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Abstract—Despite the recent popularity of deep generative
state space models, few comparisons have been made between
network architectures and the inference steps of the Bayesian fil-
tering framework – with most models simultaneously approximat-
ing both state transition and update steps with a single recurrent
neural network (RNN). In this paper, we introduce the Recurrent
Neural Filter (RNF), a novel recurrent autoencoder architecture
that learns distinct representations for each Bayesian filtering
step, captured by a series of encoders and decoders. Testing
this on three real-world time series datasets, we demonstrate
that the decoupled representations learnt improve the accuracy
of one-step-ahead forecasts while providing realistic uncertainty
estimates, and also facilitate multistep prediction through the
separation of encoder stages.

Index Terms—recurrent neural networks, Bayesian filtering,
variational autoencoders, multistep forecasting

I. INTRODUCTION

Bayesian filtering [1] has been extensively used within the
domain of time series prediction, with numerous applications
across different fields – including target tracking [2], robotics
[3], finance [4], and medicine [5]. Performing inference via
a series of prediction and update steps [6], Bayesian filters
recursively update the posterior distribution of predictions – or
the belief state [7] – with the arrival of new data. For many
filter models – such as the Kalman filter [8] and the unscented
Kalman filter [9] – deterministic functions are used at each
step to adjust the sufficient statistics of the belief state, guided
by generative models of the data. Each function quantifies
the impact of different sources of information on latent state
estimates – specifically time evolution and exogenous inputs in
the prediction step, and realised observations in the update step.
On top of efficient inference and uncertainty estimation, this
decomposition of inference steps enables Bayes filters to be
deployed in use cases beyond basic one-step-ahead prediction
– with simple extensions for multistep prediction [10] and
prediction in the presence of missing observations [11].

With the increasing use of deep neural networks for
time series prediction, applications of recurrent variational
autoencoder (RVAE) architectures have been investigated for
forecasting non-linear state space models [12]–[15]. Learning
dynamics directly from data, they avoid the need for explicit
model specification – overcoming a key limitation in standard
Bayes filters. However, these RVAEs focus predominantly on

encapsulating the generative form of the state space model –
implicitly condensing both state transition and update steps
into a single representation learnt by the RVAE decoder – and
make it impossible to decouple the Bayes filter steps.

Recent works in deep generative modelling have focused
on the use of neural networks to learn independent factors
of variation in static datasets – through the encouragement
of disentangled representations [16], [17] or by learning
causal mechanisms [18], [19]. While a wide range of training
procedures and loss functions have been proposed [20], methods
in general use dedicated network components to learn distinct
interpretable relationships – ranging from orthogonalising
latent representations in variational autoencoders [21] to
learning independent modules for different causal pathways
[18]. By understanding the relationships encapsulated by each
component, we can subsequently decouple them for use in
related tasks – allowing the learnt mechanisms to generalise
to novel domains [18], [22] or to provide building blocks for
transfer learning [21].

In this paper, we introduce the Recurrent Neural Filter
(RNF) – a novel recurrent autoencoder architecture which
aligns network modules (encoders and decoders) with the
inference steps of the Bayes filter – making several contri-
butions over standard approaches. Firstly, we propose a new
training procedure to encourage independent representations
within each module, by directly training intermediate encoders
with a common emission decoder. In doing so, we augment
the loss function with additional regularisation terms (see
Section V), and directly encourage each encoder to learn
functions to update the filter’s belief state given available
information. Furthermore, to encourage the decoupling of
encoder stages, we randomly drop out the input dynamics
and error correction encoders during training – which can be
viewed as artificially introducing missingness to the inputs and
observations respectively. Finally, we highlight performance
gains for one-step-ahead predictions through experiments on
3 real-world time series datasets, and investigate multistep
predictions as a use case for generalising the RNF’s decoupled
representations to other tasks – demonstrating performance
improvements from the recursive application of the state
transition encoders alone.
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II. RELATED WORK

RVAEs for State Space Modelling: The work of
[12] identifies close parallels between RNNs and latent state
space models, both consisting of an internal hidden state that
drives output forecasts and observations. Using an RVAE
architecture described as a variational RNN (VRNN), they
build their recognition network (encoder) with RNNs and
produce samples for the stochastic hidden state at each time
point. Deep Kalman filters (DKFs) [13], [14] take this a step
further by allowing for exogenous inputs in their network and
incorporating a special KL loss term to penalise state transitions
between time steps. Deep Variational Bayes Filters (DVBFs)
[15] enhance the interpretability of DKFs by modelling state
transitions with parametric – e.g. linear – models, which take
in stochastic samples from the recognition model as inputs.
In general, while the above models capture the generative
modelling aspects of the state space framework, their inference
procedure blends both state transition and error correction
steps, obliging the recognition model to learn representations
for both simultaneously. In contrast, the RNF uses separate
neural network components to directly model the Bayes filter
steps – leading to improvements in representation learning and
enhanced predictive performance in time series applications.

Hybrid Approaches: In [23], the authors take a hybrid
approach with the structured variational autoencoder (SVAE),
proposing an efficient general inference framework that com-
bines probabilistic graphical models for the latent state with
neural network observation models. This is similar in spirit
to the Kernel Kalman Filter [24], allowing for predictions
to be made on complex observational datasets – such as
raw images – by encoding high dimensional outputs onto
a lower dimensional latent representation modelled with a
dynamical systems model. Although SVAEs provide a degree
of interpretability to temporal dynamics, they also require a
parametric model to be defined for the latent states which
may be challenging for arbitrary time series datasets. The
RNF, in comparison, can learn the relationships directly from
data, without the need for explicit model specification. The
Kalman variational autoencoder (KVAE) [25] extends ideas
from the SVAE, modelling latent state using a linear Gaussian
state space model (LGSSM). To allow for non-linear dynamics,
the KVAE uses a recognition model to produce time-varying
parameters for the LGSSM, weighting a set of K constant
parameters using weights generated by a neural network. Deep
State Space Models (DSSM) [26] investigate a similar approach
within the context of time series prediction, using an RNN to
generate parameters of the LGSSM at each time step. While
the LGSSM components do allow for the application of the
Kalman filter, we note that updates to the time-varying weights
from the RNN once again blend the prediction and update steps
– making the separation of Bayes filter steps and generalisation
to other tasks non-trivial. On the other hand, the RNF naturally
supports simple extensions (e.g. multistep prediction) similarly
to other Bayes filter – due to the close alignment of the RNF
architecture with the Bayes filter steps and the use of decoupled

representations across encoders and decoders.
Autoregressive Architectures: An alternative approach

to deep generative modelling focuses on the autoregres-
sive factorisation of the joint distribution of observations
(i.e. p(y1:T ) =

∏
t p(yt|y1:t)), directly generating the condi-

tional distribution at each step. For instance, WaveNet [27]
and Transformer [28], [29] networks use dilated CNNs and
attention-based models to build predictive distributions. While
successful in speech generation and language applications, these
models suffer from several limitations in the context of time
series prediction. Firstly, the CNN and attention models require
the pre-specification of the amount of relevant history to use in
predictions – with the size of the look-back window controlled
by the length of the receptive field or extended context – which
may be difficult when the data generating process is unknown.
Furthermore, they also rely on a discretisation of the output,
generating probabilities of occurrence within each discrete
interval using a softmax layer. This can create generalisation
issues for time series where outputs are unbounded. In contrast,
the LSTM cells used in the RNF recognition model remove
the need to define a look-back window, and the parametric
distributions used for outputs are compatible with unbounded
continuous observations.

In other works, the use of RNNs in autoregressive architec-
tures for time series prediction have been explored in DeepAR
models [30], where LSTM networks output Gaussian mean
and standard deviation parameters of predictive distributions at
each step. We include this as a benchmark in our tests, noting
the improvements observed with the RNF through its alignment
with the Bayesian filtering paradigm.

Predictive State Representations: Predictive state
RNNs (PSRNN) [31]–[33] use an alternative formulation of the
Bayes filter, utilising a state representation that corresponds to
the statistics of the predictive distribution of future observations.
Predictions are made using a two-stage regression approach
modelled by their proposed architectures. Compared to alter-
native approaches, PSRNNs only produce point estimates for
their forecasts – lacking the uncertainty bounds from predictive
distributions produced by the RNF.

Non-Parametric State Space Models: Gaussian Process
state space models (GP-SSMs) [34], [35] and variational
approximations [36], provide an alternative non-parametric
approach to forecasting non-linear state space models – mod-
elling hidden states and observation dynamics using GPs.
While they have similar benefits to Bayes filters (i.e. predictive
uncertainties, natural multistep prediction etc.), inference at
each time step has at least an O(T ) complexity in the number
of past observations – either via sparse GP approximations or
Kalman filter formulations [37]. In contrast, the RNF updates its
belief state at each time point only with the latest observations
and input, making it suitable for real-time prediction on high-
frequency datasets.

RNNs for Multistep Prediction: Customised sequence-
to-sequence architectures have been explored in [38], [39]
for multistep time series prediction, typically predefining
the forecast horizon, and using computationally expensive



customised training procedures to improve performance. In
contrast, the RNF does not require the use of a separate training
procedure for multistep predictions – hence reducing the
computational overhead – and does not require the specification
of a fixed forecast horizon.

III. PROBLEM DEFINITION

Let yt = [yt(1), . . . , yt(O)]
T be a vector of ob-

servations, driven by a set of stochastic hidden states
xt = [xt(1), . . . , xt(J)]T and exogenous inputs ut =
[ut(1), . . . , ut(I)]

T . We consider non-linear state space models
of the following form:

yt ∼ Π
(
f(xt )

)
(1)

xt ∼ N
(
µ(xt−1,ut), Σ(xt−1,ut)

)
(2)

where Π is an arbitrary distribution parametrised by a non-
linear function f(xt), with µ(·) and Σ(·) being mean and
covariance functions respectively.

Bayes filters allow for efficient inference through the use
of a belief state, i.e. a posterior distribution of hidden states
given past observations y1:t = {y1, . . . ,yt} and inputs u1:t =
{u1, . . . ,ut}. This is achieved through the maintenance of a
set sufficient statistics θt – e.g. means and covariances θt ∈
{µt,Σt} – which compactly summarise the historical data:

p(xt|y1:t,u1:t) = bel(xt;θt) (3)
= N (xt; µt,Σt) (4)

where bel(.) is a probability distribution function for the belief
state.

For filters such as the Kalman filter – and non-linear
variants like the unscented Kalman filter [9] – θt is recursively
updated through a series of prediction and update steps which
take the general form:

Prediction (State Transition):

θ̃t = φu (θt−1,ut) (5)

Update (Error Correction):

θt = φy

(
θ̃t,yt

)
(6)

where φu(·) and φy(·) are non-linear deterministic functions.
Forecasts can then be computed using one-step ahead predictive
distributions:

p(yt|y1:t−1,u1:t) =

∫
p(yt|xt) bel

(
xt; θ̃t

)
dxt. (7)

In certain cases – e.g. with the Kalman filter – the predictive
distribution can also be directly parameterised using analytical
functions g(.) for belief state statistics :

p(yt|y1:t−1,u1:t) = p
(
yt| g(θ̃t)

)
. (8)

When observations are continuous, such as in standard linear
Gaussian state space models, yt can be modelled using a
Normal distribution – i.e. yt ∼ N

(
gµ(θ̃t), gΣ(θ̃t)

)
.

IV. RECURRENT NEURAL FILTER

Recurrent Neural Filters use a series of encoders and
decoders to learn independent representations for the Bayesian
filtering steps. We investigate two RNF variants as described
below, based on Equations (7) and (8) respectively.

Variational Autoencoder Form (VRNF) Firstly, we
capture the belief state of Equation (4) using a recurrent VAE-
based architecture. At run time, samples of xt are generated
from the encoder – approximating the integral of Equation (7)
to compute the predictive distribution of yt.

Standard Autoencoder Form (RNF)1 Much recent
work has demonstrated the sensitivity of VAE performance to
the choice of prior distribution, with suboptimal priors either
having an “over-regularising” effect on the loss function during
training [40]–[42], or leading to posterior collapse [43]. As
such, we also implement an autoregressive version of the RNF
based on Equation (8) – directly feeding encoder latent states
into the common emission decoder.

A general architecture diagram for both forms is shown in
Figure 1, with the main differences encapsulated within z(s)
(see Section IV-A).

A. Network Architecture

First, let st be a latent state that maps to sufficient statistics
θt, which are obtained as outputs from our recognition model.
Per Equations (5) and (6), inference at run-time is controlled
through the recursive update of st, using a series of Long
Short-Term Memory (LSTM) [44] encoders with exponential
linear unit (ELU) activations [45].

Encoder To directly estimate the impact of exogenous
inputs on the belief state, the prediction step, Equation (5),
is divided into two parts with separate LSTM units φx(·)
and φu(·). We use ht to represent all required memory
components – i.e. both output vector and cell state for the
standard LSTM – with st being the output of the cell. A third
LSTM cell φy(·) is then used for the update step, Equation
(6), with the full set of equations below.

Prediction:

Propagation
[
s̃

′

t, h̃
′

t

]
= φx(ht−1) (9)

Input Dynamics
[
s̃t, h̃t

]
= φu(h̃

′

t,ut) (10)

Update:

Error Correction [st,ht] = φy(h̃t,yt) (11)

For the variational RNF, hidden state variable xt is modelled
as multivariate Gaussian, given by:

xt ∼ N(m(s̃t), V (s̃t)) (12)
m(s̃t) = Wms̃t + bm (13)
V (s̃t) = diag(σ(s̃t)� σ(s̃t)) (14)
σ(s̃t) = Softplus(Wσs̃t + bσ), (15)

1An open-source implementation of the standard RNF can be found at:
https://github.com/sjblim/rnf-ijcnn-2020



Fig. 1. RNF Network Architecture

where W(·), b(·) are the weights/biases of each layer, and �
is an element-wise (Hadamard) product.

For the standard RNF, the encoder state s̃t is directly fed
into the emission decoder leading to the following forms for
z̃t = z(s̃t):

zVRNF(s̃t) = xt, zRNF(s̃t) = s̃t. (16)

While the connection to non-linear state-space models facilitates
our interpretation of zRNF(s̃t), we note that the standard RNF
no longer relies on an explicit generative model for the latent
state xt. This potentially allows the standard RNF to learn
more complex update rules for non-Gaussian latent states.

Decoder Given an encoder output z̃t, we use a multi-
layer perceptron to model the emission function f(·):

f(z̃t) = Wz2 ELU(Wz1 z̃t + bz1) + bz2 . (17)

This allows us to handle both continuous or binary observa-
tions using the output models below:

y continuous
t ∼ N

(
fµ(z̃t) ,Γ(z̃t)

)
, (18)

y binary
t ∼ Bernoulli

(
Sigmoid(f(z̃t))

)
. (19)

where Γ(z̃t) = diag (gσ(z̃t)) is a time-dependent diagonal
covariance matrix, and gσ(z̃t) = Softplus(fσ(z̃t)).

For y continuous
t , the weights Wz1 , bz1 are shared between

fµ(·) and fσ(·) – i.e. both observation means and covariances
are generated from the same encoder hidden layer.

B. Handling Missing Data and Multistep Prediction

From the above, we can see that each encoder learns how
specific inputs (i.e. time evolution, exogenous inputs and the
target) modify the belief state. As such, in a similar fashion to

Fig. 2. RNF Configuration with Missing Data

Bayes filters, we decouple the RNF stages at run-time based on
the availability of inputs for prediction – allowing it to handle
applications involving missing data or multistep forecasting.

Figure 2 demonstrates how the RNF stages can be combined
to accommodate missing data, noting that the colour scheme of
the encoders/decoders shown matches that of Figure 1. From
the schematic, the propagation encoder – which is responsible
for changes to the belief state due to time evolution – is always
applied, with the input dynamics and error correction encoders
only used when inputs or observations are observed respectively.
Where inputs are available, the emission decoder is applied to
the input dynamics encoder to generate predictions at each step.
Failing that, the decoder is applied to the propagation encoder
alone.Multistep forecasts can also be treated as predictions in
the absence of inputs or observations, with the encoders used
to project the belief state in a similar fashion to missing data.

V. TRAINING METHODOLOGY

Considering the joint probability for a trajectory of length
T , we train the standard RNF by minimising the negative log-



likelihood of the observations. For continuous observations,
this involves Gaussian likelihoods from Equation (18):

LRNF(ω, s̃1:T ) = −
T∑
t=1

log p(yt|s̃t), (20)

log p(yt|s̃t) = −1

2

J∑
j=1

{
log(2πgσ(j, s̃t)

2)

+

∥∥∥∥yt(j)− fµ (j, s̃t)

gσ(j, s̃t)

∥∥∥∥2}
, (21)

where ω are the weights of the deep neural network, fµ (j, z̃t)
is the j-th element of fµ (z̃t), and gσ(j, z̃t) the j-th element
of gσ(z̃t).

For the VRNF, we adopt the Stochastic Gradient Variational
Bayes (SGVB) estimator of [46] for our VAE evidence lower
bound, expressing our loss function as:

LVRNF(ω, s̃1:T ) =

T∑
t=1

{
1

L

L∑
i=1

log p(yt|x(i)
t (s̃t))

}
−KL

(
q(x1:T ) || p(x1:T )

)
, (22)

where L is the number of samples used for calibration, x(i)
k (s̃k)

is the i-th sample given the latent state s̃k, and KL
(
·) is the

KL divergence term defined based on the priors in Section
V-A.

A. VAE Priors for VRNF

Using the generative model for xt in Equation (2), we
consider the definition of two priors for the VRNF, as described
briefly below. A full definition can be found in Appendix2

A, which also includes derivations for the KL term used in
LVRNF(ω, s̃1:T ).

Kalman Filter Prior (VRNF-KF) Considering a linear
Gaussian state space form for Equations (1) and (2), we can
apply the Kalman filtering equations to obtained distributions
for xt at each time step (e.g. p(xt|y1:t,u1:t)). This also lets
us analytically define how the means and covariances of the
belief state change with different sets of information – aligning
the VRNF’s encoder stages with the filtering equations.

Neural Network Prior (VRNF-NN) In the spirit of the
DKF [13], the analytical equations from the Kalman filter
prior above can also be approximated using simple multilayer
perceptrons. This would also allow belief state updates to
accommodate non-linear states space dynamics, making it fa
less restrictive prior model.

B. Encouraging Decoupled Representations

Combined Encoder Training To improve representation
learning, the RNF is trained in a “multi-task” fashion – with
each intermediate stage trained to encode latent states for output
distributions. This is achieved by applying the same emissions
decoder to all encoders during training as indicated in Figure 1,
with each encoder/decoder aligned with the Bayesian filtering

2URL for full paper with appendix: https://arxiv.org/abs/1901.08096

steps described in Section IV-A. Encoders are then trained
jointly using the combined loss function below:

Lcombined(ω,y1:T ,u1:T )

= L(ω, s̃1:T )︸ ︷︷ ︸
Input Dynamics

+

Additional Regularisation Terms︷ ︸︸ ︷
αxL(ω, s̃

′

1:T )︸ ︷︷ ︸
Propagation

+αyL(ω, s1:T )︸ ︷︷ ︸
Error Correction

. (23)

As such, the additional stages can be interpreted as regular-
isation terms for the VRNF or RNF loss functions – which
we weight by constants αx and αy to control the relative
importance of the intermediate encoder representations. For our
main experiments, we place equal importance on all encoders,
i.e. αx = αy = 1, to facilitate the subsequent separation of
stages for multistep prediction – with a full ablation analysis
performed to assess the impact of various α settings during
training.

Furthermore, the error correction component φy(·) can also
be interpreted as a pure auto-encoding step for the latest
observation, recovering distributions p(yt|xt) based on filtered
distributions of p(xt|y1:t,u1:t). Given that all stages share
the same emissions decoder, this obliges the network to learn
representations for st that are able to reconstruct the current
observation when it is available.

Introducing Artificial Missingness Next, to encourage
the clean separation of encoder stages for generalisation to
other tasks, we break dependencies between the encoders by
introducing artificial missingness into the dataset – randomly
dropping out inputs and observations with a missingness rate
r. As encoders are only applied where data is present (see
Figure 2), input dynamics and error correction encoders are
hence randomly skipped over during training – encouraging
the encoder to perform regardless of which encoder stage
preceded it. This also bears a resemblance to input dropout
during training, which we apply to competing benchmarks to
ensure comparability.

VI. PERFORMANCE EVALUATION

A. Time Series Datasets

We conduct a series of tests on 3 real-world time series
datasets to evaluate performance:

1) Electricity: The public UCI Individual Household Elec-
tric Power Consumption Data [47]

2) Volatility: A 30-min realised variance [48] dataset for
30 different stock indices

3) Quote: A high-frequency market microstructure dataset
containing Barclays Level-1 quote data from Thomson
Reuters Tick History (TRTH)

Details on input/output features and preprocessing are fully
documented in Appendix C for reference.

B. Conduct of Experiment

Benchmarks: We compare the VRNF-KF, VRNF-NN
and standard RNF against a range of autoregressive and RVAE
benchmarks – including the DeepAR Model [30], Deep State



TABLE I
NORMALISED MSES FOR ONE-STEP-AHEAD PREDICTIONS

DeepAR DSSM VRNN DKF VRNF-KF VRNF-NN RNF

Electricity 0.908 1.000 2.002 0.867 0.861 0.852 0.780*
Volatility 3.956 1.000 0.991 0.982 1.914 1.284 0.976*
Quote 0.998 1.000 3.733 1.001 1.000 1.001 0.997*

TABLE II
COVERAGE PROBABILITY OF ONE-STEP-AHEAD 90% PREDICTION INTERVAL

DeepAR DSSM VRNN DKF VRNF-KF VRNF-NN RNF

Electricity 0.966 0.964 0.981 0.965 0.320 0.271 0.961*
Volatility 0.997* 0.999 1.000 1.000 1.000 1.000 1.000
Quote 0.997 0.991 0.005 0.998 0.924 * 0.992 0.997

TABLE III
NORMALISED MSES FOR MULTISTEP PREDICTIONS WITH BOTH UNKNOWN AND KNOWN INPUTS

Input Type Dataset τ = DeepAR DSSM VRNN DKF VRNF-KF VRNF-NN RNF

Unknown Inputs Electricity 5 3.260 3.308 3.080 2.946 2.607 2.015 1.996*
10 4.559 4.771 4.533 4.419 5.467 3.506* 3.587
20 6.555 6.827 6.620 6.524 9.817 5.449* 6.098

Volatility 5 3.945 1.628 0.994 0.986 4.084 1.020 0.967*
10 3.960 1.639 0.994 0.985 4.140 1.017 0.967*
20 3.955 1.641 0.993 0.983 4.163 1.014 0.966*

Quote 5 1.000 1.000 1.001 1.000 1.002 0.999 0.998*
10 1.000 1.001 1.000 1.001 1.009 1.002 1.000*
20 1.000 1.001 1.003 1.001 1.488 1.003 1.000*

Known Inputs Electricity 5 3.260 3.199 3.045 1.073 1.112 0.877 0.813*
10 4.559 4.382 4.470 1.008 1.180 0.882 0.831*
20 6.555 6.174 6.514 0.989 1.209 0.884 0.846*

Volatility 5 3.988 1.615 0.994 0.986 2.645 1.009 0.981*
10 3.992 1.620 0.994 0.985 2.652 1.009 0.981*
20 3.991 1.627 0.993 0.984 2.652 1.008 0.980*

Quote 5 1.000 1.000 0.998 1.000 1.001 1.000 0.997*
10 1.000 1.000 0.999 1.000 1.003 1.000 0.998*
20 1.000 1.000 1.003 1.000 1.009 1.000 0.999*

Space Model (DSSM) [26], Variational RNN (VRNN) [12],
and Deep Kalman Filter (DKF) [13].

For multistep prediction, we consider two potential use cases
for exogenous inputs: (i) when future inputs are unknown
beforehand and imputed using their last observed values, and
(ii) when inputs are known in advance and used as given. When
models require observations of yt as inputs, we recursively
feed outputs from the network as inputs at the next time step.
These tweaks allow the benchmarks to be used for multistep
prediction without modifying network architectures. For the
RNF, we consider the application of the propagation encoder
alone for the former case, and a combination of the propagation
and input dynamics encoder for the latter – as detailed in
Section IV-B.

Metrics: To determine the accuracy of forecasts, we
evaluate the mean-squared-error (MSE) for single-step and
multistep predictions, normalising each using the MSE of the
one-step-ahead forecast for the best autoregressive model (i.e.
the DSSM). For multistep forecasts, we measure the average

squared error up to the maximum prediction horizon (τ ). As
observations are 1D continuous variables for all our datasets,
we evaluate uncertainty estimates using the prediction interval
coverage probability (PICP) of a 90% prediction interval,
defined as:

PICP =
1

T

T∑
t=1

ct, (24)

ct =

{
1, if ψ(0.05, t) < yt < ψ(0.95, t)

0, otherwise
(25)

where ψ(0.05, t) is the 5th percentile of samples from
N (f(xt),Γ).

Training Details: Please refer to Appendix B for full
details of network calibration.

C. Results and Discussion

On the whole, the standard RNF demonstrates the best overall
performance – improving MSEs in general for one-step-ahead



TABLE IV
NORMALISED MSES FOR ABLATION STUDIES

Electricity Volatility Quote
τ = 1 5 10 20 1 5 10 20 1 5 10 20

Unknown Inputs RNF - 1.996* 3.587* 6.098* - 0.967* 0.967* 0.966* - 0.998* 1.000* 1.000*
RNF-NS - 2.801 13.409 45.625 - 1.006 1.006 1.005 - 1.137 1.294 1.260
RNF-IO - 14.047 14.803 15.414 - 1.377 1.458 1.494 - 1.029 1.042 1.045

Known Inputs RNF 0.780 0.813 0.831* 0.846* 0.976* 0.981* 0.981* 0.980* 0.997* 0.997* 0.998* 0.999*
RNF-NS 0.828 0.948 0.997 1.042 0.979 0.983 0.983 0.982 1.001 1.003 1.019 1.026
RNF-IO 0.770* 0.809* 0.873 0.918 1.012 1.016 1.016 1.015 1.020 1.015 1.023 1.030

and multistep prediction. From the one-step-ahead MSEs in
Table I, the RNF improves forecasting accuracy by 19.6%
on average across all datasets and benchmarks. These results
are also echoed for multistep predictions in Table III, with
the RNF beating the majority of baselines for all horizons
and datasets. The only exception is the slight out-performance
of another RNF variant (the VRNF-NN) on the Electricity
dataset with unknown inputs – possibly due to the adoption
of a suitable prior for this specific dataset – with the standard
RNF coming in a close second. The PICP results of Table
II also show that performance is achieved without sacrificing
the quality of uncertainty estimates, with the RNF outputting
similar uncertainty intervals compared to other deep generative
and autoregressive models. On the whole, this demonstrates the
benefits of the proposed training approach for the RNF, which
encourages decoupled representations using regularisation terms
and skip training.

To measure the benefits of the skip-training approach and
proposed regularisation terms, we also perform a simple abla-
tion study and train the RNF without the proposed components.
Table IV shows the normalised MSEs for the ablation studies,
with one-step and multistep forecasts combined into the same
table. Specifically, we test the RNF with no skip training in
RNF-NS, and the RNF with only the input dynamics stage in
RNF-IO (i.e. αx = αy = 0). As inputs are always known for
one-step-ahead predictions, normalised MSEs for τ = 1 are
omitted for unknown inputs. In general, the inclusion of both
skip training and regularisation terms improves forecasting
performance, particularly in the case of longer-horizon predic-
tions. We observe this from the MSE improvements for all but
short-term (τ ∈ {1, 5}) predictions for known inputs, where
the RNF-IO. However, the importance of both skip-training
and regularisation can be seen from the large multistep MSEs
of both the RNF-NS and RNF-IO on the Electricity dataset
with unknown inputs– which results from error propagation
when the input dynamics encoder is removed.

As mentioned in Section IV, the challenges of prior selection
for VAE-based methods can be seen from the PICPs in Table II –
with small PICPs for VRNN models indicative of miscalibrated
distributions in the Electricity data, and the poor MSEs and
PICPs for the VRNN indicative of posterior collapse on the
Quote data. However, this can also be beneficial when applied
to appropriate datasets – as seen from the closeness of the
VRNN-KF’s PICP to the expected 90% on the Quote data.

As such, the autoregressive form of standard RNF leads to
more reliable performance from both a prediction accuracy and
uncertainty perspective – doing away with the need to define
a prior for xt.

VII. CONCLUSIONS

In this paper, we introduce a novel recurrent autoencoder
architecture, which we call the Recurrent Neural Filter (RNF),
to learn decoupled representations for the Bayesian filtering
steps – consisting of separate encoders for state propagation,
input and error correction dynamics, and a common decoder to
model emission. Based on experiments with three real-world
time series datasets, the direct benefits of the architecture can
be seen from the improvements in one-step-ahead predictive
performance, while maintaining comparable uncertainty esti-
mates to benchmarks. Due to its modular structure and close
alignment with Bayesian filtering steps, we also show the
potential to generalise the RNF to similar predictive tasks – as
seen from improvements in multistep prediction using extracted
state transition encoders.
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[38] B. Pérez Orozco, G. Abbati, and S. Roberts, “MOrdReD: Memory-
based Ordinal Regression Deep Neural Networks for Time Series
Forecasting,” CoRR, vol. arXiv:1803.09704, 2018. [Online]. Available:
http://arxiv.org/abs/1803.09704

[39] R. Wen and K. T. B. M. Narayanaswamy, “A multi-horizon quantile
recurrent forecaster,” in NIPS 2017 Time Series Workshop, 2017.

[40] H. Takahashi, T. Iwata, Y. Yamanaka, M. Yamada, and S. Yagi,
“Variational autoencoder with implicit optimal priors,” CoRR, vol.
abs/1809.05284, 2018. [Online]. Available: https://arxiv.org/abs/1809.
05284

[41] Tomczak and Welling, “VAE with a VampPrior,” in Proceedings of
the 21st Internation Conference on Artificial Intelligence and Statistics
(AISTATS), 2018.

[42] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz, and
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