
A Guided Learning Approach for Generative
Adversarial Networks

Sidhant Nagpal, Siddharth Verma, Shikhar Gupta and Swati Aggarwal∗
Department of Computer Engineering

Netaji Subhas Institute of Technology, Delhi, India
{sidhantn.co, siddharthv.co, shikharg.co}@nsit.net.in, swati1178@gmail.com

∗Corresponding author

Abstract—In this paper, we propose a novel technique for
training Generative Adversarial Networks (GANs) using autoen-
coders. GANs, in recent years, have emerged as one of the
most popular generative models. Despite their success, there
are several challenges in maintaining the trade-off between
diversity and quality of the generated distribution. Our idea
stems from the fact that deeper layers of an autoencoder contain
high-level feature representation of the input data distribution.
Reusing these layers provides GAN with information about the
representative characteristics of real data and hence can guide
its adversarial training. We call our model Guided GAN since
the autoencoder (guiding network) provides a direction to train
the GAN (generative network). Guided GAN also minimizes both
the forward and reverse Kullback-Leibler (KL) divergence in a
single model, exploiting the complementary statistical properties
of the two. We conduct extensive experiments and use various
metrics for assessing the quality, diversity of generated images
and convergence of the model. Our model is evaluated on
two standard datasets: CIFAR-10 and CelebA demonstrating
either superior or competitive performance compared to baseline
GANs, especially in the earlier training stages. Our guided
training procedure has been tested on different baseline GANs
without any changes to their hyper-parameter configuration or
architecture.

I. INTRODUCTION

Reusing feature representations from trained layers of deep
neural networks is a popular technique to utilize low-level or
high-level information of a data distribution. For instance, in
transfer learning [1], the low-level feature layers from a pre-
trained neural network are reused as frozen layers (parameters
are fixed) in another network, to act as feature extractors.
In Coupled GAN [2], weight-sharing is used in the initial
layers of generator and final layers of discriminator of two
GANs to capture high-level semantics and to effectively learn
a joint distribution. Our idea is based on the fact that encoder
and decoder learn hierarchical feature representations, making
deeper layers of the autoencoder capture high-level semantics
of the data distribution. We find that reusing this semantic
information about real data aids the training of GAN, thereby
improving the generated samples.

Autoencoders have been part of the history of neural net-
works for long and have been used for the task of repre-
sentation learning [3], [4]. Autoencoders learn the implicit
structure of the training data, i.e., the correlation among the
input variables. They capture the average diversity of the
distribution by minimizing the forward KL divergence. The

structure of the model consists of an encoder network which
passes the input data into a bottleneck (a layer consisting of
fewer neurons), thereby compressing the data into its essential
features, and a decoder network which tries to reconstruct the
original data from the compressed features. The networks are
trained together by minimizing the reconstruction loss between
the generated and real data.

In generative modelling, a model is trained to learn the
underlying distribution of input data. This helps the model
to produce new samples from the learnt data distribution.
Some of the popular generative models are Restricted Boltz-
mann Machines (RBMs) [5] and Variational Autoencoders
(VAEs) [6] which maximize the likelihood of an explicitly
defined density function by following the gradient uphill.
Other models, such as GANs, use a game-theoretic approach
for modelling instead of working with any explicit density
function.

GAN was first proposed by Goodfellow et al. [7] in 2014,
which accelerated the research in generative models as the
images produced by it were significantly sharper in quality
compared to RBMs and VAEs. A typical GAN setup consists
of two neural networks - generator and discriminator, opposing
each other in a minimax game. The generator produces sam-
ples from random input noise and the discriminator judges
the authenticity of the images by trying to classify generated
images as fake and dataset images as real. The two networks
are differentiable functions that are trained by optimizing the
minimax objective function, thereby minimizing the reverse
KL divergence.

It is well known that GANs are notoriously difficult to train
whereas autoencoders have a fairly straightforward training
procedure. In this work, we leverage the architectural simi-
larity of the constituent networks of GAN and autoencoder
by reusing feature representations. Since encoder and decoder
(in autoencoder) are structurally similar to discriminator and
generator (in GAN) respectively, we use the initial trained
layers of decoder in generator and the latter trained layers
of encoder in discriminator to provide GAN with a training
direction.

Briefly, the major highlights of this work are:
1) A novel training procedure for GANs using autoen-

coders that advocates quicker generation of images with
competitive or superior quality and diversity.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

2) An intuitive insight manifesting why the guided training
technique works.

3) A comprehensive evaluation demonstrating the effective-
ness of our approach, both quantitatively and qualita-
tively, on different baseline GANs for multiple datasets.

II. BACKGROUND

This section provides a background of GANs and autoen-
coders. As we describe both the models, it is worth noting the
architectural similarities between them to develop an intuitive
understanding of the proposed model.

A. Generative Adversarial Network

As stated in Section I, GANs consist of two neural net-
works: a generator network and a discriminator network. The
generator G takes as input a noise vector z from a prior
distribution pz(z) and tries to produce a sample G(z) such that
it is part of the real data distribution pdata(x). These generated
samples along with real data samples are given as input x to
the discriminator D. The discriminator outputs D(x) which is
the probability that the samples are from the true distribution
pdata(x). The two networks optimise the following minimax
objective function:

min
G

max
D

V (D,G) = Ex∼p data (x)[logD(x)] +

Ez∼pz(z)[log(1−D(G(z)))] (1)

Hence, generator tries to fool discriminator to minimize the
objective, while discriminator tries to correctly classify the
samples as real or fake to maximize the objective.

B. Autoencoder

An autoencoder is a type of neural network which is trained
for feature learning through dimensionality reduction. It con-
sists of two neural networks: encoder and decoder. During the
training process, the encoder network f converts the input data
x into a compressed representation h = f(x). The decoder
network g then decompresses this representation h into a
reconstruction r = g(h) resembling the input data [8]. These
networks are optimized by minimizing the mean squared error
between r and x, also called reconstruction loss:

||g(f(x)) − x||2 (2)

Although in recent years, autoencoders have been modified
to be used as generative models [9], [10], these advancements
are of less interest to us as our idea is an improvement upon
GANs through the use of a pre-trained autoencoder.

C. Related work

In recent years, various solutions have been proposed
to overcome the challenges associated with training GANs.
Several architectural improvements such as [11]–[13] were
made to solve mode collapse [14] and training instability
of GANs. There have also been attempts at improving the
performance of GANs by changing the loss function, creating

variations in associated divergence. One prominent example is
WGAN [15] in which the authors changed the cost function to
minimize the Earth-Mover distance between real distribution
and model distribution, instead of minimizing the Jensen-
Shannon divergence.

In the past, some ideas have been proposed where autoen-
coders were made to act as generative models using GANs.
In VAE-GAN [16], VAE and GAN were placed in series
and the generator and the decoder were collapsed into one.
This work was an improvement on VAEs rather than GANs,
wherein the discriminator’s output was used for calculating
the loss of VAE. In adversarial autoencoder [17], a discrim-
inator was used to distinguish the output of encoder and the
samples taken from an input noise distribution. This would
drive the encoder’s output distribution towards the input noise
distribution and hence the decoder is trained to map the input
noise to the real data. Our approach is different as we leverage
representative features of autoencoder to train GAN rather than
using GAN to modify autoencoder.

Several approaches have been tried where autoencoder is
used to improve GAN training. EBGAN [18] and BEGAN [19]
models use an energy-based function to calculate the loss,
resulting in stable convergence of the GAN. Here, the dis-
criminator of GAN was replaced by a trained autoencoder to
obtain the mean squared error between the generated images
and the output of the autoencoder. This error was used to
drive the generated distribution towards the real distribution.
In contrast, our approach keeps the discriminator and generator
architecture intact, providing both the networks with high-level
feature information from autoencoder.

The approach which is partly related to ours is RFGAN [20]
which uses the representative features learnt by an encoder in
the discriminator. Here, the last convolution layer of encoder
from autoencoder is concatenated with that of discriminator.
This results in a slight improvement in the quality of generated
samples. On the other hand, our approach involves reusing
feature layers of both encoder and decoder from autoencoder
in discriminator and generator respectively. We also study the
effect of varying the number of autoencoder layers reused in
GAN. Comparison between the performance of Guided GAN
and RFGAN has been provided in Section IV.

III. GUIDED GAN

In this section, the proposed approach is described in detail.
Referring to Fig. 1, our model consists of two independent
networks sharing similar architectures. For this work, we refer
to the first network as guide network (autoencoder) and the
second as generative network (GAN).

A. Our Approach

Usually, the layers of discriminator and generator are ran-
domly initialised from a normal distribution. In the proposed
approach, we instead replace the initial layers of generator and
latter layers of discriminator with the initial layers of decoder
and latter layers of encoder from the pre-trained autoencoder
respectively. The remaining layers are initialised randomly as

Fig. 1. An illustration of our proposed Guided GAN.

before. The deeper layers of autoencoder contain high-level
abstractions of real data which are useful for generation of
samples by the generator and classification of samples by the
discriminator. The low-level features are learnt during adver-
sarial training. By reusing these autoencoder layers, GAN has
information about the input data in the form of representative
features and hence can learn better.

The proposed Guided GAN is a training technique rather
than a different GAN architecture. There is an implicit pressure
to improve image quality and diversity without explicitly
changing the cost function of baseline GAN. Autoencoder
layers provide GAN with supplementary information in the
form of representative features of the given data distribution.

Autoencoder minimizes the forward KL divergence [20]
between the data distribution P (X) and the model distribution
Q(X) over the feature space X .

DKL[P (X)‖Q(X)] =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(3)

In Equation 3, DKL is the forward KL divergence and is
weighted by the real data P (x). Therefore, for P (x) > 0,
the term log

(
P (x)
Q(x)

)
contributes to the overall divergence and

thus is minimized during the optimization process. This results
in a distribution where Q(X) averages out all the modes of
the real data distribution P (X) and minimizes the distance
between both distributions. It further leads to the generation
of images that cover the average of multiple modes of real
distribution but may be blurry and unclear.

In contrast, training a GAN minimizes the reverse KL
divergence:

DKL[Q(X)‖P (X)] =
∑
x∈X

Q(x) log

(
Q(x)

P (x)

)
(4)

In the equation above, the divergence is weighted by Q(x).
Therefore, for Q(x) > 0, the difference between the generated

and real data distribution should be as low as possible. In the
optimization done through this approach, it is desirable for
Q(X) to seek a single mode of P (X). Thus, the images in
this distribution are sharper but may not be as diverse as in
the real data.

Our model uses the strengths of both autoencoder and
GANs. Training of autoencoder is carried independently and
in isolation to GAN training. The reused autoencoder layers
which contain representative features essentially help in the
initial training phase by providing a general idea of the input
data distribution. In the latter training phase, the discrimina-
tor’s feedback drives the generator to produce more realistic
samples with sharper quality.

We also hypothesize that the above stated high-level feature
utilization followed by the adversarial training prevents GAN
from developing a bias towards particular types of samples
from the distribution (mode collapse [14]). Since the autoen-
coder is trained by minimizing the forward KL divergence
rather than the reverse KL divergence, it is less likely to prefer
a particular mode.

B. Implementation

For this work, we use ResNet architecture for WGAN-
GP [21] and DCGAN [11] architecture for all other baselines.
Also, we use similar layers in autoencoder to ensure that the
decoder and encoder resemble the generator and discriminator
of the backbone architecture. Table I shows the details of
the layers used and the hyper-parameters. We implement our
approach using PyTorch and our code is available on GitHub
at: https://github.com/sidhantnagpal/guided-gan

We attempt two techniques for using the pre-trained au-
toencoder layers in GAN. In the first technique, we freeze the
reused layers in GAN during its training. Here, freezing means
that gradients are not calculated for the parameters during

https://github.com/sidhantnagpal/guided-gan

TABLE I
NETWORK ARCHITECTURE AND HYPER-PARAMETERS OF GUIDED DCGAN FOR CIFAR-10 DATASET.

THE GENERATOR AND DISCRIMINATOR LAYERS MARKED WITH † DENOTE THE AUTOENCODER FEATURE LAYERS REUSED IN GAN.

Operation Kernel Stride Feature maps BN? Nonlinearity
G(z) : z ∼ N (0, I) 100

Transposed Convolution† 4× 4 1× 1 512 X ReLU
Transposed Convolution† 4× 4 2× 2 256 X ReLU
Transposed Convolution 4× 4 2× 2 128 X ReLU
Transposed Convolution 3× 3 1× 1 64 X ReLU
Transposed Convolution 4× 4 2× 2 3 × Tanh

D(x) 32× 32× 3

Convolution 4× 4 2× 2 64 × Leaky ReLU
Convolution 3× 3 1× 1 128 X Leaky ReLU
Convolution 4× 4 2× 2 256 X Leaky ReLU

Convolution† 4× 4 2× 2 512 X Leaky ReLU
Convolution 4× 4 1× 1 1 × Sigmoid

Batch size 64
Number of epochs 65
Leaky ReLU slope 0.2

Learning rate 0.0002
Optimizer Adam(β1 = 0.5, β2 = 0.999)

Weight initialization, bias N (µ = 0, σ = 0.02), not used

back-propagation, hence the weights do not change throughout
the training.

In the second technique (our main approach) we reuse the
autoencoder layers in GAN but do not freeze them, i.e., the
layers are kept trainable. From hereon, we use “reusing layers”
to refer to the fact that the autoencoder layers are reused
and kept trainable in GAN unless mentioned otherwise. We
also try varying the number of reused layers in generator and
discriminator. Since discriminator is more prone to overfitting
as compared to generator, it is expected that the training will
benefit by reusing more layers in generator. This turns out
to be true from our analysis. Hence, for the experiments in
Section IV, we reuse the last two layers of decoder in generator
and the penultimate layer of encoder in discriminator.

To study the applicability of our approach, we employ
this guided procedure for training three baseline GANs -
DCGAN [11], LSGAN [22] and WGAN-GP [21] and report
the results in Section IV-B3. Throughout our evaluations, we
use the same hyper-parameters and training configurations as
proposed in the original baseline GAN.

IV. EXPERIMENTS

In this section, we demonstrate the effectiveness of our
model by conducting experiments on synthetic datasets and
large-scale real-world datasets. Synthetic data is chosen for
analyzing the data diversity achieved by our model and to
ensure that the initial boost in training is not at the cost of
lesser diversity. Through evaluations on large-scale datasets,
we illustrate the quality of images produced and the applica-
bility of our model on real-world images. Our experiments use
a variety of evaluation metrics as well as visual inspection of
images for quantitative and qualitative analysis respectively.

A. Synthetic Data

The experiments conducted on real-world data reasonably
capture the image quality but the diversity of generated
samples is better understood on synthetic data. Therefore, we
use synthetic 2D Gaussian datasets to check the diversity of
samples produced by Guided GAN. In the first experiment,
we demonstrate how our model is able to capture multiple
modes in the data by following the setting described in [23].
The training data is created from a 2-dimensional mixture of
8 Gaussian distributions arranged in a circle of radius 2.0
centered at zero with a co-variance matrix of 0.04I. This low
value of variance creates low-probability regions around each
mode so that they are separated by some distance from each
other in 2D space. We also perform the experiments on another
2D Gaussian dataset containing 25 distributions in a grid [24].
The center and co-variance matrix of 25 Gaussian mixture are
chosen such that it makes it harder for the GAN to identify all
the distributions which are separated by low-density regions.

Fig. 2 shows the Kernel Density Estimation (KDE) plots
of target data and generated data on 8 Gaussian and 25
Gaussian mixtures. We train Guided GAN on 8 Gaussian and
25 Gaussian for 100k steps and 200k steps respectively and
compare the plots obtained to that of GAN. The results show
that for 8 Gaussian mixture, Guided GAN matches the target
distribution closely, which is similar to the behaviour shown by
GAN. For 25 Gaussian mixture, Guided GAN is competitive
to GAN, showing that it generalises well in capturing diversity
for the excessive mode case. The difference between the
comparative plots of GAN and Guided GAN is better noted
in the initial training stage where Guided GAN captures the
modes more effectively.

Fig. 2. KDE plots of GAN and Guided GAN on 8 Gaussian and 25 Gaussian mixtures. Note that generated distribution of Guided GAN is competitive
(marginally better) to GAN showing that the initial boost during training is not at the cost of lesser diversity.

B. Real-world data

To illustrate the performance of our model in a more
practical setup, we use datasets of natural images which are
more diverse and bigger in size compared to synthetic data.

1) Datasets: For our analysis we use two common datasets
in literature: CIFAR-10 [25] and CelebA [26]. CIFAR-10 is
an image classification dataset containing 60k coloured images
(50k training and 10k testing) of size 32 × 32, divided into
10 classes. CelebA (CelebFaces Attributes) dataset contains
more than 200k images of celebrity faces having 40 attribute
annotations. The distributions of both these datasets are chal-
lenging for GANs to learn, given their diverse collection and
several intra-class variations.

2) Evaluation metrics: Performance evaluation of genera-
tive models is difficult due to the various probability criteria
involved [27] and the lack of a definitive similarity metric
to check how close the generated samples are to the real
distribution. For our experiments, we adopt the two commonly
used metrics in literature: Inception score proposed by [28] and
Fréchet Inception Distance (FID) [29].

Inception score: This metric is widely used for evaluating
generative models as it correlates well with the human way of
assessing how realistic the images are. It computes the expres-
sion: exp (Ex [DKL(p(y|x) || p(y))]) where DKL is the KL-
divergence between p(y|x), the conditional class distribution,
and p(y), the marginal class distribution. Here p(y|x) should
have low entropy for sharp and clear images and p(y) should
have high entropy to assure diversity of images. To ensure
both the criteria, divergence should be large and hence a higher
score signifies better quality and diversity of generated images.
In our implementation, we use the Inception [30] IV2 network
for computing the class probabilities [31].

Fréchet Inception Distance: One disadvantage of using
Inception score for the evaluation of generative models is that
it does not account for how close the generated distribution is
to the real distribution. For calculating FID, we use the activa-
tions from the last hidden layer of the Inception network [30].
The aim is to measure the Fréchet Distance [32] between the

two multivariate Gaussian distributions (real and generated),
also known as the 2-Wasserstein distance. Lower FID is
desirable since it quantifies the deviation of the generated
distribution from the real distribution.

Therefore, computing the Inception score and FID helps in
drawing a comparison based on quality, diversity of generated
images and closeness of generated distribution to the real
distribution.

3) Quantitative analysis: For this analysis, we judge our
model by computing Inception score and FID for CIFAR-10
dataset and also FID for CelebA. We record the Inception
score of our two approaches explained in Section III-B and
compare it with DCGAN [11] during the course of their
training on CIFAR-10 which is shown in Fig. 3. The plot
in green corresponds to the first strategy mentioned in Sec-
tion III-B in which we freeze the pre-trained autoencoder
layers during the training of GAN. The plot in red shows
the trend for our main approach where we reuse the pre-
trained autoencoder layers for the training of GAN and the
plot in blue corresponds to DCGAN. The plot also shows
that Guided DCGAN performs notably better in the initial
epochs as compared to baseline DCGAN and achieves a higher
Inception score after convergence. Notice how reusing the
layers performs significantly better than freezing them. One
possible reason for this behaviour is that the reduction in the
number of trainable parameters by freezing the layers inhibits
the model’s performance. Also, reusing the layers gives an
initial training direction to GAN without restricting its learning
capability. At the same time, this approach benefits from the
adversarial training setup and is, therefore able to yield a better
score.

Table II shows the scores obtained for CIFAR-10 dataset.
Note that Guided GAN has a higher Inception score and
a lower FID in comparison to the corresponding baseline.
The table also lists the score of DCGAN-RF discussed in
Section II-C. It can be seen from the scores that reusing layers
in both generator and discriminator works more effectively
than concatenating encoder features in the discriminator. These
scores help us deduce that the initial direction provided by

Fig. 3. Variation of Inception score on CIFAR-10 over the training period
for our two techniques and DCGAN.

TABLE II
INCEPTION SCORE (HIGHER IS BETTER) AND FID (LOWER IS BETTER) FOR

THE CIFAR-10 DATASET

Method Inception Score FID
Real Images 11.24± 0.11 7.8
LSGAN [22] 6.47 36.5
Guided LSGAN 6.82 30.6
WGAN-GP [21] 6.20 40.5
Guided WGAN-GP 6.24 38.7
DCGAN [11] 6.40± 0.50 37.7
DCGAN-RF [20] 6.63 -
Guided DCGAN 7.22± 0.10 26.3

the autoencoder improves the performance of the adversarial
model regardless of the baseline model under consideration.

The convergence plot for initial training of Guided DCGAN
is shown in Fig. 4. The improvement in convergence during
initial epochs is also obtained when the guided training ap-
proach is used for LSGAN and WGAN-GP. This is evident
from Fig. 5 and Fig. 6 for Guided LSGAN and Guided
WGAN-GP respectively.

Table III shows the FID obtained on CelebA dataset using
our approach with WGAN-GP and DCGAN. Our model
achieves a lower FID in comparison to the baseline it is built
on top of.

4) Qualitative analysis: We also performed a qualitative
analysis of our model through visual inspection. Fig. 7 shows
samples from the generator of DCGAN and Guided DCGAN.
The figure shows that Guided DCGAN is able to produce
recognisable faces quite early in the training as compared to

TABLE III
FID (LOWER IS BETTER) OF DIFFERENT MODELS FOR CELEBA DATASET.

Method FID
WGAN-GP [21] 24.23
Guided WGAN-GP 23.61
DCGAN [11] 21.80
Guided DCGAN 21.02

Fig. 4. Variation of Inception score for baseline DCGAN and Guided DCGAN
trained on CIFAR-10 dataset in initial 20 epochs.

Fig. 5. CIFAR-10 Inception score comparison of LSGAN and Guided
LSGAN.

Fig. 6. Variation of Inception score of WGAN-GP and Guided WGAN-GP
for CIFAR-10.

Fig. 7. Faces generated at different epochs by DCGAN (top) and Guided DCGAN (bottom). Notice the higher quality images generated by our proposed
model compared to the DCGAN samples throughout the training.

Fig. 8. Randomly drawn samples generated by DCGAN (on the left) and Guided DCGAN (on the right) trained on the CelebA dataset.

Fig. 9. Randomly drawn samples generated by WGAN-GP (on the left) and Guided WGAN-GP (on the right) trained on the CelebA dataset.

DCGAN. The higher quality of images from Guided GAN is
pronounced in the initial epochs. Fig. 8 and Fig. 9 show the
comparison of our approach with DCGAN and WGAN-GP
respectively on the basis of randomly drawn samples from the
best models (the ones with lowest FID). The quality of the
images generated by Guided GAN is better, as observed from
both the figures.

V. CONCLUSION

This work proposes a novel procedure for training Gener-
ative Adversarial Networks. To the best of our knowledge,
this is the first attempt at reusing the deep feature layers of
a trained autoencoder in the generator and discriminator to
establish a guided adversarial training procedure. Through this,
we minimize both forward and reverse KL divergence. This
lets the model cover the overall mode range of the input distri-
bution without suffering from a drop in the quality of generated
samples. We performed rigorous experiments to evaluate our
model from different perspectives like quality, diversity and
closeness of generated distribution to real distribution. Our
model performed significantly better in the early training
stages which is evident from the convergence plots. We
evaluated the diversity of generated samples, which showed
that our model improved mode coverage both at convergence
and also earlier in the training. Our approach also achieved
a better Inception score and FID compared to the baseline
GAN models. The experiments also show that our training
procedure can be applied to any GAN variant irrespective of
the architecture or cost function involved. In future, it would
be worth trying different guiding networks (like VAE [10]) for
possible improvement in the quality, diversity of the generated
samples and/or stability of the model. Experimenting with
different network initialization techniques and comparing their
effect on the overall training would also be an interesting
future direction.

REFERENCES

[1] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research
on machine learning applications and trends: algorithms, methods, and
techniques. IGI Global, 2010, pp. 242–264.

[2] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in
Advances in neural information processing systems, 2016, pp. 469–477.

[3] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description
length and helmholtz free energy,” in Advances in neural information
processing systems, 1994, pp. 3–10.

[4] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons
and singular value decomposition,” Biological cybernetics, vol. 59, no.
4-5, pp. 291–294, 1988.

[5] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[6] D. P. Kingma and M. Welling, “Stochastic gradient vb and the varia-
tional auto-encoder,” in Second International Conference on Learning
Representations, ICLR, 2014.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[9] A. B. L. Larsen and S. K. Sønderby, “Generating faces with torch,”
http://torch.ch/blog/2015/11/13/gan.html, 2015.

[10] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[11] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
CoRR, vol. abs/1511.06434, 2016.

[12] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets,” in Advances in neural informa-
tion processing systems, 2016, pp. 2172–2180.

[13] T. Nguyen, T. Le, H. Vu, and D. Phung, “Dual discriminator generative
adversarial nets,” in Advances in Neural Information Processing Systems,
2017, pp. 2670–2680.

[14] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,”
arXiv preprint arXiv:1701.00160, 2016.

[15] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[16] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther,
“Autoencoding beyond pixels using a learned similarity metric,” arXiv
preprint arXiv:1512.09300, 2015.

[17] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adver-
sarial autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

[18] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adver-
sarial network,” arXiv preprint arXiv:1609.03126, 2016.

[19] D. Berthelot, T. Schumm, and L. Metz, “Began: Boundary equilib-
rium generative adversarial networks,” arXiv preprint arXiv:1703.10717,
2017.

[20] D. Bang and H. Shim, “Improved training of generative adversarial
networks using representative features,” in Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.
Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp.
433–442. [Online]. Available: http://proceedings.mlr.press/v80/bang18a.
html

[21] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Advances in Neural Infor-
mation Processing Systems, 2017, pp. 5767–5777.

[22] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least
squares generative adversarial networks,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2794–2802.

[23] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative
adversarial networks,” arXiv preprint arXiv:1611.02163, 2016.

[24] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Ar-
jovsky, and A. Courville, “Adversarially learned inference,” arXiv
preprint arXiv:1606.00704, 2016.

[25] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[26] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 3730–3738.

[27] L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation of
generative models,” arXiv preprint arXiv:1511.01844, 2015.

[28] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Advances in neural
information processing systems, 2016, pp. 2234–2242.

[29] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and
S. Hochreiter, “Gans trained by a two time-scale update rule converge
to a nash equilibrium,” arXiv preprint arXiv:1706.08500, vol. 12, no. 1,
2017.

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[31] S. Barratt and R. Sharma, “A note on the inception score,” arXiv preprint
arXiv:1801.01973, 2018.

[32] D. Dowson and B. Landau, “The fréchet distance between multivariate
normal distributions,” Journal of multivariate analysis, vol. 12, no. 3,
pp. 450–455, 1982.

http://www.deeplearningbook.org
http://proceedings.mlr.press/v80/bang18a.html
http://proceedings.mlr.press/v80/bang18a.html

