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Abstract—Illegal tapping of fuel pipelines has recently become
one of the most relevant safety problems faced by the industry.
Hundreds of illegal interventions have been reported around the
world, causing a significant number of deaths, relevant impacts
on the environment, and capital loss. Therefore, it is important to
develop systems that are able to detect such scenarios at an early
stage, enabling a fast counteract. To this end, machine learning
algorithms can train models on available data for detecting future
issues. Most recently, ensemble learning and dynamic classifier se-
lection (DCS) techniques have been achieving promising results in
supervised learning tasks. Such models are usually trained based
on a single criterion. However, it is desirable to take into account
both the number of false positives (FP) and false negatives (FN)
for the illegal tapping detection task, since they are conflicting
and both lead to financial losses and/or accidents. Therefore,
this work proposes a novel DCS technique based on multiple
criteria, namely overall local class-specific accuracy (OLCA),
which employs multi-criteria decision making for dynamically
selecting the best classifier for a new sample given the local
true positive and negative ratios. A numerical experiment is
conducted for assessing the generalization performance of the
proposed method in an oil pipeline, with the goal of detecting
illegal taping using pressure transient signals. Results show that
OLCA is able to reduce the number of both FP and FN when
dynamically selecting the classifiers of a baseline Random Forest
ensemble.

Index Terms—Ensemble learning, dynamic classifier selection,
multi-criteria decision making, time series classification, oil
pipelines, illegal tapping.

I. INTRODUCTION

In 2018, the entity committed to ensure the safe use of
petroleum substances in Europe (Concawe) has published the
Report no. 6/18 [1]. Such report alerted the seriousness of the
illegal tapping problem, showing that the sharp increase in the
number of cold pipeline spills is due to the increased number
of fuel theft events. Pipeline leakage causes environmental
and economic consequences [2]. For instance, the Niger Delta
region in Nigeria reaches 12 billion American dollars annually
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(FAPPR) - Brazil - Finance Codes: 159063/2017-0-PROSUC, 310079/2019-
5-PQ2, 437105/2018-0-Univ, 405580/2018-5-Univ, and PRONEX-042/2018.

with losses related to crude oil theft [3]. Nevertheless, the
development of illegal tapping detection systems has recently
become a relevant field in both academy and industry [4].

Machine learning algorithms can be employed for building
such a system. Therefore, a classifier can be trained to detect
leak and illegal tapping of fuel pipelines given a data set with
available examples. Recent studies have built system using
techniques such as k-nearest neighbors (k-NN) [5], support
vector machines (SVMs) [5]–[8], and artificial neural networks
(ANNs) [6], [9]–[11].

In addition to machine learning, ensemble learning can be
used for generating and combining multiple classifiers, as they
are known for improving the results of single models [12].
Moreover, dynamic classifier selection (DCS) has attained
attention in literature for building dynamic ensembles that use
different base models given the characteristics of the sample
to be classified [13], [14]. However, to the best of the authors
knowledge, ensemble learning has not yet been explored for
developing an illegal tapping detection system.

In addition to this, usual learning algorithms rely on the
optimization of a single criterion during the learning process.
However, multiple conflicting criteria must be met when
solving complex engineering problems. The development of
an illegal tapping detection system must take into account not
only a global accuracy, but also the number of false positives
(FPs) and false negatives (FNs), two conflicting types of errors
that lead to great financial losses and environmental issues.
Therefore, this paper proposes the development of a novel
dynamic multi-criteria classifier selection technique.

To test the illegal tapping detection system based on the new
proposed technique, a numerical experiment is prepared using
simulated data based on a real-world oil pipeline. Prior to the
machine learning approach, signal preprocessing and feature
engineering is performed to enable a better generalization of
the models. Next, an ensemble of base classifiers is built
on training data, and the dynamic multi-criteria selection
technique is employed on a separate testing data. Results show
that the proposed method is able to successfully reduce both
the numbers of FPs and FNs when compared to an “off-
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the-shelf” ensemble learning technique, namely random forest
(RF) [15].

The remainder of this paper is organized as follows: Section
II introduces the problem of illegal tapping; Section III pro-
poses a novel DCS technique based on multi-criteria decision
making (MCDM); Section IV details the numerical experi-
ment; and Section V discusses the results; Finally, the paper
is concluded with some final remarks and future research.

II. ILLEGAL TAPPING

Criminals have been performing fluid and gas theft in
pipelines around the world, making illegal tapping an world-
wide issue [4]. In addition to financial losses, they are also
responsible for environmental consequences due to leakage
[16]. Briefly, there are two approaches for illegal tapping in
pipelines: “offensive theft” and “sophisticated theft” [17].

On the one hand, the offensive approach focuses on a
quick withdrawal of the product. This is easily identified if
the pressure transmission cables are not previously damaged.
It also has a great spill potential if badly executed. On the
other hand, the sophisticated approach uses low flow rates for
the theft activity. This makes the detection and location both
time consuming and difficult. Despite the lower environmental
risk of the sophisticated theft, the volume of stolen product
generally exceeds that of the other approach if the tapping is
not detected at an early stage [17].

To counteract such a criminal activity, leak detection tech-
niques can be used for illegal tapping detection, such as
pattern recognition, or machine learning [16]. To this end, the
most common approach is based on the detection of negative
pressure waves [18]. The resulting models are designed to be
sensitive to variations in the pressure signals, caused by leak
or illegal tapping, that roam through the pipeline. A review of
recent literature on illegal tapping and leak detection systems
is detailed next.

A. Illegal Tapping and Leak Detection Systems

Rostek, Morytko and Jankowska [9] developed a diagnostic
and prediction system based on ANN, which is divided into:
(1) early fault detection by virtual sensors; and (2) leak
isolation through fault state classification. The system has been
applied to six blocks of a professional plant and proved to be
able to detect 11 out of 12 failures at least two days in advance,
being efficient in distinguishing between three classes of leaks.
The authors also reported a number of works related to early
detection and prediction of leaks in fluidized-bed boilers using
ANN.

Xiao et al [6] designed a new method for small leak
detection based on variational mode decomposition (VMD)
and ambiguity correlation classification (ACC). Briefly, the
method applies the VMD to the acquired sensor’s signal and
uses the probability density function to make an adaptive
de-noising algorithm, which processes noise components and
reconstruct de-noised ones. The ambiguity function image is
used for the reconstruction component analysis, and the ACC
is built based on the correlation coefficient. The method proved

to be efficient in detecting small leaks from 1mm and 2mm
wide holes, achieving a better performance than SVMs and
ANNs.

Zadkarami, Shahbazian and Salahshoor [10] implemented
a fault detection and isolation system capable of recognizing
the leakage and suggesting its location, as well as severity.
The system is based on a simulation software that provides the
pipeline inlet pressure and outlet flow rates used for extracting
three types of features for training an ANN: statistical, wavelet
transform and a merge of these two. The resulting system
was applied to a 20km long real pipeline in southern Iran,
yielding a correct classification rate for severity and location
identification ability of 92%, with a small false alarm rate.

Rahmati et al [11] trained an ANN based on gas flow pattern
for a gas leak detection system. The pipeline is divided into
sections and modeled based on the inlet and outlet pressures
of each segment, which allows the generation of gas flow
data used to train and evaluate the performance of the ANN.
The method was validated using real gas flow data measured
through wireless sensor network and industrial internet of
things.

Kayaalp et al [5] presented a water pipeline real-time
monitoring system based on wireless sensor network and a
multi-label learning method. The study consisted of acquiring
pressure data from wireless pressure sensor nodes and using
three multi-label learning methods (random k-label sets, binary
relevance k-NN and binary relevance with SVM) to detect and
locate the water leakage. The results showed that: (1) multi-
label classification methods can be successful for detecting
and locating pipelines leaks; and (2) the random k-label sets
classification method yielded the best results in almost all
measures, with an accuracy of 98%.

Li et al [19] developed a novel leakage location algorithm
based on the attenuation of negative pressure wave. The
approach is attractive for: (1) deducing the negative pressure
wave propagation equation using momentum and continuity
equations, avoiding the problem of velocity disturbance by the
pipeline liquid flow rate; and (2) relying on pressure change
rather than time difference, which is difficult to determine. The
method performed better than a traditional negative pressure
wave method in most cases, presenting errors between 1.161%
and 0.355%.

Xie, Xu and Dubljevic [7] proposed a leak detection and
localization system based on a real pipeline modeled by non-
linear coupled first-order hyperbolic partial differential equa-
tions. At first, a discrete-time Luenberger observer is designed
by solving the operator Riccati equation and allowing the
reconstruction of the pressure and mass flow velocity evolution
with limited measurements, which permitted the generation of
various upstream and downstream velocity profiles for normal
and leakage conditions. Then, a SVM model is trained and
tested from statistical features extracted from the velocity
profile data, presenting an overall accuracy of 99%.

He et al [20] built: (1) the framework for a big data, cloud
computing, and internet of things technology based monitoring
and accidental leak handling system; (2) a new leak location



method based on negative pressure waves; and (3) a strategy
for emergency shutdown after the leaking identification, which
calculates the volume of spilled product and selects the strat-
egy that reduces it. The experimental results in multi-product
pipelines proved that the framework can accurately estimate
the leak starting time, location, coefficient, and volume over
the period of time required for a negative pressure wave to
reach the full pipe length.

Finally, Liu et al [8] implemented a leak detection system
based on Markov feature extraction from the pressure data,
least square SVM, and a two-stage decision scheme. The
former switches between a short or long term detection model
for a rapid and precise identification of the pipeline status. The
proposed system obtained an average accuracy of 99.17% and
92% in conventional and small leakage, respectively, and a
maximum false alarm rate of 10%.

III. DYNAMIC MULTI-CRITERIA CLASSIFIER SELECTION

To build an illegal tapping detection system, this Section
proposes a novel DCS technique based on multiple criteria.
First, a brief introduction to DCS is given. Next, the impor-
tance of MCDM and its applicability to machine learning are
discussed. Finally, the new proposed technique is detailed.

A. Dynamic Classifier Selection

Much progress has been achieved in the field of pattern
recognition with the combination of multiple classifiers (or
ensemble of classifiers). In addition to this, recent literature
started performing dynamic selection of the classifiers to
improve the predictive performance in many different tasks
[13]. The dynamic selection is performed by firstly defining
a region of competence based on the new samples. To define
such a region of competence, researchers have usually relied
on techniques such as clustering and k-NN. Finally, given a
selection criteria, one or more base models are selected to
predict the new sample given their local prediction scores [14].

Moreover, literature started using more than one selection
criteria. For instance, selection has already been performed
given the N most accurate and J most diverse classifiers [21],
[22]. Also, classifiers are selected given an aggregate function
computed with data complexity and accuracy in dynamic se-
lection on complexity (DSOC) [23]. However, few techniques
perform an analysis from the multi-criteria perspective, which
can benefit the performance of predictive models by taking
into account the trade-off between conflicting objectives [24].
META-DES uses additional characteristics from the data set to
select the base learners [25]. Most recently, the hesitant fuzzy
MCDM has been applied for dynamic ensemble selection [26].
Despite this, the trade-off relation between conflicting class-
specific scores has not yet been studied. Therefore, this work
aims at further exploring MCDM for DCS.

B. Multi-criteria Decision Making

When dealing with complex engineering problems, it is
usually important to take into account more than one criterion.
For instance, the occurrence of both FPs and FNs must

be minimized when developing an illegal tapping detection
system. On the one hand, FP relates to the detection of an
illegal tapping where nothing has occurred in reality, which
leads to financial losses due to unnecessary work. On the
other hand, FN, indicates the number of times where an
illegal tapping is not detected, which leads to financial loss
and possible environmental consequences due to undetected
theft and leakage. Therefore, when developing such a detection
system, considering a single criterion could lead to “wrongly
neglecting certain aspects of realism” [27].

With such, the given task is considered a multi-criteria
problem. In such problems, the criteria are usually conflicting,
meaning that it is not possible to improve the results of one of
them without affecting the performance of others. Therefore,
there will exist situations where it is not possible to select the
best classifier, since some of them will present better results
for minimizing the number of FNs while presenting a higher
number of FPs, and vice-versa.

MCDM can be used for solving the selection problem,
which is responsible for aiding the process of decision making
in problems where multiple criteria are taken into account [27].
Ranking techniques have been used with success in the litera-
ture [28], where algorithms compute an overall score given the
multiple differences between each solution. Nevertheless, this
work proposes a new DCS technique that employs MCDM,
namely overall local class-specific accuracy (OLCA).

C. Overall Local Class-specific Accuracy

OLCA is based on the existing overall local accuracy
(OLA) algorithm [29], where the accuracy on a region of
competence is used for selecting a single classifier. However,
this work makes use class-specific accuracy instead of the
global one. Additionally, a MCDM technique is applied for
ranking and selecting a preferred classifier. According to the
existing taxonomy [14], the proposed algorithm is detailed in
terms of region of competence definition, selection criteria,
and selection approach.

An overview of OLCA is drawn in Figure 1. The first
stage is the definition of a region of competence given a new
sample, as described in Subsection III-C1. Next, given the
region of competence and a pool of base models, which can
be generated through algorithms such as RF [15], Bagging [30]
or Boosting [31], the selection criteria are computed according
to Subsection III-C2. Finally, the selection approach detailed
in Subsection III-C3 results in a final output.

1) Region of Competence Definition: This work employs
the k-NN for defining the region of competence. When a
new sample is analyzed, k-NN selects 20 neighbors from the
dynamic selection data set [14]. Next, the selection criteria
are computed on the region of competence for selecting the
preferred classifier.

2) Selection Criteria: In contrast to current DCS literature,
where a single predictive performance criterion is analyzed for
the dynamic selection, this work makes use of two criteria,
true positives ratio (TPR) and true negatives ratio (TNR). In
a binary classification problem, such metrics are related to
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Fig. 1. An overview of the proposed overall local class-specific accuracy (OLCA) dynamic classifier selection (DCS) technique.

the class-specific accuracy. On the one hand, TPR indicates
the ratio of positive samples that are correctly classified as
such. On the other hand, TNR indicates the ratio of negative
samples that are correctly classified as such. TPR and TNR
are computed according to Equations 1 and 2, respectively.
In the equations, true positive (TP) is the number of positive
samples correctly predicted as such, true negative (TN) is the
number of negative samples correctly predicted as such, FN is
the number of incorrectly predicted positive samples, and FP
is the number of incorrectly predicted negative samples.

TPR =
TP

TP + FN
(1)

TNR =
TN

TN + FP
(2)

3) Selection Approach: When dealing with both TPR and
TNR, there will be situations where a single classifier cannot
be considered the best solution. A classifier that presents a
better TPR than others can be outperformed by them in terms
of TNR. Therefore, a MCDM technique can be employed
for selecting a preferred classifier. The preference ranking
organization method for enriched evaluation (PROMETHEE)
[32], [33] has been used with success in many real-world
problems [28]. Such a technique computes a final score for
each solution based on the outranking of such solutions in
terms of multiple criteria. That is, the more a solution outranks
other ones, the better its final score. To this end, pairwise
comparisons are performed between all the solutions according
to each criteria, where a preference function is employed to
quantify the outranking scores. Therefore, it is necessary to
define significant and insignificant difference values for each
criterion. This work employs such a technique and configures
it according to Table I, where both criteria have the same

weight, differences lower than 1% are deemed insignificant,
and differences higher that 10% are considered significant for
both TPR and TNR.

TABLE I
MATRIX WITH WEIGHTS (W), INSIGNIFICANT (I), AND SIGNIFICANT (S)

DIFFERENCES FOR THE TRUE POSITIVES RATIO (TPR) AND TRUE
NEGATIVES RATIO (TNR) CRITERIA.

Criterion W I S
TPR 1.00 0.01 0.10
TNR 1.00 0.01 0.10

IV. EXPERIMENT

This section presents the experiment for solving an illegal
tapping detection problem using the OLCA algorithm. First,
the case study for the numerical experiment is depicted. Next,
the problem’s data set is described, followed by the feature
engineering procedure. Finally, the used models and evaluation
metrics are detailed.

A. Case Study

To generate an illegal tapping scenario for evaluating the
proposed technique, simulations were made with the Synergi
Pipeline Simulator software1 (version 10.6). The simulation
model addresses the “sophisticated theft” problem, which is
more difficult to detect. Such a model is based on an oil
pipeline operating under actual field conditions, detailed in
Figure 2.

The model considers two centrifugal boosters (A/B) with
nominal flow rates of 2, 960m3/h, five centrifugal pumps

1https://www.dnvgl.com/services/pipeline-simulator-and-surge-analysis-
software-analyse-pipeline-design-and-performance-synergi-pipeline-
simulator-5376
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Fig. 2. Simulation model scheme of the oil pipeline.

(A/B/C/D/E) with nominal flow rates of 3, 000m3/h, and
minimum flow rates of 454m3/h, all arranged in series. The
oil has a density of 0.8986kg/m3, viscosity of 66.36cP ,
vapor pressure of 0.50kgf/cm2abs, and Bulk modulus of
15, 751kgf/cm2. The total pipeline length is 181.83km, and
temperature is set to 20◦C.

Pressure transients for the illegal tapping points are sim-
ulated at the beginning (F1), middle (F2) and end (F3) of
the pipeline, with valves positioned at 18, 85 and 155km,
respectively. The opening rate yields 100m3/h of theft flow
in all points. Eight different sensors (Si, i = 1, ..., 8), are
positioned at 0, 20, 60, 80, 100, 120, 160 and 180km to record
the pressure data.

B. Data Set

The data set is comprised of an annotated multivariate time
series captured at a frequency of 10Hz. As described previ-
ously, the data has been acquired by simulating a real scenario
composed of eight pressure sensors along the oil pipeline. In
total, seven different scenarios have been simulated: normal
operation, a choke in the end of the pipeline, the actuation of
a safety valve, the addition of a new pump, and the illegal
tapping in the beginning, middle and end of the pipeline.

To evaluate the proposed model, the data set has been split
into training and testing sets. The test set contains the data
from the illegal tapping in the middle of the pipeline, while
the training set contains all the remaining scenarios. This is
performed to evaluate the model’s generalization capacity for
illegal tapping at unknown positions. Additionally, the training
set is further split into 70% for training the base classifiers and
30% for creating the dynamic selection set. No validation set
is used for hyper-parameter tuning. Figure 3 plots the sensor
data for the test scenario, where oil theft occurs in the middle
of the pipeline.

C. Feature Engineering

Despite having information available from eight pressure
sensors disposed along the pipeline, it is not recommended
to use the raw data for the data-driven task. Without a pre-
processing stage, it would be necessary to collect data from
all possible theft locations for training an accurate model.
Therefore, feature engineering is employed for transforming
the available data into knowledge that can be generalized. To
this end, principal component analysis (PCA) [34] is employed
for reducing the dimension from the eight sensors to only two
variables.
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Fig. 3. Pressure signals from the eight available sensors for an unseen illegal
tapping scenario.

First, since the pressure values from each sensor have
different ranges, the raw data is transformed so that each
sensor contributes similarly when using PCA. This is done
according to Equation 3, where xi,j−W are the adjusted values
for the pressure signals pi,j at position i and time step j, using
window length of W + 1 = 100 samples (or 10 seconds)
for J total observations. Next, the dimensionality reduction
technique is also employed in a window of 10 seconds. With
such, the pressure variation can be identified despite in which
sensor it occurs first.

xi,j−W =
pi,j∑j−W

k=j pi,k
, i ∈ [1, . . . , 8] ,W + 1 ≤ j ≤ J (3)

Additionally, to add more information to the predictors,
statistical features are extracted from the signal [35]. To this
end, the 10 seconds-long moving average, standard deviation,



maximum, and minimum values are collected for the first
two principal components. As a result, a total of 10 features
are available for the data-driven learning task. The resulting
features are summarized in Table II.

TABLE II
SUMMARY OF THE RESULTING FEATURES.

Feature Description
A 1st Principal Component
B 2nd Principal Component
C Moving Average of Feature A
D Moving Average of Feature B
E Moving Standard Deviation of Feature A
F Moving Standard Deviation of Feature B
G Moving Minimum of Feature A
H Moving Minimum of Feature B
I Moving Maximum of Feature A
J Moving Maximum of Feature B

D. Models

This work uses RF [15] for generating the base models
of the ensemble. Such technique uses random samples of the
training data set to generate multiple diverse decision trees.
Additionally, random features are selected at each node of the
trees to improve diversity. Such technique is heavily used in
literature due to its high performance in learning tasks [36]. In
total, 100 decision trees are generated with maximum number
of splits equal to n − 1 for n observations and selection of√
f random features for a total of f features.
To improve the predictive performance of the illegal tapping

detection problem, this work employs OLCA for dynamically
selecting the classifiers. With such, two models are evaluated:
the original RF and the proposed RF with OLCA. Both models
are trained and evaluated on the same data sets, where an
improvement is expected for the proposed approach.

E. Evaluation Metrics

Finally, to evaluate the experimental procedure, four metrics
are analyzed: TNR, TPR, Accuracy, and F1 score. As already
mentioned, the first two are related to class-specific accuracy.
Global accuracy (ACC) is employed for measuring the ratio of
correctly assigned classes, computed according to Equation 4.
The F1 score measures the harmonic mean between precision,
or positive predictive value (PPV), and recall (TPR). Such
metric is used for measuring the accuracy on imbalanced
problems, and is computed according to Equation 5.

ACC =
TP + TN

TP + TN + FP + FN
(4)

F1 =
2 · PPV · TPR

PPV + TPR
(5)

where

PPV =
TP

TP + FP
(6)

V. RESULTS AND DISCUSSION

The results from the previous experiment are detailed in this
Section, which have been acquired using 100 base learners for
the RF and the PROMETHEE parameters from Table I. First,
Figure 4 plots the results of the time series, followed by the
confusion matrix in Figure 5. Finally, Table III displays the
numerical results.

Figure 4 plots the results on the test data set, where the
10 computed features are visualized and colored according to
the model’s predictions. The features are detailed in Table II.
In the blue dashed line, the features remain linear, and are
correctly identified as the negative class (no illegal tapping).
Next, the black stars show the illegal tapping samples that
were miss-classified. In the red line, features start to modify
their behavior and are correctly detected as the positive class
(illegal tapping). The main difficulty of the task is to detect
the first illegal tapping samples, where there has not yet been
much variations in the signals.

A

Features True Positive

True Negative

False Negative

B
C

D
E

F
G

H
I

1780 1800 1820 1840 1860

Time (s)

J

Fig. 4. Feature signals and detection results of the proposed method for the
unseen illegal tapping scenario.

Figure 5 details the confusion matrix for the RF and the
RF with OLCA models. On the one hand, when only the RF
is used, 862 samples are correctly identified as the positive
class and 12465 as the negative class. Only 1 FP and 14
FN occurs. On the other hand, when OLCA is employed, the
number of FP falls to zero, while the number of FN falls to
11. Both models present great results for the task. However,



the proposed dynamic selection technique is able to further
improve the results.
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Fig. 5. Confusion matrix built on the test set for the (a) original random forest
(RF) and (b) RF with overall local class-specific accuracy (OLCA) models.

Finally, Table III brings the numerical results for the task.
The RF + OLCA method achieves the best results in terms of
all evaluation metrics. The error is reduced by approximately
27% on both Accuracy and F1 Score. Moreover, the number
of false positives is reduced by approximately 21% while
the number of false negatives is completely reduced. This
result confirms the significance of the proposed method for
the given task, where it is able to improve the results even
when excellent results are already achieved. Therefore, OLCA
shows potential in real-world engineering tasks, and should be
tested on new problems.

TABLE III
EXPERIMENT RESULTS FOR THE RANDOM FOREST (RF) AND RF WITH

OVERALL LOCAL CLASS-SPECIFIC ACCURACY (OLCA) MODELS.

Model Accuracy F1 Score TNR TPR
RF 0.9989 0.9914 0.9840 0.9999
RF + OLCA 0.9992 0.9937 0.9874 1.0000
Error reduction −27% −27% −21% −100%

Such results can also be compared to current literature in
illegal tapping and leak detection systems. The accuracy of
the proposed method achieved highly accurate models, as the
ones presented in Section II-A [5], [7], [8], [10], [19], [20].
Moreover, the number of false alarms has been completely
reduced.

One important point to focus attention on is the application
of PCA. Such tool enables the detection of the illegal tapping
regardless of where in the pipeline it occurs. Without such
technique for processing the signals, it would be necessary
to acquire data from all possible tapping locations for a
learning algorithm to generate a highly accurate model. Hence,
dimensionality reduction techniques play an important role in
the development of such a detection system.

Finally, as expected from using a dynamic classifier se-
lection method, the local information aids in the selection
of better classifiers for a given sample. Moreover, both the
number of FPs and FNs have been reduced from using a
multi-criteria approach. Therefore, it can be concluded that the
proposed method is a promising tool for designing leak and
illegal tapping detection systems. Nevertheless, such method

can also be employed for solving other classification problems,
and further study is necessary.

VI. CONCLUSIONS

This paper proposes a novel DCS algorithm based on
MCDM for solving an illegal tapping detection problem in
oil pipelines. Illegal tapping is a serious problem, which leads
to great financial and environmental consequences. However,
machine learning models can aid the development of a robust
detection system. Ensemble learning can be used as well for
achieving even better results. In addition to this, to further
improve the results of a RF ensemble, local TPR and TNR
scores are taken into account for dynamically selecting the
best classifiers using the MCDM technique PROMETHEE.
Experiments are performed using simulated data based on an
oil pipeline operating under actual field conditions, where an
unseen illegal tapping scenario must be correctly detected.
Results prove the success of the proposed solution.

It is important to notice, however, that it is not only a
strong machine learning model that aids the development of
the detection system. Knowledge in engineering and signal
processing plays an important role in the definition of features
to be used for the specific problem. In the case of the illegal
tapping detection task, the use of PCA enables not only the re-
duction in the dimensionality of the problem, but also reduces
the number of necessary samples and scenarios that need to
be simulated for inferring such intelligent models. Therefore,
when implementing the system in the field condition, there
will be a cost reduction in the data collection stage.

Finally, the proposed dynamic multi-criteria classifier se-
lection technique, OLCA, has proven to further improve the
results of a strong “off-the-shelf” RF ensemble model. With
the novel technique, the numbers of FPs and FNs are both
reduced. By reducing the number of FPs, companies and
government benefit from less financial burden caused by
unnecessary work. Additionally, by reducing the number of
FNs, fuel losses due to theft and environmental consequences
due to leakage are also minimized. Such results shows the
importance of tackling complex engineering problems in terms
of not only one, but multiple, often conflicting, criteria.

Future work on the method shall focus on the exploration
of novel multi-criteria approaches for DCS and dynamic
ensemble selection (DES). To this end, different methods can
be used for the region of competence definition, selection crite-
ria, and selection approach. Region of competence definition
can be performed with other techniques, such as clustering.
Different selection criteria can be used, such as complexity and
diversity measures, as well as different performance metrics
for regression and multi-class classification problems. Finally,
different MCDM techniques can be explored for classifier and
ensemble selection. Nevertheless, in order to fully understand
the advantages of using a multi-criteria approach, a special
attention shall be given to statistical comparison of such tech-
niques with existing single-criterion techniques for dynamic
selection in future studies.



Regarding illegal tapping detection, future work shall be
focused on the application of the proposed method on field.
In this context, an analysis of the sensors sensitivity is recom-
mended to guarantee the negative pressure waves are correctly
acquired in the actual field condition, as it was possible in the
numerical experiment. Additionally, future work shall focus
on the application of data-driven techniques for illegal tapping
location detection.
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