πi = 1. Let {Xt} denote a Markov chain (random walk)

with state space V . Then, the hitting time for a random walk
from vertex i to j is given by Tij = inf{t : Xt = j | X0 = i}
and the expected hitting time is E[Tij ]. In other words, hitting
time Tij is the first time j is reached from i in {Xt}. By the
convergence theorem [27], we know that the transition matrix
P satisfies lim

n−→∞
Pn = P∞, where matrix P∞ has all its rows

equal to π.

B. Spectral-biased random walks

We introduce a bias based on the spectral distance between
vertices (as shown in Equation 2) in our random walks. When
moving from a vertex v to an adjacent vertex v′ in the 1-hop
neighborhood N(v) of vertex v, vertices in N(v) which are
most structurally similar to v are favored. The most structurally
similar vertex to v is given by

min
v′∈N(v)

W p(v, v′) (3)

Then, our spectral-biased walk is a random walk where each of
its step is preceded by the following decision. Starting at vertex
i, the walk transitions with probability 1 − ε to an adjacent
vertex j in N(v) uniformly at random, and with probability ε,
the walk transitions to the next vertex with probability wij given
in the bias matrix, whose detailed construction is explained

later. Informally, our walk can be likened to flipping a biased
coin with probabilities 1 − ε and ε, prior to each move, to
decide whether to perform a simple random walk or choose
one of k structurally similar nodes from the neighborhood.
Thus, our new spectral-biased transition matrix can be written
more succinctly as

T = (1− ε)P + εW (4)

where P is the original transition matrix for the simple random
walk and W contains the biased transition probabilities we
introduce to move towards a structurally similar vertex.

C. Spectral bias matrix construction

It is well known that the spectral decomposition of a
symmetric stochastic matrix produces real eigenvalues in the
interval [−1, 1]. In order to build a biased transition matrix
W which allows the spectral-biased walk to take control with
probability ε and choose among k nearest neighboring vertices
with respect to the spectral distance between them, we must
construct this bias matrix in a special manner. Namely, it
should represent a reversible Markov chain, so that it can be
“symmetrized”. For brevity, we omit a detailed background
necessary to understand symmetric transformations, but we
refer the reader to [28]. A Markov chain is said to be
reversible [29], when it satisfies the detailed balance condition
πipij = πjpji, i.e., on every time interval of the stochastic
process the distribution of the process is the same when it is
run forward as when it is run backward.

Recall, the 1-hop neighborhood of vertex i is denoted by
N(i). Additionally, we define Nk(i) ⊆ N(i) to be the k-
closest vertices in spectral distance to i among N(i).

We then define a symmetric k-closest neighbor set Sk(i)
as a union of all the members of Nk(i) and those vertices
j ∈N(i)\Nk(i), who have vertex i in Nk(j). More formally,

Sk(i) := Nk(i) ∪

 ⋃
j∈N(i)\Nk(i)

1Nk(j)(i)

 (5)

where the indicator function 1A(x) := 1, if x ∈ A or 0 if
x /∈ A.

In accordance to property 7.1.1 in [30], we construct a
transition matrix as follows to form a reversible Markov chain
which satisfies the detailed balance condition and hence is
symmetrizable. Our bias matrix W = (wij)

n
i,j=1 is a stochastic

transition probability matrix in Rn2

, whose elements are given
by

wij =

{
1− W p(i, j)∑

m∈Sk(i)W
p(i,m)

}
(6)

The rows of the spectral bias matrix W in Equation 6 are
scaled appropriately to convert it into a transition matrix.

D. Time complexity of our spectral walk

Given n nodes in a graph, we first pre-compute the spectra
of every vertex’s neighboring subgraph (represented as a
normalized Laplacian). This spectral computation per vertex
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Fig. 1: (a) and (d) Average ranking of target nodes encountered by simple random walk (RW) and our spectral-biased walk
(SW). (b) and (e) Percentage of spectrally-similar nodes packed in walks of varying length for RW versus. SW. (c) and (f)
Walk lengths to cover entire ball of vertices on Celegans, USAir, Infect-hyper and PPI for our spectral biased walk (SW) and
simple random walk (RW).

includes spectral decomposition of the Laplacian around each
vertex, which has a time complexity of O(k2.376) (where, k
is the size of each vertex neighborhood, typically of O(10),
which is very fast to compute) using the Coppersmith and
Winograd algorithm for matrix multiplication, which is the
most dominant cost in decomposition. This amounts to a total
pre-computation time complexity of O(nk2.376).

In the worst case, a spectral-biased walk of length l will
be biased at each step and hence would compute the spectral
distance among its k neighbors at each step (i.e., a total of
kl times). The Wasserstein distance between the spectra of
the neighborhoods has an empirical time complexity of O(d2),
where d is the order of the histogram of spectra σ(L(v)).
Thus the time-complexity of our online spectral-biased walk is
O(kld2). Although, in practice, we use the Python OT library
based on entropic regularized OT, which uses the Sinkhorn
algorithm on a GPU and thus computing Wasserstein distances
are extremely fast and easy.

E. Empirical analysis of expected hitting time and cover time
of spectrally similar vertices

In this section, we empirically study the quality of the
random walks produced by our spectral-bias random walk
method. In order to accomplish this, we start with a given
vertex v and measure the walk quality under two popular
quality metrics associated with random walks, namely their

expected hitting time and cover time of nodes with structurally
similar neighborhoods to that of node v. It is important to note
here that the consequence of packing more nodes of interest
in each random walk, boosts the quality of training samples
(i.e., walks setup as sentences) in our neural language model
that is described later in Section V.

Expected hitting time: To study the expected hitting
times of our spectral-biased and simple random walks, we
first randomly sampled 1000 ordered vertex pairs (s, t) with
structurally similar neighborhoods, where s and t, denoted the
start and target vertices, respectively. Next, we considered all
the random walks (both spectral-biased and simple) initiated
from the start vertex s and ranked the appearance of the target
vertex t in a fixed length walk, for both the types of walks. Our
ranking results where averaged over all the walks and (s, t)
pairs considered. In our experiments on real-world datasets
(shown in Figures 1a and 1d), we found the target vertex t
to appear earlier in our spectral-biased walks, i.e., we had a
lower expected hitting time from s to t.

Furthermore, we also studied the packing density of spectrally
similar nodes in fixed-length walks generated by both the
spectral-bias and simple random walk methods. Figures 1b
and 1e, clearly show that our spectral-biased walk packs a
higher number of spectrally similar nodes.

Cover time: After having empirically studied the spectral-



biased walk’s expected hitting time, it naturally leads to study
the cover time of our walk, which is the first time when all
vertices that are spectrally similar to a start vertex have been
visited.

We begin by defining a Wassertein ball around an arbitrary
vertex v that encompasses the set of vertices whose spectral
distance from v is less than a constant c.

Definition 2. A Waserstein ball of radius c centered at vertex
v, denoted by Bw(v; c), is defined as

Bw(v; c) := {u ∈ V |W p(u, v) ≤ c} (7)

Given a start vertex s, a user-defined fixed constant c, and
its surrounding Wasserstein ball Bw(s; c), we found that our
spectral-bias walk covers all spectrally similar vertices in the
ball with much shorter walks than simple random walks, as is
shown in Figures 1c and 1f.

V. OUR NEURAL LANGUAGE MODEL WITH WASSERSTEIN
REGULARIZATION

Our approach of learning node embeddings is to use a
shallow neural network. This network takes spectral-biased
walks as input and predicts either the node labels for node
classification or the likelihood of an edge / link between a pair
of nodes for the link prediction task.

We leverage the similarity of learning paragraph vectors
in a document from NLP to learn our spectral-biased walk
embeddings. In order to draw analogies to NLP, we consider
a vertex as a word, a walk as a paragraph / sentence, and
the entire graph as a document. Two walks are said to co-
occur when they originate from the same node. Originating
from each node v ∈ V , we generate K co-occurring spectral-
biased random walks W (v) = (W

(v)
1 , . . . ,W

(v)
K ), each of

fixed length T . A family of all W (v) for all v ∈ V is analogous
to a collection of paragraphs in a document.

In our framework, each vertex v is mapped to a unique word
vector w, represented as a column in a matrix W . Similarly,
each biased walk w is mapped to a unique paragraph vector
p stored as a column in a matrix P . Given a spectral-biased
walk as a sequence of words w1, w2, . . . , wT , our objective is
to minimize the following cross-entropy loss

Lpar = − 1

T

T−c∑
t=c

log p(wt | wt−c, . . . , wt+c) (8)

As shown in [13], the probability is typically given by the
softmax function

p(wt | wt−c, . . . , wt+c) =
eywt∑
i e
ywi

(9)

Each ywi is the unnormalized log probability for wi, given as
ywt = b+Uh(wt−c, . . . , wt+c;P,W ), where U, b are softmax
parameters, and h is constructed from W and P . A paragraph
vector can be imagined as a word vector that is cognizant of
the context information encoded in its surrounding paragraph,
while a normal word vector averages this information across
all paragraphs in the document. For each node v ∈ V , we

apply 1d-convolution to all the paragraphs / walks in W (v),
to get a unique vector xv .

Our goal is to learn node embeddings which best preserve
the underlying graph structure along with clustering structurally
similar nodes in feature space. With this goal in mind and
inspired by the work of Mu et. al. [31] on negative skip-
gram sampling with quadratic regularization, we construct the
following loss function with a Wasserstein regularization term

Lov = Lpar + Lclass + γW 2(σ(s)(xv), σ
(s)(yv))︸ ︷︷ ︸

2-Wasserstein regularizer

(10)

Here, xv is the node embedding learned from the paragraph
vector model and yv is the 1d-convolution of node v’s 1-
hop neighbor embeddings. Lclass represents a task-dependent
classifier loss which is set to mean-square error (MSE) for
link prediction and cross-entropy loss for node classification.
We convert the node embedding xv and its combined 1-hop
neighborhood embedding yv into probability distributions via
the softmax function, denoted by σ(s) in Equation 10.

Our regularization term is the 2-Wasserstein distance between
the two probability distributions, where γ is the regularization
parameter. This regularizer penalizes neighboring nodes whose
neighborhoods do not bear structural similarity with the
neighborhood of the node in question. Finally, the overall
loss Lov is minimized across all nodes in G to arrive at final
node embeddings.

VI. EXPERIMENTAL RESULTS

We conduct exhaustive experiments to evaluate our spectral-
biased walk method2. Network datasets were sourced from
SNAP and Network Repository. We picked ten datasets for
link prediction experiments, as can be seen in Table I, and
three datasets (i.e., Cora, Citeseer, and Pubmed) for node
classification evaluation. The dataset statistics are outlined in
more detail in Section VI-A.We performed experiments by
making 90%− 10% train-test splits on both positive (existing
edges) and negative (non-existent edges) samples from the
graphs, following the split ratio outlined in SEAL [7]. We
borrow notation from WYS [5] and similarly denote our set of
edges for training and testing as Etrain and Etest, respectively.

A. Datasets
We used ten datasets for link prediction experiments and

three datasets for node classification experiments. Datasets
for both the experiments are described with their statistics in
Table II. Power [32] is the electrical power network of US
grid, Celegans [32] is the neural network of the nematode
worm C.elegans, USAir [33] is an infrastructure network of
US Airlines, Road-Euro and Road-Minnesota [33] are road
networks (sparse), Bio-SC-GT [33] is a biological network of
WormNet, Infect-hyper [33] is a proximity network, PPI [34]
is a network of protein-protein interactions, HepTh is a citation
network and Facebook is a social network. Cora, Citeseer and
Pubmed datasets for node classification are citation networks
of publications [32].

2 Our Method

https://snap.stanford.edu/data/
http://networkrepository.com/
https://drive.google.com/file/d/1iV4s2xeqQXoauxNNYegJN4rsHA5IcyNt/view?usp=sharing


TABLE I: Link prediction results (AUC). ”-” for incomplete execution due to either out of memory errors or runtime exceeding
20 hours. Bold indicate best and underline indicate second best results.

Algorithms Node2Vec VGAE WLK WLNM SEAL WYS Our Method
Power 78.37 ± 0.23 77.77 ± 0.95 - - 74.69 ± 0.21 89.37 ± 0.21 95.60 ± 0.25
Celegans 69.85 ± 0.89 74.16 ± 0.78 73.27 ± 0.41 70.64 ± 0.57 85.53 ± 0.15 74.97 ± 0.19 87.36 ± 0.10
USAir 84.90 ± 0.41 93.18 ± 1.46 87. 98 ± 0.71 87.01 ± 0.42 96.9 ± 0.37 94.01 ± 0.23 97.40 ± 0.21
Road-Euro 50.35 ± 1.05 68.94 ± 5.23 61.17 ± 0.28 65.95 ± 0.33 60.89 ± 0.22 80.42 ± 0.11 87.35 ± 0.33
Road-Minnesota 67.12 ± 0.63 67.36 ± 2.33 75.15 ± 0.16 74.91 ± 0.19 86.92 ± 0.52 75.33 ± 2.77 91.16 ± 0.15
Bio-SC-GT 88.39 ± 0.79 86.76 ± 1.41 - - 97.26 ± 0.13 87.72 ± 0.47 97.16 ± 0.32
Infect-hyper 66.66 ± 0.51 80.89 ± 0.21 65.39 ± 0.39 67.68 ± 0.41 81.94 ± 0.11 78.42 ± 0.15 85.25 ± 0.24
PPI 71.51 ± 0.09 88.19 ± 0.11 - - - 84.12± 1.27 91.16 ± 0.30
Facebook 96.33 ± 0.11 - - - - 98.71 ± 0.14 99.14 ± 0.05
HepTh 88.18 ± 0.21 90.78 ± 1.15 - - 97.85 ± 0.39 93.63 ± 2.36 97.40 ± 0.25

TABLE II: Datasets for link prediction and node classification
tasks.

Datasets Nodes Edges Mean Degree Median Degree
Power 4941 6594 2.66 4
Celegans 297 2148 14.46 24
USAir 332 2126 12.8 10
Road-Euro 1174 1417 2.41 4
Road-Minnesota 2642 3303 2.5 4
Bio-SC-GT 1716 33987 39.61 41
Infect-hyper 113 2196 38.86 74
PPI 3852 37841 19.64 18
Facebook 4039 88234 43.69 50
HepTh 8637 24805 5.74 6
Cora 2708 5278 3.89 6
Pubmed 19717 44324 4.49 4
Citeseer 3327 4732 2.77 4

B. Training
We now turn our attention to a two-step procedure for

training. First, we construct a 2-hop neighborhood around
each node for spectra computation. Probability p is set to 0.6,
walk length W = 100 with 50 walks per node in step one
of the spectral-biased walk generation. Second, the context
window size C = 10 and regularization term γ ranges from
1e − 6 to 1e − 8 for all the results provided in Table I. The
model for link prediction task to compute final AUC is trained
for 100 to 200 epochs depending on the dataset. The dimension
of node embeddings is set to 128 for all the cases and a model
is learned with a single-layer neural network as a classifier.
We also analyze sensitivity of hyper-parameters in Figure 2 to
show the robustness of our algorithm. Along with sensitivity,
we also discuss how probability p affects the quality of our
walk in Figure 3.

C. Baselines
Our baselines are based on graph kernels (WLK [22]), GNNs

(WYS [5], SEAL [7], VGAE [24], and WLNM [23]) and
random walks (Node2Vec [4]). We use available codes for all
the methods and evaluate the methods by computing the area
under curve (AUC). WYS [5] learns context distribution by
using an attention model on the power series of a transition
matrix3. On the other hand, SEAL [7] extracts a local subgraph
around each link and learns via a decaying heuristic a mapping
function to predict links4. VGAE [24] is a graph based
variational auto-encoder (VAE) with a graph convolutional

3 WYS 4 SEAL

network (GCN) [25] as an encoder and simple inner product
computed at the decoder side5. A graph kernel based approach
is the Weisfeiler-Lehman graph kernel (WLK) [22], where the
distance between a pair of graphs is defined as a function
of the number of common rooted subtrees between both
graphs. Weisfeiler-Lehman Neural Machine (WLNM) [23] is
neural network training model based on the WLK algorithm6.
Node2Vec [4] produces node embeddings based on generated
simple random walks that are fed to a word2vec skip-gram
model for training7.

D. Link prediction

This task entails removing links / edges from the graph and
then measuring the ability of an embedding algorithm to infer
such missing links. We pick an equal number of existing edges
(“positive” samples) E+

train and non-existent edges (“negative”
samples) E−train from the training split Etrain and similarly
pick positive E+

test and negative E−test test samples from the
test split Etest. Consequently, we use E+

train ∪ E
−
train for

training our model selection and use E+
test ∪E−test to compute

the AUC evaluation metric. We report results averaged over
10 runs along with their standard deviations in Table I. Our
node embeddings based on spectral-biased walks outperform
the state of the art methods with significant margins on most of
the datasets. Our method better captures not only the adjacent
nodes with structural similarity, but also the ones that are
farther out, due to our walk’s tendency to bias such nodes, and
hence pack more such nodes in the context window.

Among the baselines, we find that SEAL [7] and WYS [5]
have comparable results for few datasets such as SEAL
performs better on dense than sparse datasets and an argument
can’t be generalized for WYS since its performance is better
only for few datasets and not to any specific kind of datasets.

E. Sensitivity Analysis

We test sensitivity towards the following three hyper-
parameters. Namely, the spectral-biased walk length W , the
context window size C, and the regularization parameter γ in
our Wasserstein regularizer. We measure the AUC (y-axis) by
varying W and C over two values each, namely {50, 100} and
{5, 10}, respectively, spanning across four different values of γ
(in x-axis), as shown in Figure 2. We conducted the sensitivity

5 VGAE 6 WLNM 7 Node2Vec

https://github.com/google-research/google-research/tree/master/graph_embedding/watch_your_step
https://github.com/muhanzhang/SEAL/tree/master/Python
https://github.com/tkipf/gae
https://github.com/muhanzhang/LinkPrediction
https://github.com/aditya-grover/node2vec
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Fig. 2: Sensitivity of window size, C and walk length, W with respect to regularization term, γ is measured in AUC for four
datasets of link prediction.

TABLE III: Node classification results in accuracy (%). Bold
indicate best and underline indicate second best results.

Algorithms DeepWalk Node2Vec Our Method
Citeseer 41.56 ± 0.01 42.60 ± 0.01 51.8 ± 0.25
Cora 66.54 ± 0.01 67.90 ± 0.52 70.4 ± 0.30
Pubmed 69.98 ± 0.12 70.30 ± 0.15 71.4 ± 0.80

analysis on two dense datasets (i.e., Celegans and USAir) and
on two sparse datasets (i.e., Power and Road-minnesota).

Our accuracy metrics lie within a range of 2% and are always
better than baselines (WYS and Node2vec), i.e., are robust to
various settings of hyper-parameters. Furthermore, even with
shorter walks (W = 50), our method boasts a stable AUC,
indicating that our expected hitting times to structurally similar
nodes is quite low in practice.

F. Node Classification

In addition to link prediction, we also demonstrate the
efficacy of our node embeddings, via node classification
experiments on three citation networks, namely Pubmed,
Citeseer, and Cora. We produce node embeddings from our
algorithm and perform classification of nodes without taking
node attributes into consideration. We ran experiments on the
train-test data splits already provided by [35]. Results are
compared against Node2vec and Deepwalk, as other state-of-
the-art methods for node classification assumed auxiliary node
features during training. Results in Table III show that our
method beats the baselines.

G. Effect of Probability, p

In earlier sections of the paper, we showed that our algorithm
picks the next node in the walk from nodes with similar
neighborhoods, with probability p. Thus, we conducted an
experiment to show the effect of p on the final result (AUC)
of link prediction. Here, p ranges from 0 to 1, where p = 0
implies that the next node is picked completely at random from
the 1-hop neighborhood (as in simple random walk) and p = 1
indicates that every node is picked from the top-k structurally
similar nodes in the neighborhood.

As we move towards greater values of p, we tend to select
more spectrally similar nodes in the walk. Results are shown in
Figure 3 for four datasets Celegans, USAir, Power and Infect-
hyper. Figure 3 shows that there is an improvement in AUC
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Probability p

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Celegans
USAir
Power
Infect-hyper

Fig. 3: Effect of p on AUC for four datasets for link prediction
task.

for 5% and 2% on an average for dense and sparse datasets
respectively. Increase in AUC is recorded when p increases up
to a certain value of p ranges between 0.4 to 0.8.

VII. CONCLUSIONS

We introduced node embeddings based on spectral-biased
random walks, rooted in an awareness of the neighborhood
structures surrounding the visited nodes. We further empirically
studied the quality of the spectral-biased random walks
by comparing their expected hitting time between pairs of
spectrally similar nodes, packing density of fixed-sized walks,
and the cover time to hit all the spectrally similar nodes within
a fixed Wasserstein ball defined by us. We found our spectral-
biased walks outperformed simple random walks in all the
aforementioned quality parameters.

Motivated by our findings and in an attempt to break
away from word vector models, we proposed a paragraph
vector model along with a novel Wasserstein regularizer.
Experimentally, we showed that our method significantly
outperformed existing state-of-the-art node embedding methods
on a large and diverse set of graphs, for both link prediction
and node classification.

We believe that there does not exist a “one-size-fits-all”
graph embedding for all applications and domains. Therefore,
our future work will primarily focus on generalizing our biased
walks to a broader class of functions that could possibly capture
graph properties of interest to the applications at hand.
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