
Automatic Image Labeling with Click Supervision
on Aerial Images

Krittaphat Pugdeethosapol1, Morgan Bishop2, Dennis Bowen3, Qinru Qiu1
1Department of Engineering and Computer Science, Syracuse University, Syracuse, New York, USA

2Air Force Research Laboratory, Rome, New York, USA
3Technergetics, Utica, New York, USA

Email: 1{kpugdeet, qiqiu}@syr.edu,2morgan.bishop.1@us.af.mil,3dennis.bowen@techngs.com

Abstract—Manually generating annotated bounding boxes for
object detection is time consuming. Although human-annotation
is the most accurate approach, machine learning models can
provide additional assistance. In this paper, we propose a human
in a loop automatic image labeling framework focusing on aerial
images with less features for detection. The proposed model
consists of two main parts, prediction model and adjustment
model. The user first provides click location to prediction model
to generate a bounding box of a specific object. The bounding box
is then fine-tuned by the adjustment model for more accurate size
and location. A feedback and retrain mechanism is implemented
that allows the users to manually adjust the generated bounding
box and provide feedback to incrementally train the adjustment
network during runtime. This unique online learning feature
enables user to generalize existing model to target classes not
initially presented in the training set, and gradually improves
the specificity of the model to those new targets online. We
demonstrate promising results on Neovision 2 Heli dataset.
Compared to the state-of-the-art method, our prediction model
achieves a higher detection rate, and our adjustment model
improves the IOU by up to 45%

Index Terms—object labeling, object detection, click supervi-
sion, online training

I. INTRODUCTION

Object detection has become one of the proliferating re-
search fields in recent years. With the convolution based
network structure and novel backpropagation technique [1],
models can be trained to directly extract features from images
or videos for object detection and classification. Many state-
of-the-art models [2] [3] [4] [5] [6] [7] have demonstrated
impressive results. Although they have different training tech-
niques and network architectures, what is common is that
they all require carefully labeled data for supervised training.
Obtaining a set of high-quality labeled data is one of the major
challenges for those who have to build and train their own
model using supervised learning. Although there are many
available public datasets, i.e. [8], [9], and [10], training an
application specific model requires additional domain specific
data.

Creating labeled data for object detection is time consuming.
According to [11], annotators take about 35 seconds to draw
and annotate a bounding box in the ILSVRC dataset. Do this
repeatedly for every object in the training image is a tedious
task for human annotator and impairs their productivity. On the
other hand, human cognition is necessary for robust detection,

especially in the cases where salient image feature is missing.
Examples of such cases are given in Fig 1. Conventional CNN
based object detection model such as YOLOv3 [12] generates
bounding boxes only when it has a relatively high confidence
that the region is not part of the background. Given the aerial
image in Fig 1, the confidence level reduces. Human cognition
is much more reliable in these cases.

In this paper, we present a human-in-loop automatic image
labeling model that can be used to improve the annotator’s
productivity while maintaining the labeling accuracy. The
proposed model mainly focuses on aerial images (top-down
view) which has less salient features for detection and classi-
fication. It adopts a hybrid approach to automatically generate
a bounding box around the object identified by a user click.
The contribution of the paper is summarized as the following:

• We present a framework that fuse human object detection
capability with the machine intelligence in feature extrac-
tion and semantic understanding to improve annotators
productivity in labeling.

• We improve the feature pyramid in the YOLOv3 model
to enhance the detection of small objects.

• An adjustment network is attached to the original de-
tection model to dynamically learn how to improve the
bounding boxes and adapt to new target classes that are
not in the training set

• Experimental results show that we can improve IOU
in prediction model by 35.6% in average. A further
improvement of up to 45% can be reached after applying
the adjustment network. The experimental results also
show that we can utilize the feedback from users to
incrementally train the model during runtime even with
very small samples.

The rest of the paper is organized as the following. In
section II, we review the existing methods that has been used
to help training object class detectors. This is followed by
Section III that provides details of our framework. Section
IV describes our experimental steps and analyzes the results.
Finally, Section V concludes this work.

II. RELATED WORKS

Human in a loop click annotation method has been used to
help training object class detectors in many researches [13]
[14] [15] [16] [17].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1. Example of aerial images.

Papadopoulos et al. [16] utilized crowdsourcing framework
(Amazon Mechanical Turk) to collect click annotations. An-
notators must pass a simple qualification test before they can
proceed to the real annotation tasks which are divided into
batches of 20 images. During the test, annotators will be
asked to click as close as possible to the center of synthetic
polygons. The purpose of the test is to ensure that annotators
can locate the center of the object regardless of the shape. The
click annotations are then used to incorporate into a reference
Multiple Instance Learning framework designed for weakly
supervised object detection [8] results in improvements of
object class detectors. In 2011, Wah et al. [17] proposed a
visual recognition system which combined a computer and a
human into a single system to identify the class of the objects.
The system asked the annotator to provide click location on
the specific part of the image along with answering binary
questions. The system will predict the most likely class based
on the given information. The procedures will continue until
the correct class was presented.

Other than object class detection, user click information has
also been used in semantic segmentation [18] [19] [20] [21].
For example, Bearman et al. [21] combining user click in-
formation with state-of-the-art Convolutional Neural Network
(CNN) for semantic segmentation by adding in training loss
function to help infer the boundary of the objects.

Either object class detection or semantic segmentation re-
quires the CNN to incorporate with user click location to
complete the tasks. There are many state-of-the-art methods
for class object detections. They can be divided into two main
categories, one-stage methods [4] [7], and two-stage method
[3]. In one-stage method, the model processes and predicts
object bounding boxes regularly across the image, while in the
two-stage method, the model will generate location proposals
and then classify each proposal into one of the object classes
or the background. There are trade-offs between these two
methods in terms of speed and accuracy, the one-stage method
is faster while the two-stage method is more accurate.

In this paper, we choose the one-stage method and incorpo-
rate it with user click location. More specifically we choose
YOLOv3 [12] as our based model due to its speed and state-
of-the-art accuracies.

III. HYBRID HUMAN-MACHINE LABELING FRAMEWORK

In this section, we introduce the overall architecture of the
proposed framework. Its input is the image and the (x, y)
coordinates of user click, which indicate the location of a target
object. Its output is the bounding box of the target object.

The framework can be divided into two main parts, prediction
model and adjustment model. The prediction model generates
the bounding box of the object selected by the user click, while
the adjustment model refines the predicted bounding box to
better fit the target object. The overall architecture is shown
in Fig 2.

A. Prediction Model

The prediction model can be further divided into three main
parts, a backbone network in which Darknet-53 is used, a
Feature Pyramid Network [7], and a post-processing module,
which is only used during the inference. During the inference,
features extracted from different layers in the backbone net-
work will be combined in the feature pyramid network to get
the bounding box predictions. The Post-processing module is
used to filter and select the final predicted box based on the
user click information.

1) Backbone Network: Darknet-53 is used for backbone
network for its high speed and state-of-the-art performance.
It is a hybrid approach that combines Darknet-19 [4], residual
network, and skip connection techniques. This results in 53
convolutional layers using only 1x1 or 3x3 kernels. The
residual block replicates itself 1x, 2x, 4x, and 8x times at each
part of the network. The output size of the residual block is
always the same as the input because of padding.

2) Feature Pyramid Network: We apply the feature pyramid
network on top of Darknet-53. The last three feature maps
of residual block are used as the inputs of feature pyramid
network. Each feature map is up-sampled by 2x to match the
size of the output of earlier layers. We use fusion to combine
the up-sampled high level features with the low level features
coming from the darknet. With this technique, the combined
features allow us to extract information at higher resolution,
and help to locate and detect the object with different scales
and different feature representations. While YOLOv3 predicts
boxes at three different scales and using concatenation when
merging. Our unique feature pyramid network can identify
small objects in the image more efficiently.

3) Post-processing: Post-processing module is used during
inference. The goal of this module is to find the best bounding
box prediction based on user click information. In traditional
object detection methods, a threshold of the detection con-
fidence must be set. If the threshold is too high, the model
may not predict any boxes, and if the threshold is too low,
the model will generate multiple boxes at the same location
which sometimes makes it difficult to select the best one.
The aerial images that we target at have low resolution and
most of the bounding boxes will be filtered out due to a low
confidence. However, a user click will significantly boost the
detection confidence of the bounding boxes located at the
clicked area. Instead of increasing the confidence of those
bounding boxes, we lower the confidence threshold to keep
more detected boxes, then use the post-processing algorithm
to filter out the boxes not adjacent to the click location.

The input of the post-processing is all bounding boxes
generated by the backbone and feature pyramid network, albeit

conv
Convolutional

Layers
conv

Upsampling

C
O

N
Vs

Darknet-53 Network

Input im
ages

BB
prediction

IOU Ground truth

Loss

Post processing & NMS

User click location

Final prediction

Feature Pyramid Network

Adjustment Network

VGG16

VGG16
Convolutional

Layers
conv

Δx

Δy

ΔW

ΔH

Cropped image

Fig. 2. The overall architecture of proposed work. There are two mains part, prediction model on the top section and adjustment model on the bottom There
are two type of input to the model which include image and user click location. Image is used to feed in for both prediction and adjustment model, while
user click location is used for post processing to find the final bounding box prediction. The prediction model predicts bounding based on user click location,
while adjustment model predicts how much the predicted box should adjust to fit more to the target object.

with low confidence. Overlapped boxes have been filtered us-
ing Non-Maximum Suppression (NMS). With the assumption
that there is exactly one object at the click location and the
user already knew the class of the object; the post-processing
module filters the input bounding boxes and selects the most
fit one. The algorithm is shown below:

First, we filter boxes that do not contain the user click point.
Then we filter boxes whose class information does not match
the target class of the user click. In some cases, there will
be no boxes left after the filtering. If this happens, we will
alternatively select boxes belonging to other classes as an ap-
proximation since the model may miss classifying the objects
that have similar features, e.g. bus as train, helicopter as an
airplane, etc. The possible error led by such approximation
can be mitigated by the adjustment network later. In the next
step, we calculate the Euclidean distance between the center
of boxes and user click location, sort and select the top 30%
of remaining boxes that have the shortest distance. Finally, we
select the box that has the highest detection score.

4) Training and Inference: Following YOLOv3, we divide
an image into SxS grids, each grid predicts 9 anchor boxes
with different aspect ratios and predifined width and height
using k-mean clustering algorithm.

For each box, the model predicts 5 values: x, y, width,
height, and confidence score. As a result, the final prediction
features are encoded into a SxSx45 tensor, where S =
imagesize/16 in our model.

We use a pre-trained Darknet-53 network on the MS-COCO
dataset [10] as our backbone network. The prediction model is
trained using three losses: location of boxes, width and height
of boxes, and the confidence score of the box showing the
probability of having an object. The loss equations are defined
below:

L = α ∗ Lxy + β ∗ Lwh + γ ∗ Lconf (1)

Lxy =

B+∑
i=0

(xi − x̂i)2 + (yi − ŷi)2 (2)

Lwh =

B+∑
i=0

(wi − ŵi)
2 + (hi − ĥi)2 (3)

Lconf = −
B+∑
i=0

pilog(pi) + δ ∗ −
B−∑
i=0

pilog(pi) (4)

where α, β, γ and δ are weighted parameters for each part
of the loss. We use a square loss for both location and size
of the box. It only considers the set of boxes, denoted as B+,
which are responsible for the ground truth (i.e. IOU between
the predicted box and ground truth more than a threshold). For
confidence loss, we use cross entropy loss where pi is an object
probability calculated using sigmoid activation function, It is
calculated only for the set of boxes, denoted as B−, which
are not responsible for the ground truth.

Instead of predicting x, y, width, and height directly, we
predict x and y in relative to the location of the grid cell using
sigmoid activation function and predict width and height
using the anchor boxes [4].

During inference, click location can be asked in two ways.
[16] ask annotator to click on the center of the object while in
[21] ask to click anywhere on a target object. In this paper, we
choose to ask annotators to click anywhere on the target due
to its feasibility in real applications. Some of the images may
have small objects, which will be hard for annotators to click
exactly at the center. Furthermore, concentrating on clicking at

Algorithm 1 Post-processing steps
Input
Bounding boxes generated from model: B = Bi

(x,y,w,h,c,s)

where i = 0, 1, 2, ...n
User click location and predefined class: P = (px, py, pc)
Output
Final predicted box at user click location: F = (fx, fy, fw, fh)
List L: list of boxes that contain user click location
List M: list of boxes that contain user click location and match
pre-define class

1: for b ∈ B do select boxes that contain user click location
2: xminbx − bw/2, xmax = bx + bw/2
3: ymin = by − bh/2, ymax = by + bh/2
4: if xmin ≤ px ≤ xmax and ymin ≤ py ≤ ymax then
5: L.add(b)
6: end if
7: end for
8: for l ∈ L do filter out boxes that don’t match pre-define

class
9: if lc == pc then

10: M.add(l)
11: end if
12: if M == ∅ then
13: M = L (use boxes from other classes)
14: end if
15: end for
16: for m ∈M do find boxes that have a minimum distance

to a click location
17: calculate Euclidean distance between center of a box

and user click location
18: dm =

√
(mx − px2

+ (my − py)
2

19: end for
20: sort(M by dm): sort List M by distance from smallest-

largest
21: M = top30(M): keep 30% smallest distance
22: F = max(M): select the box that has the highest score
23: return F

the center will slow down the annotation process and reduce
the human productivity.

B. Adjustment Model

The performance of the aforementioned model is highly
determined by the training set. If the annotated image deviates
from the training image, accurate bounding boxes may not
be generated. Given the initial bounding box found by the
aforementioned prediction model at the user click location,
the goal of the adjustment model is to dynamically adapt to
the testing data and adjust the size and shape of the box to
be more precise over the target object. This is achieved by
allowing the user to manually adjust the initially predicted
bounding box to the correct size, and to collect the difference,
(∆x̂, ∆ŷ, ∆Ŵ , and ∆Ĥ), between the predicted and corrected
boxes. The difference will be referred to as the ground truth
adjustment and will be used to train the adjustment model.

The adjustment model receives two inputs, the input image
and the image of the target object cropped based on the
predicted bounding box. Both images pass through VGG16
to extract features. The stacked features run through multiple
convolution layers before finally used to predict the bounding
box adjustment ∆x̂, ∆ŷ, ∆Ŵ , and ∆Ĥ . The total loss to train
the model is defined as follow:

L = L∆x + L∆y + L∆W + L∆H (5)

where smoothed L1 loss is used for each loss:

L... =

{
0.5d2 |d| < 1

|d| − 0.5 otherwise
(6)

where d is the difference between the predicted adjustment
(∆x, ∆y, ∆W , and ∆H) and ground truth adjustment (∆x̂,
∆ŷ, ∆Ŵ , and ∆Ĥ). We maintain an adjustment network
for each object class. Compared to Darknet or VGG net, the
adjustment model is a relatively small and low-cost and hence
is more suitable for online training.

The significance of the adjustment model is beyond refining
the size and the location of the predicted bounding boxes.
It also enables transfer learning. As we will show in the
experimental results, the adjustment model only needs a few
samples in order to adapt. By leveraging this property, we
can apply the learned prediction model of one target class to
predict the bounding boxes of objects of another target class
that has not been included in the training set, as long as the
two have similar features, and apply the adjustment model to
adapt to the correct bounding boxes. For example, if we have
a trained prediction model for trucks, but not for cars. We can
still use the existing truck model to generate bounding boxes
of cars at user click location. At first, the predicted box will
not fit perfectly to the object because all observed features
will be interpreted as trucks and be fit into a truck bounding
box. Based on the user feedback, the adjustment model will
gradually learn to adjust the bounding box specifically for the
“cars”.

The adjustment network is especially useful when the la-
beled data of a specific target class is limited. Training the
adjustment model (rather than the prediction model) for this
class will be more effective as there will be less overfitting.
Furthermore, it will be more difficult to locate an object than
adjusting a box that has already existed.

IV. EXPERIMENTS

In this section, we describe the details of the experiments,
including the dataset, the implementation details, and evalu-
ation metrics. The experimental results will be presented for
prediction models compared to a state-of-the-art method.

A. Experimental Setup

For prediction model, the pre-trained Darknet-53 on MS-
COCO is used as the backbone network. We then fine-tuned
the model on Neovision2 Heli dataset [22]. We chose this
dataset to mainly focus on aerial images.

TABLE I
STATISTICS OF NEOVISION 2 HELI DATASET.

Class Number of boxes
Train Test

All 8839 17626
Car 3791 8065
Boat 251 1150
Helicopter 23 39
Person 1196 3867
Container 654 2824
Cyclist 240 426
Plane 2576 792
Tractor 12 130
Truck 96 243
Bus 0 90

Fig. 3. Generated user clicks location area.

The dataset contains 32 video clips for training and 37 video
clips for testing. The videos were filmed by a helicopter over
the Los Angeles area and have 10 classes: car, boat, helicopter,
person, container, cyclist, plane, tractor, truck, and bus. The
annotation of videos is divided into frames. We only choose
the frames and boxes that are not part of the Don’t Care
Regions (DCR), not ambiguous, and have confidence score
equal to 1.0. With these criteria, there are no ground truth
boxes left for “buses”, so we exclude this class during the
training. The total number of boxes for each class in training
and testing sets are shown in table I.

We compare our model to a state-of-the-art YOLOv3 model
[23]. Both models are trained on NVIDIA TitanX (Pascal) and
Tensorflow r1.13. In the experiment, we set α, β, γ, and δ to
5.0, 5.0, 1.0, and 0.5 respectively.

During inference, we lower the model threshold at predict
phase to 0.01 to get additional bounding boxes before applying
post-processing to select the final prediction. The locations of
user click were generated using uniform distribution with a
specific range of the lowest and highest value. We used scale
of 0, 0.25, 0.5, 0.75, and 1.0. At scale 0, we assumed that a
user click is located at the center of the ground truth box. At
scale 0.25, 0.5, and 0.75, user click locations were randomly
selected within a rectangular area whose size is 25%, 50% and
75% of the ground truth bounding box located at its center.
Obviously the larger the rectangular area is, the more possible
the user click will deviate from the center. And at scale 1.0,
user click locations can be anywhere within the ground truth
box. Fig 3. shows the area where user click locations are
generated at different range.

B. Evaluation Metric

To measure the accuracy of our predicted boxes, we use
intersection of union (IOU) as the evaluation metric. If no pre-
dicted boxes were generated at user click locations, possibly

due to very low detection confidence, the IOU is considered
to be 0.

C. Prediction Model Results

We performed experiments on Neovision 2 Heli dataset,
where we trained the model while considering all classes and
each class individually. The threshold of 0.01 and IOU of 0.5
were used during the inference. We compared our model with
a state-of-the-art YOLOv3 in which post-processing technique
was applied for both approaches. The randomly generated user
click location at scale of 0, 0.25, 0.5, 0.75, and 1.0 were
used in the experiments. As mentioned above, “bus” class was
excluded in this experiment since there is no labeled training
data.

The results are shown in table II. Each row represents an
average IOU of corresponding class objects at different user
clicks. and average percentage improvement. Compared to the
YOLOv3, our models have better IOU in every class and user
click scale. This is because our model has a better detection
rate with the help of user click information. We can also
observe that the IOU dropped when the range of the user
click expanded. This mean that the user click location plays
an important role in the final prediction. The closer the user
clicks locate near the object center, the better the predicted
box can be.

Additionally, we tested the model on aerial video which
is not part of the Neovision2 Heli dataset. Fig 4. shows the
result when applying post-processing technique to get the final
prediction box. From left to right, the first image represents all
possible bounding boxes when the threshold has been lowered.
The second image shows all boxes that contain user click
location while the third image shows the top 30% of all boxes
that have a minimum distance from click location. Finally, the
last image shows the final prediction box which has the highest
score. Fig 5. shows additional results at the final prediction.

D. Adjustment Model Performance

The second experiment evaluates the performance of the
adjustment model. In this experiment, we assume the center
click. We first apply the prediction model to obtain the initial
bounding boxes. The results are then split into 70:30 ratio for
training and testing. The adjustment model is trained while
considering all classes and each class individually.

The results are shown in Table III. Each row represents the
average IOU of corresponding class before and after applying
the adjustment model. The IOU is calculated only if predicted
boxes were generated at user click locations. It shows that,
with adjustment model, IOU can be improved up to 45% in
average.

We also evaluated the transfer learning capability of the
adjustment network by using the pre-trained prediction model
from different classes that have similar features to predict a
new class of objects that has not been trained. We trained four
prediction models using different training sets that consists of
only: (1) cars, (2) all vehicles except the cars, (3) all classes
in Table III except the cars, (4) all classes in Table III. Then

TABLE II
PREDICTION MODEL RESULTS.(A) YOLOV3 (B) OUR MODEL

Click location 0 0.25 0.50
(a) (b) % improvement (a) (b) % improvement (a) (b) % improvement

Class
All 0.2446 0.3647 49.10 0.2399 0.3615 50.69 0.2028 0.3319 63.66
Car 0.2519 0.3095 22.87 0.2506 0.3071 22.55 0.2203 0.2718 23.38
Boat 0.1298 0.1349 3.93 0.1262 0.1614 27.89 0.1077 0.1208 12.16
Helicopter 0.2442 0.2790 14.25 0.2442 0.2790 14.25 0.2301 0.2790 21.25
Person 0.0804 0.1879 133.71 0.0728 0.1763 142.17 0.0653 0.1297 98.62
Container 0.1359 0.2579 89.77 0.1292 0.2500 93.50 0.1086 0.2167 99.54
Cyclist 0.4216 0.4884 15.84 0.4225 0.4764 12.76 0.3580 0.4638 29.55
Plane 0.3844 0.4172 8.53 0.3785 0.4141 9.41 0.3128 0.3447 10.20
Tractor 0.1720 0.1828 6.28 0.1576 0.1798 14.09 0.1405 0.1537 9.40
Truck 0.1785 0.2965 66.11 0.1708 0.2965 73.59 0.1468 0.2508 70.84

Click location 0.75 1.00 Average
(a) (b) % improvement (a) (b) % improvement (a) (b) % improvement

Class
All 0.1320 0.2449 85.53 0.0846 0.1717 10.96 0.1808 0.2949 63.15
Car 0.1491 0.1806 21.13 0.0968 0.1193 23.24 0.1937 0.2377 22.67
Boat 0.0695 0.0861 23.88 0.0410 0.0628 53.17 0.0948 0.1132 19.36
Helicopter 0.1921 0.2194 14.21 0.1113 0.1830 64.42 0.2044 0.2497 21.28
Person 0.0471 0.0770 63.48 0.0334 0.0482 44.31 0.0468 0.1238 164.57
Container 0.0761 0.1439 89.09 0.0538 0.0899 67.10 0.1007 0.1917 90.31
Cyclist 0.2302 0.3295 43.14 0.1580 0.2031 28.54 0.3181 0.3922 23.32
Plane 0.2018 0.2279 12.93 0.1221 0.1559 27.68 0.2799 0.3120 11.45
Tractor 0.1246 0.1247 0.08 0.1081 0.1087 0.56 0.1406 0.1499 6.67
Truck 0.1003 0.1876 87.04 0.0750 0.1302 63.60 0.1343 0.2323 73.01

Average 0.1694 0.2297 35.60

Fig. 4. An example of post-processing output at each step.

Fig. 5. Examples when applying our prediction model and post-processing technique.

Fig. 6. Examples when applying adjustment model. Left: before adjustment. Right: after adjustment. Red: ground truth box. Blue: predicted box.

(a) N=10

(b) N=40

(c) N=90

Fig. 7. Incremental learning results. y-axis represent percent improvement,
x-axis represent number of batch where the model has been retrained when
new data is available. (a) size 10, (b) size 40, (c) size 90. The size indicates
how many new feedback boxes will trigger the model to retrain itself.

we apply the prediction model to predict the bounding box of
cars followed by the adjustment model that learns to fine tune
the bounding boxes. Table IV. shows the prediction results of
the four configurations. Each row represents the detection rate
of the prediction model, the IOU before adjustment, and the
IOU after adjustment.

As we can observe, when the model is trained with data
belong to all other classes except the car (i.e. 3rd row in Table

TABLE III
ADJUSTMENT MODEL RESULTS.

Training data Average IOU Percentage
ImprovementBefore After

All 0.4416 0.5650 27.94
Car 0.4975 0.6095 22.51
Boat 0.4240 0.7199 69.78
Helicopter 0.3858 0.7419 92.30
Person 0.4649 0.6395 37.55
Container 0.4652 0.6410 37.79
Cyclist 0.5094 0.6382 25.28
Plane 0.4997 0.7252 45.12
Tractor 0.2246 0.3397 51.24
Truck 0.3665 0.5205 42.01
Average 0.42792 0.61404 45.15

TABLE IV
ADJUSTMENT MODEL RESULTS ACROSS CLASSES.

Training Data Average IOU Detection rateBefore After
(1) Car 0.4975 0.6095 60.01%
(2) Vehicle except car 0.3337 0.6098 82.00%
(3) All except car 0.3432 0.4580 26.00%
(4) All 0.4290 0.5593 84.80%

IV), we got the lower detection rate and IOU before and after
the adjustment. This happens because there were classes in
the training data that is totally different from cars. Using a
prediction model learned from those examples results in lower
overall performance.

We can also see that we got promising results if the model is
trained based on data from all other vehicle classes except the
car (i.e. scenario 2 in Table IV). Even though the IOU without
adjustment is lower than that of scenario 1 (i.e. prediction
model trained using car images), it has a higher detection
rate and the IOU can be improved by adjustment. This result
confirms that we can adjust the model trained for other classes
to predict the bounding box of new target class, if they share
some similarities. Fig 6. shows some example of bounding
boxes before and after apply adjustment model. The same
results can also be observed for other classes.

Since the adjustment model is a relatively low-cost network,
it can utilize the feedback from users to incrementally train
the model during runtime. Fig 7. shows how adjustment model
improves the IOU over the incremental learning procedure. In
this experiment, the target class is the “car” class and the
prediction model was trained using the image of cars. We use
the ground truth bounding box of the testing samples as the

user feedback. The adjustment network is incrementally re-
trained every N samples, and N varies from 10 to 40 and 90.
The plots show the improvement in IOU after applying the
adjustment model. As we can see even with a small batch
N=10, the adjustment network adapt to the testing samples
after 20 batches and start to deliver around 10% improvements
over the original prediction model. For all different N, after
about 3,000 samples, the adjust network can about 25% of
improvements in average

V. CONCLUSION

In this paper, we proposed a human in a loop automatic im-
age labeling model. The combined prediction, post-processing,
and adjustment model can be used to streamline the analyst’s
job in annotating images or videos. The model focuses on
aerial images, which has less salient features for detection.
We demonstrate promising results on Neovision 2 Heli dataset
with a comparison to YOLOv3.

Also, by leveraging user click information and the adjust-
ment model, we can improve the overall IOU and extend
the framework during runtime to adapt to new classes whose
labeled training data is not readily available.

VI. ACKNOWLEDGMENT AND DISCLAIMER

This work was received and approved for public release
by AFRL on 04/30/2020, case number 88ABW-2020-1588.
Any Opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of AFRL or its contractors.

REFERENCES

[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[6] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[7] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[8] R. G. Cinbis, J. Verbeek, and C. Schmid, “Weakly supervised object
localization with multi-fold multiple instance learning,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 39, no. 1, pp.
189–203, 2016.

[9] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[12] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[13] E. Teng, R. Huang, and B. Iannucci, “Clickbait-v2: Training an object
detector in real-time,” arXiv preprint arXiv:1803.10358, 2018.

[14] J. Lee, S. Walsh, A. Harakeh, and S. L. Waslander, “Leveraging pre-
trained 3d object detection models for fast ground truth generation,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2018, pp. 2504–2510.

[15] D. P. Papadopoulos, J. R. Uijlings, F. Keller, and V. Ferrari, “We don’t
need no bounding-boxes: Training object class detectors using only
human verification,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 854–863.

[16] ——, “Training object class detectors with click supervision,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 6374–6383.

[17] C. Wah, S. Branson, P. Perona, and S. Belongie, “Multiclass recognition
and part localization with humans in the loop,” in 2011 International
Conference on Computer Vision. IEEE, 2011, pp. 2524–2531.

[18] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “Material recognition in
the wild with the materials in context database,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp.
3479–3487.

[19] T. Wang, B. Han, and J. Collomosse, “Touchcut: Fast image and
video segmentation using single-touch interaction,” Computer Vision and
Image Understanding, vol. 120, pp. 14–30, 2014.

[20] J. Liew, Y. Wei, W. Xiong, S.-H. Ong, and J. Feng, “Regional interactive
image segmentation networks,” in 2017 IEEE international conference
on computer vision (ICCV). IEEE, 2017, pp. 2746–2754.

[21] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei, “What’s the
point: Semantic segmentation with point supervision,” in European
conference on computer vision. Springer, 2016, pp. 549–565.

[22] L. Itti, “Neovision2 annotated video datasets,” 2014.
[23] Y. Yang, “tensorflow-yolov3,” 2019. [Online]. Available:

https://github.com/YunYang1994/tensorflow-yolo

