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Abstract—This paper thoroughly analyses the effect of differ-
ent input representations on polyphonic multi-instrument music
transcription. We use our own GPU based spectrogram extraction
tool, nnAudio, to investigate the influence of using a linear-
frequency spectrogram, log-frequency spectrogram, Mel spectro-
gram, and constant-Q transform (CQT). Our results show that a
8.33% increase in transcription accuracy and a 9.39% reduction
in error can be obtained by choosing the appropriate input
representation (log-frequency spectrogram with STFT window
length 4,096 and 2,048 frequency bins in the spectrogram)
without changing the neural network design (single layer fully
connected). Our experiments also show that Mel spectrogram is
a compact representation for which we can reduce the number
of frequency bins to only 512 while still keeping a relatively high
music transcription accuracy.

Index Terms—Automatic Music Transcription, Spectrogram,
Neural Network, Audio input representation

I. INTRODUCTION

Polyphonic music transcription is extremely difficult, yet
it is a fundamental step to other music information retrieval
tasks [1, 2, 3, 4]. Most automatic music transcription (AMT)
research focuses on developing sophisticated models for the
transcription problem. Various models such as support vec-
tor machines (SVM) [5, 6], restricted Boltzmann machines
(RBM) [4], long-short term memory neural networks [7],
and convolutional neural networks (CNN) [8, 9] have been
developed to tackle this task. For example, Wang et al. [10]
integrate non-negative matrix factorization (NMF) with a CNN
in order to improve transcription accuracy. Hawthorne et al.
[11] split the AMT into three sub-tasks: onset detection,
frame activation, and velocity estimation, which allows them
to achieve state-of-the art transcription accuracy on piano
music. Most literature focuses mainly on polyphonic piano
transcription and their models are being trained on piano
datasets such as MAPS [12]. The existing studies on music
transcription often use different input representations such

as log magnitude spectrogram [5, 6], constant-q transform
(CQT) [7, 10], and Mel spectrogram [11]. Only few studies,
however, offer a comparison of the effect of different input
representations [8, 13, 14, 15]. One of the most comprehensive
studies [14] compares the effect of using spectrograms with
linearly and logarithmically spaced frequency bins versus
CQT. Their results show that a single layer, fully connected
network that uses logarithmic frequency bins with a loga-
rithmic magnitude spectrogram performs best on polyphonic
piano transcription with the MAPS dataset. There are, how-
ever, several missing aspects in their study. First, a comparison
with one of the popular representations, Mel spectrogram, is
missing. Second, the effect of the number of bins for different
representations was not examined. Finally, they did not test
whether the same approach may be applied for polyphonic
multi-instrument transcription.

Our study provides a more comprehensive analysis of
the effect that input representation has on polyphonic audio
transcription accuracy for multiple instruments when using a
single layer fully connected network. We make use of our own
GPU based spectrogram toolkit in Python (nnAudio) [16, 17]
to allow for on-the-fly spectrogram calculations. The main
contributions of this research are to: 1) provide a comprehen-
sive analysis of the effect of four popular frequency domain
input representations on polyphonic music transcription; 2)
provide an analysis of model performance when varying the
number of bins for each of the input representations; and 3)
study the model’s performance when varying the input frame
length. We first discuss our base model for transcription and
input representations before moving on to the experimental
setup and results. Finally, a conclusion wraps up the paper
together with suggestions for future work. The source code is
available at our github page1.

1https://github.com/KinWaiCheuk/IJCNN2020 music transcription.
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II. SYSTEM DESCRIPTION

A. Input Representations

Our experiments compare the influence of four different
input representations: linear-frequency spectrogram (LinSpec),
log-frequency spectrogram (LogSpec), CQT, and Mel spec-
trogram (MelSpec). In order to study the effect of different
spectrogram parameters, we developed a GPU based spectro-
gram conversion toolkit using Pytorch, called nnAudio2. This
allows us to generate different types of spectrograms on-the-
fly while training the network. Fig. 3 shows the four input
representations studied in this paper. The sampling rate of
the audio clips follows the work of Thickstun et al. [8, 18],
which are kept at 44, 100Hz, and the hop size for waveforms to
spectrograms transformation is kept constant at 512 throughout
our experiments.

For the sake of convenience, we will briefly mention the
mathematics behind each spectrogram representation and the
differences among them to save readers troubles from looking
them up individually.

1) LinSpec: This input type is the typical spectrogram
obtained with short-time Fourier transform (STFT) as shown
in equation 1, where the k inside X[k, τ ] is the frequency bins
of the spectrogram and the τ inside X[k, τ ] is the time-step
of the spectrogram. N is the window size, n is the sample
index for the input waveform, and h is the hop size. Each
frequency bin k corresponds to a physical frequency f in the
unit of Hertz through the relationship of f = k s

N , where s
is the sampling rate. In this case, the spacing between each
k is linear, and hence this spectrogram has a linear frequency
along the y-axis.

X[k, τ ] =

N−1∑
n=0

x[n+ hτ ] · e−2πik n
N . (1)

2) LogSpec: This spectrogram shares the same equation 1
as LinSpec, except the spacing between frequency bin k is
logarithmic instead of linear. Since the musical notes have a
logarithmic relationship with each other, one would expect that
LogSpec works well for music.

3) MelSpec: Mel spectrograms use a Mel scale which is
an attempt to imitate humans’ perceptual hearing on musical
pitches [19, 20, 21]. There are various versions of Mel scale,
in this paper, we use the version implemented in the HTK
Speech Recognition toolkit [22]. Then, we can use Mel filter
banks to map frequency bins k from STFT to Mel bins in Mel
spectrograms as shown in Fig. 2.

4) CQT: Constant-Q transformation (CQT) [23, 24, 25] is
a modification of the STFT with the formula as shown in
equation 2.

Xcq[kcq, τ ] =

Nkcq−1∑
n=0

x[n+ hτ ] · e
−2πiQ n

Nkcq (2)

2https://github.com/KinWaiCheuk/nnAudio

Different from STFT, CQT has a constant factor Q instead
of the variable k in e

−2πiQ n
Nkcq . Also, the window length

Nkcq for CQT is now a variable instead of a constant. The
constant factor Q is defined as Q = (2

1
b − 1)−1 and the

variable window length is defined as Nkcq = ceil
(

s
fkcq

)
Q.

Here b is the number of bins per octave, which is a parameter
for CQT.

B. Model Architecture

We use the architecture proposed by Thickstun et al. [8]
as our base model (see Fig. 1), with which we test the
influence of different spectrogram representations. This ar-
chitecture consists of only one linearly fully connected layer
with 128 neurons, whereby the spectrograms are flattened
before feeding them as input to the model. The neural network
architecture is kept minimal in order to focus the effect of input
representations on music transcription accuracy. The network
is trained for 35 epochs, in batches of size 1,000. Each batch
contains 100 spectrograms sampled from the dataset. Adam
optimizer with learning rate 10−6 is used due to a faster
convergence. The output ŷ of the neural network is used to
calculate the binary cross entropy with the pitch label obtained
at the time step that corresponds to the the center of the
spectrogram (red dotted line in Fig. 1).

III. EXPERIMENTAL SETUP

A. Dataset and evaluation

We perform a number of experiments using the Music-
Net [18] dataset. The dataset contains 330 classical music
recordings with multi-pitch annotations aligned using dynamic
time warping, and verified by trained musicians. Unlike pre-
vious datasets, which focus mostly on piano music [12],
MusicNet contains various musical instruments such as violin,
clarinet, flute, and even harpsichord. This makes the transcrip-
tion task much harder and realistic. The training set consists of
320 recordings, and the remaining ten recordings are used for
evaluation. We use the same split for training and evaluation
as Thickstun et al. [8], and use precision, accuracy, and error
as defined by mir eval.multipitch.metrics [26], to ensure a
fair comparison.

B. Experiment 1: Resolution of Spectrograms

In this experiment, we study the effect of varying the
number of spectrogram bins from roughly 256 to 2,048 for
each of the input representations. The bin spacings have been
carefully chosen such that the first bin starts at 50Hz and the
last bin ends at 6, 000Hz for all of the input representations.
For LinSpec and LogSpec, the short-time Fourier transform
(STFT) window size is fixed to 4,096, and the number of
frequency bins is varied from 256 to 2,048. A smaller number
of frequency bins means a larger frequency spacing between
each bin. In other words, the spectrogram resolution is changed
by the frequency bins.

For CQT, the first bin corresponds to the musical note A1
and the last bin corresponds to F]8 (encompassing 84 notes



Fig. 1. The MusicNet model from Thickstun et al. [8] is used as our base architecture.

Fig. 2. Mel filter banks can be used to convert a STFT output to Mel
spectrogram. Each Mel filter bank covers multiple STFT bins k and reduces
them into one Mel bin.

Fig. 3. Excerpt from Bach’s WTK I, No. 5, Prelude (ID:2303) visualized
by four input representations: linear-frequency spectrogram, log-frequency
spectrogram, Mel spectrogram, and CQT (clockwise from top left).

from 55Hz to 5919Hz). During CQT calculation, the number
of bins of the spectrogram can be tuned by adjusting the
number of bins per octave. If the number of bins per octave is
12, then the total number of bins is 84; if 24 bins per octave
are used, then the total number of bins is 168; and so on. Fig. 4

Fig. 4. LogSpec of song ID:2303 with varying bin size of (2,048, 1,024, 32,
and 16).

shows the influence of changing the bin size on LogSpec. It
can be seen that the rightmost one has a lower resolution.
Throughout the experiment, a fixed hop size of 512 is used.
For the MelSpec, a fixed STFT window size of 4,096 is used,
and the number of Mel filter banks is varied from 128 to 2,048.

C. Experiment 2: STFT window size

In the second experiment, we analyse the effect of the
STFT window size, together with varying bin size on the
transcription accuracy for the MelSpec, LogSpec, and LinSpec
based models. The STFT window size directly affects the fre-
quency resolution of the spectrogram. A longer STFT windows
size ensures a high frequency resolution by sacrificing the
time resolution [27]. Because the STFT window size is kept
constant in Experiment 1 (4,096), the time resolution in the
previous experiment is fixed. In this experiment, however, the
time resolution varies so that we can examine the effect of
a high time resolution on transcription accuracy. For LinSpec
and LogSpec, the number of bins is set to half of the window



size of the short-time Fourier transform (STFT), so as to
remove redundant information due to symmetry. For instance,
when a STFT window size of 4,096 is used, 2,048 frequency
bins are used to create the spectrograms, and so on. For
MelSpec, a different number of Mel filter banks are explored
for each varying value of STFT window size. Because the
STFT window size for CQT cannot be adjusted independently
(see Section IV-B), it is not studied in this experiment.

Fig. 5. LogSpec of song ID:2303 with varying STFT window sizes of (4,096,
2,048, 1,024, and 512)

D. Experiment 3: Length of input frame size

In the previous two experiments, the input audio length is
fixed at 16,384 samples. In this experiment, however, we study
the effect of varying the input audio length from 0.14 to 0.45
seconds. All the other spectrogram parameters such as STFT
window size (4,096), Mel filter banks (512), and number of
bins per octave (72) are held constant.

IV. RESULTS AND DISCUSSION

Fig. 6 shows the results for the three experiments, which
are discussed in the following subsections.

A. Experiment 1

Intuitively, one might think that a higher spectrogram reso-
lution would result in higher transcription accuracy. Fig. 6(a),
however, shows us that this is not necessarily true for all input
representations, such as CQT. In the case of CQT, when the
number of bins per octave is 12, the transcription accuracy is
as low as 0.16. As the number of bins per octave is doubled to
24, the transcription accuracy increases dramatically to 0.36,
and keeps improving slightly until the number of bins reaches
84. After that, the transcription accuracy for CQT deteriorates.
When comparing CQT with other input representations, such
as LogSpec or MelSpec, CQT-based models do not perform
as well. This is consistent with the existing literature [14, 28].
LinSpec and LogSpec have a comparable transcription accu-
racy, except when the number of bins is less than 768. In
that case, LogSpec performs slightly better than the LinSpec.

Since the bin spacings for LogSpec are similar to relationships
between musical notes, LogSpec can still maintain useful
information when the number of bins is low. When there are
enough bins, the difference in transcription accuracy between
LogSpec and LinSpec is less obvious because the large number
of bins evens out the advantage that LogSpec has for low
frequency signals. As for models based on MelSpec, these
perform best when the number of Mel filter banks is 1,024.
If more Mel filter banks are used, some of these will be
empty. This is why MelSpec with too many Mel bins performs
slightly worse than both log-frequency and linear-frequency
spectrograms. This result also reveals that Mel filter banks
can be considered an effective compression algorithm for
spectrograms. While reducing the number of frequency bins
they still maintain a relatively high transcription accuracy.
Overall, the best performing input representation is LogSpec
with an STFT window size of 4,096 and 2,048 bins.

B. Experiment 2

Fig. 6(b) shows the influence of varying the STFT window
size (or so-called n fft in some of the audio processing
libraries) for the MelSpec representation. The transcription
accuracy for a MelSpec with a specific window size is always
lower than its log-frequency spectrogram counterpart with the
same window size. The results further suggest that the Mel
filter banks act as a spectrogram compression to reduce the
number of frequency bins from the STFT result with minimum
loss in information. The improvement in transcription accuracy
becomes minimal when the STFT window size reaches 8,192;
therefore, our experiment was stopped at 4,096. (Note that
a window size of 4,096 results in only 2,048 non-redundant
frequency bins.) For CQT, the only tunable parameter is the
number of bins per octave when the minimum and maximum
frequency are fixed, the number of bins (b) per octave affects
the quality factor Q = (2

1
b − 1)−1, and hence the STFT

window size Nkcq = ceil
(

s
fkcq

)
Q, where s is the sampling

rate and fkcq the frequency for a specific bin. Given that the
number of bins per octave is the only tunable parameter for
CQT, the CQT result here is same as Experiment 1; The overall
best performance is still LogSpec with STFT window size
4,096 and 2,048 bins, closely matched by LinSpec.

C. Experiment 3

The input audio length has only a minor effect on the music
transcription accuracy. The length of the input audio affects
the width (time-steps) of the spectrogram, and the precision of
pitch labels. Fig. 1 shows that a long input frame results in a
reduction of accuracy. This could be because the input frame
might contain multiple note transitions. Since the pitch label
corresponds to the note appearing in the middle of the frame,
longer frames might confuse the neural network. Fig. 6(c)
shows that decreasing the audio clip length from 16,384
slightly improves transcription accuracy. The transcription
accuracy, however, starts to decay once the audio clip is too
short. The optimal performance is reached with an input length
between 10,000 and 16,384 for LogSpec.



Fig. 6. (a), (b), (c) shows the experimental results for Experiment 1, 2, and 3 respectively, in terms of transcription accuracy.

D. Comparison with state-of-the-art

Given the above results, the best input representations are
compared with state-of-the-art models trained on the MusicNet
database in Table I. The comparison is made in terms of accu-
racy and error as defined in the mir eval library. The overall
best result is found by using LogSpec and LinSpec based
models with n fft 4,096, and 2,048 frequency bins. When
comparing the results obtained from our simple but optimally-
tuned networks to the state-of-the-art published results on the
MusicNet dataset, only more complex CNN architectures [9]
outperform the proposed system in terms of accuracy (other
metrics are not given). In future work, we will explore the
effects of input representations on more complex models and
convolutional architectures.

Model Precision Accuracy Error
MusicNet [8] 65.9 44.4 61.8
Melodyne [29] 58.8 41.0 76.0
Deep Complex CNN [30] 72.9 N.A. N.A.
LinSpec nfft: 4,096, bins: 512 63.6 44.1 60.7
LogSpec nfft: 4,096, bins: 512 64.6 45.2 59.3
MelSpec nfft: 4,096, Mel bins: 512 65.6 46.8 58.5
LogSpec nfft: 4,096, bins: 2,048LogSpec nfft: 4,096, bins: 2,048LogSpec nfft: 4,096, bins: 2,048 66.666.666.6 48.148.148.1 56.056.056.0
CQT bins per ocatave: 72 61.0 42.9 66.0
MelSpec nfft: 4,096, Mel bins: 1,024 65.8 47.2 58.4

TABLE I
TRANSCRIPTION RESULTS ON THE TEST SET USING THE MIR_EVAL

PACKAGE [26]. THE PRECISION, ACCURACY, AND ERROR REPORTED HERE
ARE THE FRAME PRECISION, FRAME ACCURACY, AND FRAME CHROMA

TOTAL ERROR AS IMPLEMENTED IN THE MIR_EVAL PACKAGE. BEST
MODEL PERFORMANCE IS IN BOLD.

V. CONCLUSIONS

This study analyzes the importance of input representa-
tions on the accuracy of polyphonic, multi-instrument music
transcription. We use our GPU based spectrogram toolkit,
nnAudio [16], to calculate on-the-fly spectrogram represen-
tations around 100 times faster than traditional libraries. In
our experiments, we found that, by fixing the neural network
architecture and only varying the input representation, we can
improve the transcription accuracy by 8.33% (from 44.4 to
48.1), and reduce the error by 9.39% (from 61.8 to 56.0).
When the resolution of the spectrogram is high enough (e.g.,
a greater number of frequency bins), we found that a log-
frequency spectrogram representation ensures a better tran-

scription result, at the expense of computational complexity.
If the computational complexity is a concern, MelSpec can
compress the spectrogram into a more compact representation
while maintaining a relatively high transcription accuracy. A
higher level spectral representation, CQT, shows relatively
poor transcription accuracy. One reason might be the STFT
window size being coupled with the number of frequency
bins. Modifying the CQT algorithm such that the number
of frequency bins can be varied without changing the STFT
window size is one of our future research directions. Neural
networks may be able to learn better from a lower level input
representation, such as a log-frequency spectrogram or linear-
frequency spectrogram. Future research will also explore the
influence of additional input representations, such as a learned
representation obtained by training the transcription end-to-
end with raw audio as the input.
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