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Abstract—Considering that the global correlation between
images is very important for image co-segmentation, we propose
a multi-scale Dual-Cross Correlation Network (DCNet) that can
efficiently capture global matching information across images
to obtain segmentation results. Specifically, the low-dimensional
index feature is used to calculate the correlation and the high-
dimensional content features are combined with the correlation
matrix for final segmentation. Meanwhile, we specially design
a Dual-Cross Correlation Module (DCCM) which harvests the
spatial and channel correlation with the adjacent pixels of
another image on the cross path to enhance the representation of
correlation efficiently. By utilizing a further loop operation, each
feature can capture the global dependencies from all pixels of
another feature. Furthermore, we fuse multi-scale correlation and
features into the decoder, which is called Multi-scale Correlation
Fusing Decoder (MCFD), to refine the final segmentation results.
Moreover, we introduce a new dice loss function to train the
whole network by averaging the dice loss value of the foreground
and background. Finally, we validate our method on three co-
segmentation benchmarks and the results show that our method
achieves the state-of-the-art performance.

Index Terms—Multi-Scale, Dual-Cross Correlation, Image Co-
segmentation

I. INTRODUCTION

Image co-segmentation is a problem of segmenting common
and salient objects from a set of related images. Since this
concept was firstly introduced in 2006 [1], it has attracted
a lot of attention. The reasons behind its importance are two
folds. On the technique aspect, the correlation between images
brings valuable cues for defining the interesting objects and
alleviates the ill-posed nature of segmentation. On the applica-
tion aspect, image co-segmentation algorithms can be applied
to various applications, such as image retrieval, Internet image
processing, video tracking [2], video segmentation [3], [4], etc.

The correlation between images plus the extracted features
in images provides needful cues for deciding on image co-
segmentation. Most of the previous co-segmentation algo-
rithms employed handcrafted features and correlations and
embedded them into traditional computation frameworks [5]–
[12]. But the algorithms based on handcrafted features and cor-
relations suffer from their weak robustness and inexactitude.
Introducing deep learning is a possible way to improve the
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performance of image co-segmentation through mining more
sophisticated features and correlations from data. [13], [14]
used deep neural networks (DNN) semantic information and
constructed graphs across all correlated images as correlation
information. Yuan et al. [5] considered the common class
across the images as a kind of correlation. Li et al. [15], [16]
represented the correlation by the patch similarity between
deep features. Chen et al. [17] designed three kinds of attention
pattern to get attended correlation map and forwarded it to the
decoder.

Since the common objects may locate anywhere in images,
we consider that image co-segmentation needs global match-
ing between images. According to the U-Net network [18], we
could find that multi-scale features are conducive to the seg-
mentation results. Based on our observations, the existing co-
segmentation methods exist the following problems: 1) Some
methods could not capture the global matching information
across images as the correlation computation may lead to
the overflow of computational resources or the correlation
obtained simply may lose important detailed information.
2) Few co-segmentation methods apply the multi-scale strat-
egy because the correlation at a large scale also results in
insufficient computing resources.

To address these problems, we propose a multi-scale
Dual-Cross Correlation Network (DCNet) for image co-
segmentation. Generally speaking, it is inefficient to calculate
correlation directly by using the high-dimensional features ex-
tracted from Convolutional Neural Network(CNN). So we get
two new Index and Content features after the CNN backbone
network. One feature’s channel dimension has been reduced
by a factor of eight to save time and space consumption in
the following operations, while the other feature reserved the
channel information is used to get final segmentation results.
Then, we proposed a Dual-Cross Correlation Module (DCCM)
which is implemented by cross spatial and cross channel
correlation with the adjacent pixels of another image on the
cross path to reduce the complexity of attention process from
O(H ×W × (H ×W )) to O(H ×W × (H +W )) comparing
the attention mechanism [19]. And we repeat this module K =
2 times to reduce the localization of correlation from DCCM.
Then we design a new Multi-scale Correlation Fusion Decoder
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Fig. 1: Illustration of the proposed framework of Dual-Cross Correlation Network (DCNet) for image co-segmentation. Our
framework includes ResNet-50 backbone, Dual-Cross Correlation Module (DCCM) and Multi-scale Correlation Fusion Decoder
(MCFD) working in a Siamese manner for co-segmentation.

(MCFD) which fuses multi-scale semantic features combining
correlation information produced by DCCM to refine the
segmentation results via a series of pyramid deconvolution
operations. Dice loss is introduced which selects the average
of the foreground and background values as the total dice
loss to train our framework. We evaluate the proposed co-
segmentation framework on commonly used datasets iCoseg
[20], Internet [21] and MSRC [22].

Our main contributions include:
• A novel multi-scale Dual-Cross Correlation Network

(DCNet) is proposed to conduct high-performance image
co-segmentation. To the best of our knowledge, this is
the first work to propose and discuss dual correlation and
multi-scale fusion in image co-segmentation.

• In DCNet, a Dual-Cross Correlation Module (DCCM)
and a Multi-scale Correlation Fusion Decoder (MCFD)
is proposed to enhance the representation of correlation
information and fuse correlation features from different
levels. A new Dice loss is also introduced to better train
DCNet.

• We did extensive experiments on the popular benchmarks
MSRC [22], Icoseg [20] and Internet [21], which clearly
demonstrate the state-of-the-art (SOTA) performance of
DCNet and effectiveness of proposed modules.

II. RELATED WORK

A. Correlation in Traditional Co-segmentation

Traditional methods represent the correlation across images
for co-segmentation based on such object elements (e.g. pix-
els, super-pixels), object regions/contours, or common object
models levels. For object elements, the similarity including
statistic modeling or feature space distances is usually consid-
ered to describe the intra-image and inter-image correlation
among object elements [8]–[11], [13], [23]–[27] Furthermore,

the correspondence between object elements in images also
could be established by image matching techniques [21],
[28]–[30]. For object regions/contours, the correlation can be
measured by the fitting degree of object elements to object
models [31] or the similarity between object models [32]–[34].
As for common object models, an optimal common object
model according to all the considered images are often used to
represent the common objects across the entire related images
to imply the correlation between them. [6], [35]–[39].

B. Correlation in Deep Co-segmentation
For image co-segmentation based deep learning, the correla-

tion computation methods are summarized as follows. Wang et
al. [14] expressed the correlation across images by construct-
ing an N-partite graph according to the initial segmentation
results from FCN. Yuan et al. [5] used a deep network to
describe the dense conditional random fields (DCRF) for com-
puting the probability of each pixel being the foreground and
obtained common objects to reflect the correlation between
images. Li et al. [15] applied the Siamese network to perform
image co-segmentation, where a correlation layer is employed
to compute the inner product between a pixel’s feature in a
feature map and those of the pixels in a patch region in another
feature map. [17] designed three kinds of attention pattern
as the correlation between related images to get attended
feature maps and forward them to the decoder. [16] utilized
the similarity between deep features of different images and
proposed an object proposal algorithm. Hsu et al. [40] used the
normalized inner product to calculate the similarity between
deep features and multiplied it with two saliencies from feature
maps respectively to get the saliency guided correlation.

C. Attention Model in Computer Vision
It is well known that the attention mechanism plays a

very important role in human perception [41], [42]. And the



attention mechanism has been widely used in visual task [19],
[43]–[45]. Chen et al. [46] used a variety of attention maps
fusing with feature maps to predict from different branches.
Wang et al. [45] proposed a non-local operation to obtain the
correlation between all positions in the feature map which
could help to aggregate the dense contextual information.
DANet [19] utilized the two types of self-attention modules
to obtain contextual information which contributed to more
precise segmentation results. [47] et al. proposed a memory
network, in which non-local self-attention mechanism [48],
[49] is extended to non-local matching to get the correlation
between video frames. Lu et al. [50] proposed a co-attention
module to harvest the relationship between video frames to
facilitate video segmentation. Huang [51] et al. pointed out the
problem of high memory occupation and time consumption
in non-local attention modules [45] for the first time. And
the author proposed a Criss-Cross Network (CCNet) which
could capture the dependencies from all pixels and harvest
the contextual information. While the Criss-Cross attention
module in CCNet only considered the spatial dimension of
the features and we think capturing the channel dependencies
can further enhance the correlation between features.

III. METHOD

A. The Overall Framework

The whole deep network consists of feature extraction back-
bone, Dual-Cross Correlation Module (DCCM) and Multi-
scale Correlation Fusing Decoder (MCFD) as shown in Fig-
ure 1. In the beginning, the inputs are two images within the
same class and are fed into a two-branch Siamese backbone
(ResNet-50). After that, the dense backbone features are sent
to convolution layers to get content features and index features.
For each branch, the features of this branch and the other
branch are denoted as { iQ, dQ } (Query) and { iA, dA

} (Answer) respectively. The index here can be considered
as the address for retrieving specific content and indicates
the importance of different locations in content features. And
the content features here are high-level features with dense
semantic information. Sequentially, the features { iQ, dQ, iA,
dA } are sent to repeated DCCMs, in which the locations in
the current content feature dQ are re-weighted via a efficient
dual correlation mechanism. Here in our experiments, two
loops of DCCM is enough to get high performance. Finally,
the re-fined features combined with the low-level features
in the backbone are sent to the MCFD. In this way, low-
level appearance features and high-level semantic features with
correlation information are fused. The final result is obtained
via a series of pyramid deconvolution operations.

B. Dual-Cross Correlation Module

Since co-segmentation aims to obtain common objects dis-
tributed in various regions from two images, we need to effi-
ciently and globally calculate the correlation information be-
tween the two images and utilize it to guide co-segmentation.
Meanwhile, we must combine the content and index features
of the question image into the query image features in a

Fig. 2: The proposed Dual-Cross Correlation Module
(DCCM). The spatial-cross correlation and channel-cross cor-
relation work harmony and complement each other.

Fig. 3: Visualization of multi-scale semantic features on In-
ternet datasets. From the first column to the last column, we
show the input image, res5 features, res4 features and res3
features from ResNet-50 backbone respectively.

reasonable way. Getting to these two points, we propose a
Dual-Cross Correlation Module (DCCM), which can use the
original image information and related image information to
achieve promising co-segmentation performance. As shown
in Figure 2, take one branch as an example, features of this
branch { iQ, dQ } and the other branch { iA, dA } are inputted
to DCCM of this branch. Our dual correlation includes spatial-
cross correlation and channel-cross correlation, both of which
bring enhancement to our method.

In both correlations, we first calculate the correlation of
all pixels between the query index feature map iQ and the
answer index feature map iA. Here we use an efficient cross-
correlation mechanism based on non-local attention. As shown
in Figure 1, iQ and iA ∈ RH×W×C/8. For each position u on
spatial dimension in iAu ∈ RC/8, we can get the corresponding
index feature iAu . Then for spatial-cross correlation, feature
SS
u ∈ R(H+W−1)×C/8 can be obtained by gathering the pixels

in the same column or same column with u. We can get the
spatial-cross correlation on u:

ZS
u = iQu (SS

u )T , (1)

where gathering all pixels, we can get the spatial-cross corre-
lation ZS ∈ RH×W×(H+W−1). Then we do the aggregation



operation on dA ∈ RH×W×C/2 and correlation after softmax
function AS = softmax(ZS). For each position u on dA,
we can get a cross content feature Ωu ∈ R(H+W−1)×C/2.
The long-range contextual information is collected by the
aggregation operation:

HS
u =

∑
i∈|Ωu|

Ai,uΩi,u, (2)

where HS
u is the corresponding spatial correlation on position

u. Similarly, for the channel correlation, feature SC
q and SC

a ∈
R(H+W−1)×C/2 can be obtained by gathering all the content
feature of positions in the same channel. Then :

ZC = (SC
q )TSC

a , (3)

where ZC ∈ RC/2×C/2 is the cross channel correlation. Then
we do the aggregation operation on dA ∈ RH×W×C/2 and
correlation after softmax function AC = softmax(ZC).

HC = dAAC (4)

There’re related foreground objects in both input images.
Considering that unimportant background or non-common
objects between the images may negatively affect the segmen-
tation results, we need to weight the features from different
images instead of equally handling co-attention information,
so we introduce a gate mechanism after obtaining HC and
HS :

gs(H
S) = σ(Wf ×HS), (5)

gc(H
C) = σ(GAP (HC)), (6)

in which we denote σ as sigmoid activation function, Wf

as convolutional parameters and GAP as the global average
pooling operation. gs and gc represents the importance of
different regions in HC and HS , so it can filter out some
unnecessary information in the spatial dimension and the chan-
nel dimension, such as the background information mentioned
previously or irrelevant object information. Then we can get
the final output:

y = [HS � gs(HS) +HC � gc(HC), dQ] ∈ RH×W×C , (7)

where � represents the element-wise multiplication on channel
dimension and [·] denotes the concatenation operation.

The above process only shows the process of obtaining
the correlation map by the correlation mechanism of input
1 vs. input 2. Similarly, the process of input 2 vs. input 1
uses input 2 as the query image, and the rest is the same. In
the above process of obtaining y, we can see that we use
combine the features of the two input images through the
features of the cross-correlation map ZS and ZC . Compared
to the full-image attention mechanism, the proposed method
reduces the computing resources to a certain extent and
requires less GPU memory. However, for each position in this
calculation process, only the features in the same column or
row are used. The non-locality of the non-local correlation
mechanism will be lost, which is contradictory to the main
goal of co-segmentation: to capture the common objects that

Fig. 4: Illustration of our Multi-scale Correlation Fusing
Decoder (MCFD).y3, y4, y5 are the outputs of the DCCM and
r1, r2 are the outputs of the backbone network.

appear at arbitrary positions. Thus, we need to loop the above
operations to get approximately equivalent global correlations.
We assume that the DCCM needs to be K times, here we take
K = 2 as shown in Figure 2 which can get dense and rich
information in two cycles.

From the above statements, it can be seen that we can extend
the cross self-attention mechanism [51] to co-segmentation
through co-correlation and extend it to the combination of
spatial and channel cross-correlation to better express the
correlation from multi-dimension. Combined with the index
feature, this mechanism can work efficiently and work com-
plementary to the content feature. This strategy can reduce the
complexity of the correlation calculation and make it easy for
us to further combine it with a multi-scale strategy.

C. Multi-scale Correlation Fusing Decoder

As described above, correlation representation is sufficiently
exploited in our DCCM, which can help us segment the
common objects from images. Following [18], feature fusion
on a single image is also the key to achieve good results in
segmentation. As the visual features are shown in Figure 3,
coarse high-level semantic features emphasize the abstract
information of visual content, and summarize the context
by large receptive field, while fine low-level visual features
represent more appearance details which can better get the
position of objects. Further improving the co-segmentation
performance, we fuse the correlation from multiple layers to
provide comprehensive representation as shown in Figure 4.
In detail, we combine the multi-scale correlation feature from
DCCM (yn) with the output from the upper deconvolution
layer through concatenation operation as the input of the
next deconvolution layer. Specifically, we feed y5 into the
decoder as it doesn’t have any upper-layer features that can be
combined. At the same time, considering the complexity of the
larger-scale feature correlation calculation, we do not further
calculate the correlation of the larger-scale feature (res2, res1),



but combined the two features(r1 and r2) into the decoder
directly. From y5 features to r1 features, the coarser feature
map is upsampled by a factor of 2 using a deconvolutional
layer. After the above decoder process, the final segmentation
results are obtained after two deconvolutional layers. In the
MCFD, except for the last deconvolution layer’s kernel size is
7, the remaining deconvolution kernels size is 3. The number
of channels in each deconvolution layer is set corresponding
to the number of feature channels obtained by each residual
block of ResNet-50.

D. Dice Loss

Image segmentation methods based on deep networks usu-
ally use the cross-entropy (CE) based learning objective. The
CE measures the accuracy of binary classification of pixels.
It is not directly related to the quality of segmentation. When
the numbers of foreground pixels and background ones are
unbalanced unless the CE is very close to zero, even seemingly
nice CE could correspond to a bad segmentation. For solving
the unbalanced problem, we need to seek the learning objective
that can directly and more accurately reflect the quality of
segmentation. Dice loss [52] is a good choice.

Let gbi , gfi be the ground truth labeling of background
and foreground for the i-th pixel in the image, respectively;
pbi , pfi be the predicted probability of being background and
foreground for the i-th pixel by our network, respectively; n
be the number of pixels in the image, then Dice loss measured
on background and foreground category is:

DLb = 1−
2
∑n

i=1 g
b
i · pbi + ε∑n

i=1 g
b
i +

∑n
i=1 p

b
i + ε

, (8)

DLf = 1−
2
∑n

i=1 g
f
i · p

f
i + ε∑n

i=1 g
f
i +

∑n
i=1 p

f
i + ε

(9)

respectively, where ε is a small value for preventing zero
denominators. The total dice loss is the mean of the two losses
on the background and foreground.

IV. EXPERIMENTS

A. Experimental Setup

Datasets In image co-segmentation community, iCoseg
[20], Internet [21], and MSRC [22] are widely used as eval-
uation dataset. However, the number of annotated examples
in these datasets is limited and is not enough to train deep
networks. The bigger PSACAL VOC 2010 and 2012 dataset
are recently used as the training sets in image co-segmentation
methods involving deep networks [5], [14], [15], [53]. We
take MSRC and VOC 2012 [54] as training sets. MSRC is
composed of 591 images of 21 object groups. The ground-truth
is roughly labeled, which does not align exactly with the object
boundaries. VOC 2012 include 11540 images with ground-
truth detection boxes and 2913 images with segmentation
masks. Only 2913 images with segmentation masks can be
considered in our problem. Note that not all of the examples
in these two datasets can be used. In MSRC, some images
include only stuff and some are used as the test subset images.

TABLE I: The performance comparisons on MSRC-subset.

Methods [57] [12] [10] [58] [15] [17] Ours
P 90.2 92.2 92.0 84.0 92.4 95.3 96.0
J 0.71 0.75 0.77 0.67 0.80 0.78 0.85

In VOC 2012, the interested objects in some images have
great changes in appearance and are cluttered in many other
objects, so that the meaningful correlation between them is
too hard to be found. The remaining 1743 images in VOC
2012 and 430 images in MSRC are used to construct our
training set. From the training images, we sampled 13200
pairs of images containing common objects to train our co-
segmentation network.

Evaluation Metrics Two commonly used metrics for seg-
mentation evaluation are used: Precision and Jaccard index.
Precision (denoted by P) is the percentage of correctly clas-
sified pixels in both the background and foreground. Jaccard
index (denoted by J) is the overlapping rate of foreground
between segmentation result and ground truth mask.

Implementation Details We make the input images to
448 × 448 sizes considering the limited computing resource
and producing 28× 28 feature maps by ResNet-50 backbone.
The Deep features Extraction ResNet-50 are initialized with
weights trained on the Imagenet dataset [55]. We use Adam
[56] optimizer with learning rate 1e-5 for optimization and
the weight decay of 5e-5. The training process takes about
30 hours using a single NVIDIA TITAN XP GPU. When
evaluating our method on the test dataset, we randomly select
a related image to compose an image pair with the test image.

B. Comparison to the State-of-the-Arts

We compare our DCNet on the MSRC dataset, the Internet
dataset, and the iCoseg dataset. The performance from previ-
ous counterparts based on deep networks and the previous
best one from traditional methods are both included for
comparison.

Table I and Table II show our competitive results on the
MSRC subsets and the Internet dataset which we call it the
Seen Class dataset. We can see that DCNet gets the state of
the art performance when segmenting Seen class Objects. On
the MSRC dataset, we use the subsets which are not included
in our training sets has 7 classes and 10 images in each class.
From Table I, we find that DCNet improves the performance
in both precision and Jaccard index by increase rates 6.3% in J
and the rate 0.7% in P comparing the second-best method [15],
[17]. Following the compared methods, we evaluate DCNet
on the Internet widely-used subset, in which each class has
100 images. From the results in Table II, we see that DCNet
outperforms the second-best results [15], [17] by the large
increase rates 9.5% in J and the rate 2.5% in P, respectively.
Figure 5 shows some examples of co-segmentation results by
DCNet for each category on the Internet dataset. We can see



TABLE II: The performance comparisons on Internet.

Method Car Horse Airplane Average
P J P J P J P J

[27] 88.0 0.71 88.3 0.60 90.5 0.61 88.9 0.64
[5] 90.4 0.72 90.2 0.65 92.6 0.66 91.1 0.68
[53] 88.7 0.68 89.3 0.58 92.3 0.60 90.1 0.62
[15] 94.0 0.83 91.4 0.65 94.6 0.64 93.3 0.71
[17] - 0.80 - 0.71 - 0.71 - 0.74
[16] 93.0 0.82 89.7 0.61 94.2 0.67 92.3 0.70
Ours 96.9 0.92 93.3 0.72 96.5 0.80 95.6 0.81

that DCNet can accurately segment the common objects under
various appearances, poses, and backgrounds clutter.

Fig. 5: Examples of co-segmentation results on internet
dataset. From the first row to the last row, the classes are
Airplane, Car and Horse respectively.

Following the previous work [15], [17], we use the iCoseg
subset to evaluate DCNet. This dataset contains 8 classes with
different image numbers. As the class in iCoseg dataset is
different from the training dataset, so many methods use the
dataset to test the generalizability of their models. So we con-
sider the iCoseg subset as Unseen Objects. According to the
Jaccard Index results from Table III, DCNet outperforms on all
class results and the average result which means it could also
adapt to the various unseen class data. Especially, our result on
the ”Cheetah” class improve 16.7% comparing the second-best
result and improve 5.8% on the average value. Furthermore,
only 13200 training samples are used in this work comparing
[17] 160k training samples. This shows DCNet can achieve
better results with fewer data and less training time. Figure 6
shows some examples of co-segmentation results on iCoseg
dataset by DCNet. We can see that the method accurately
segment the interested objects with an accurate edge, which
can adapt to the changes in the size, the pose, and the number
of interested objects.

DCNet can get better results in all three benchmarks, the
main reasons are as follows: 1) The efficient DCCM proposed
in our paper can well represent the correlation between the
related images and help us get the fine segmentation result.
2) The combination of multi-scale correlation into the decoder
part in DCNet plays an important role in fining the edge of the
segmentation result. 3) Dice loss can obtain the segmentation
results by optimizing directly on the segmentation target,
which is better than cross-entropy.

C. Ablation Studies

To better verify DCNet, we conduct extensive ablation
experiments on the Internet dataset and iCoseg dataset with
different modules for our method.

TABLE III: The comparisons of Jaccard index on iCoseg-
subset (Unseen Class).

Class [10] [27] [15] [17] Ours
Bear2 0.70 0.68 0.88 0.88 0.91
Brownbear 0.92 0.73 0.92 0.92 0.93
Cheetah 0.67 0.78 0.69 0.71 0.91
Elephant 0.67 0.80 0.85 0.84 0.90
Helicopter 0.82 0.80 0.79 0.77 0.82
Hotballoon 0.88 0.80 0.92 0.94 0.94
Panda1 0.70 0.72 0.83 0.92 0.94
Panda2 0.55 0.61 0.87 0.90 0.93
Average 0.78 0.74 0.84 0.86 0.91

Fig. 6: Examples of co-segmentation results on iCoseg dataset.
From the first row to the last row, the classes are Cheetah,
Kitepanda, Hotballoon, and Goose respectively.

Baseline In our baseline, the overall network mainly in-
cludes three parts: feature extraction network (ResNet-50),
correlation read module (CRM) and decoder as shown in
Figure 1. We first selected the non-local attention following
[45] which is to implement the global matching between
images in the correlation read module. We also use the index
and content features to input into the CRM and get the retrieval
weight by calculating the non-local correlation of the two
index features. The weighted content features of the answer
image retrieved by the correlation matrix are concated with
content features of the query image. We combine the single-
scale (the last scale of ResNet-50 feature map) correlation
feature output by CRM with the feature of ResNet-50 each
residual block to obtain the segmentation result.

The effect of Multi-scale Fusion Decoder Based on the
baseline, we fuse the multi-scale correlation feature to the
decoder part, and the way of feature fusion is shown in
Figure 4. We selected the features of the three scales of
ResNet-50 and used CRM to obtain relevant features for
segmentation. In Table IV, MCFD(+) shows that compared
with the segmentation results obtained at the baseline of
a single scale, the multi-scale fusion decoder improves the
performance by the increase rates 3% in J and the rate 0.5%
in P. The result can prove that combining high-level abstract
feature correlation with low-level visual feature correlation can
help us refine our segmentation results as high-level abstract
semantic features contain more semantic information, while
low-level visual features contain more detailed appearance
information.

The effect of Dual-Cross Correlation Module We re-
placed the CRM module in the multi-scale baseline (described



TABLE IV: Ablation study
of our method on the Internet
dataset.

Method P J
Baseline 94.1 0.77
MCFD(+) 94.6 0.79
SCCM(+) 94.9 0.80
DCCM(+) 95.6 0.81

TABLE V: Ablation study
of our DCCM on the
iCoseg-subset.

Method P J
SCCM(+) 97.4 0.89
DCCM(+) 97.6 0.91

Fig. 7: Visualization results of DCCM modules on the Internet
datasets. For each row, we show input image, four spatial-
cross correlation maps corresponding to the input image and
we input the top and bottom two rows of the same class image
into our network at the same time.

as MCFD(+) in the table) with our proposed DCCM module
(also called DCNet) and conducted ablation experiments. It
can be seen from SCCM(+) result in Table IV that the spatial
cross-criss module (SCCM) [51] which we modify it for
DCNet to fit our CRM feature fusion strategy can improve
the performance of Internet dataset by the increase rates 1.3%
in J and the rate 0.3% in P comparing with MCFD(+). After
combining the spatial-cross correlation with the channel-cross
correlation as our Dual-Cross Correlation Module (DCCM)
called DCCM(+) in Table IV, we find that our performance is
improved by the increased rates 1.3% in J and the rate 0.7% in
P comparing to SCCM(+) which only use spatial correlation
on the Internet dataset. From the result of the iCoseg-subset
in Table V, our DCCM outperform the SCCM(+) [51] by the
increase rate 2.2% in J and 0.2% in P. We can conclude that the
channel-cross correlation added into DCCM can complement
spatial-cross correlation by enhancing the representation of
image correlation information and our DCCM really work in
image co-segmentation task.

Visualization of Correlation Map To better understand
our DCCM and verify its role, we visualize the spatial-cross
correlation features of the DCCM output in Figure 7 as the
channel-cross correlation features are not easily visualized in
the spatial dimension. We can see from the visual map from
fusion features, the correlation feature has a high response
value at the location of the object. For example, the horses of
the input image pair are both highlighted by the correlation

visual map more than one horse appears in one image.

V. CONCLUSION

This paper proposes a novel multi-scale Dual-Cross Correla-
tion Network (DCNet) for performing image co-segmentation,
which is constructed by introducing Dual-Cross Correlation
Module (DCCM) and Multi-scale Correlation Fusing Decoder
(MCFD) to help us obtain the final segmentation results better.
To obtain better learning results, Dice loss is introduced
to further improve the performance. The ablation experi-
ments demonstrate that the DCCM can effectively enhance
the expression of related information compared with spatial-
cross correlation, as well as the MCFD can further refine
the segmentation results based on the single-scale decoder.
Compared with the previous method including traditional and
deep learning methods, the proposed DCNet achieved the
state-of-the-art performance on three representative image co-
segmentation datasets. For further improving the performance
of our approach in future work, we plan to extend the
acquisition of the dual-cross correlation to a set of related
images, rather than limited to a pair of images.
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