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Abstract—Hyperspectral images (HSIs) are susceptible to vari-
ous noise factors leading to the loss of information, and the noise
restricts the subsequent HSIs object detection and classification
tasks. In recent years, learning-based methods have demonstrated
their superior strengths in denoising the HSIs. Unfortunately,
most of the methods are manually designed based on the extensive
expertise that is not necessarily available to the users interested.
In this paper, we propose a novel algorithm to automatically build
an optimal Convolutional Neural Network (CNN) to effectively
denoise HSIs. Particularly, the proposed algorithm focuses on
the architectures and the initialization of the connection weights
of the CNN. The experiments of the proposed algorithm have
been well-designed and compared against the state-of-the-art
peer competitors, and the experimental results demonstrate the
competitive performance of the proposed algorithm in terms
of the different evaluation metrics, visual assessments, and the
computational complexity.

I. INTRODUCTION

Image denoising is one of the fundamental tasks of image
processing. Different from the natural 2D image, the Hyperspec-
tral image (HSI) has three dimensions to additionally display
the spectral and spatial information. HSIs are widely used
in urban planning, agriculture, and forestry [1], [2]. But in
the harsh space environment, the multi-detector for generating
the HSIs is susceptible, which consequently results in the
HSIs having noise. In general, the noise in HSIs has many
different types, such as the gaussian noise and the stripe noise.
The corrupted hyperspectral data with the noise will affect the
accuracy of the consequent work, for instance, the classification
tasks [3]. Thus, the HSI denoising has been a hot topic in the
past few years [4], [5]. Many algorithms have been proposed,
such as the K-singular value decomposition (KSVD) [6] and
the Tenser-SVD [7]. Generally, the HSI denoising methods are
divided into three different categories as follows.
1) Filter-Based Methods: The core idea of the filter-based
methods is to use the filtering operations with a variety of filters
including the Fourier transform and the wavelet transform.
Particularly, one of the hundreds of channels in an HSI can be
regarded as a grayscale image. So, the traditional gray-level
image denoising methods, for example, the block-matching
3-D filtering (BM3D) [8], can be adopted to every channel
directly. The limitation of these filtering methods remains in
their sensitiveness to the transform function, mainly due to the
manually set parameters. In addition, ignoring the correlations
across the spectral bands also leads to their relatively poor
performance in practice.

2) Optimization-Based Methods: These methods work by
adopting reasonable assumptions or the priors, such as the
Total Variation (TV), the Non-local (Non-Local), the Sparse
Representation (SR), and the Low-Rank (LR) models, etc,
focusing on preserving the spatial and spectral characteristics.
Because of the high-dimensional feature set and strong spectral
correlations in HSIs, the LR regularization has been widely
used in HSI denoising, owing to its effective ability of revealing
the low-dimensional structure from the high-dimensional data.
Due to the high spectral correlation between the adjacent bands
and the high similarity in each band, Zhang et al. [9] proposed
the Low-Rank Matrix Recovery (LRMR) for HSIs restoration
by transforming a 3-D cube into a 2-D matrix. To better
combine the spatial and spectral information, the tensor-based
approaches have been presented recently [10], [11], which can
achieve good results by running on the powerful computation
platforms. In summary, although these methods can perform
well in HSI denoising, the inadaptability to the mixed noise
becomes a barrier to performance improvements.
3) Learning-Based Methods: In recent years, deep learning
methods have been proposed and perform well in denoising
the HSIs [12]. The Convolutional Neural Networks (CNNs)
are the most representative method of the deep learning-based
methods, and widely used in natural image denoising [13]–[15].
However, the architecture of CNNs needs to be redesigned as
the problem changes. In practice, designing an optimal CNN
for the problems at hand is not an easy work, since the best
network architecture for a specific problem is unknown, i.e., the
depth of the CNN, the number of different types of layers, and
the parameters of each layer are are to determine. Meanwhile,
the weights of the network which play a vital role in its
performance [16] need to be retrained by a gradient-based
algorithm for achieving the promising performance, which
highly relies on its initialization [17].

To better explore the merits of CNNs in image denoising, and
reduce the human expertise intervention during the architecture
design and the weight initialization, in this paper, we propose a
novel algorithm (denoted as Evolve-CNN) based on a Genetic
Algorithm (GA) [18], [19] to design a good architecture and
weight initialization for CNNs, to effectively and efficiently
address the HSI denoising task. In summary, the contributions
of the proposed Evolve-CNN are summarized as follows:

1) A novel gene encoding strategy of GA is proposed
to encode the individuals for the automated CNN
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architecture design. The encoded individual carries the
information of the corresponding CNN architecture. A
population of such individuals can evolve a better CNN
for HSI denoising.

2) Effective genetic operators are designed for the
exploration and the exploitation search. In GA, the
fixed-length chromosome can execute genetic operators
easily. However, only a variable-length encoding strategy
can search the network architectures efficiently, but there
is no accepted good method to play the role of the genetic
operators. The proposed operators can perform well on
the proposed encoding strategy.

3) An improved slack binary tournament selection is
proposed for choosing promising individuals for off-
spring generation. Usually, huge computing resources
are required for training CNNs. We regard the complexity
as an important evaluation criterion in the environment
selection. The improved method can help us search to
find a high-performance CNN with lower complexity.

The remainder of this paper is organized as follows. The
background of CNN is provided in Section II. Section III
describes the proposed algorithm in detail. Section IV and V
provide the experimental design and the experimental results.
Finally, the conclusion is given in Section VI.

II. BACKGROUND

In this section, the skeleton of CNNs is provided, which is
the base work of the proposed algorithm. We will introduce
the convolution layer, the Reflect Padding (RP) layer, and the
Batch Normalization (BN) layer which constitute the skeleton
of the CNNs.

A. Convolution Layer

The convolution layer plays a vital role in CNNs since the
convolution operation can extract features from the images. To
be specific, the operation provided as the following. First, given
an input matrix with the size of n × n, the filter travels from the
top left to the bottom right of the input data to generate a value
in the feature map with the convolutional operation. Second,
the action is performed again after moving downward with the
set stride, until reaching the bottom right of the matrix. Noting
that the convolution padding type is an important parameter in
CNNs because the type decides the output image size. After
a convolution operation where the convolution kernel size is
greater than one, the output size will become smaller. There
are two padding types in convolution layer: the VALID type
and the SAME type. The SAME type can get the same size
of the output as that of the input by padding zeros in the
input matrix. The VALID type will not pad any elements to
the input matrix. Noting that, the VALID type will be used in
the proposed algorithm because the SAME type convolutional
operation cannot well address the boundary of the images.

B. Reflect Padding (RP)

RP is one of the most common image padding methods,
which can restore input image to the original image. Specifically,

it pads the input image using the reflection of the input data,
i.e., if we want to add a new row at the top of the input image
by RP, the row is obtained from the second row in the input
image through vertical reflection and diagonal reflection. Fig. 1
is an example to explain how RP works. For example, the
first and the last element in first green row is 0.7 by diagonal
reflection. The middle elements are equal to those in second
row in blue part by vertical reflection.

0.7 0.6 0.7 0.8 0.7

0.2 0.1 0.2 0.3 0.2

0.7 0.6 0.7 0.8 0.7

0.2 0.3 0.2 0.3 0.2

0.7 0.6 0.7 0.8 0.7

Fig. 1. An example to show RP. The blue part that represents the input image
is given as a 3 × 3 matrix, and we use RP to add the green part to get a
5 × 5 matrix which represents the original image. The middle of the first
row in green is the same as the second row in blue. The other three sides
were obtained in the same way. Elements in the green corner are generated
by diagonal reflection.

C. Batch Normalization (BN)

In HSI denoising, a CNN can work well if the BN layer can
be jointly used [12]. Particularly, the BN layer allows a higher
learning rate, significantly increases the speed of training, and
avoids the gradient vanishing or divergence issue. The BN
layer begins to work by performing BN when a batch of data
is input to the CNN, where BN is achieved by calculating the
mean and the standard deviation (std) of the input data [20].

III. THE PROPOSED ALGORITHM

A. Algorithm Overview

Algorithm 1 shows the framework of the proposed Evolve-
CNN method, where the contributions are highlighted in bold
and italic. Firstly, the population is randomly initialized, and
each individual in the population is generated randomly with the
proposed gene encoding strategy (line 1). Then, the initialized
population is evaluated for the parent selection (line 2). After
that, the evolution begins to take effect until the stopping
criterion is satisfied (lines 4-9). Finally, the expected CNN,
built by decoding the selected best individual, is ready for the
final training (line 10).

During the evolution, all of the initialized individuals’ fitness
are evaluated. To speed up the evolution, we let individuals be



trained only one epoch on the training dataset, while the fitness
evaluation is performed on the evaluation dataset. And then,
two parent individuals are chosen by the improved slack binary
operation from the population, and the offspring is generated
with the proposed genetic operation (line 6). Subsection III-C
will illustrate this operation in detail. After offspring generation
and fitness evaluation (line 7), the environment selection
using the elite selection mechanism starts to choose the
next generation from the existing individuals and the newly
generated offspring (line 8). Then the next generation continue
the next round of evolution.

Algorithm 1: Framework of Evolve-CNN

1 P0 ← Randomly initialize the population with the
proposed gene encoding strategy;

2 Evaluate fitness of P0;
3 t← 0;
4 while stopping criterion is not satisfied do
5 t← t+ 1;
6 Ot ← Choose parent individual by the improved

slack binary operation from Pt−1 to generate the
offspring with the proposed genetic operation;

7 Evaluate fitness of Ot;
8 Pt ← Environment selection from Pt−1 ∪Ot;
9 end

10 Return Pt.

B. Gene Encoding Strategy

Generally, the optimal architecture of the CNN is difficult
to determine without a prior knowledge. The architecture of
the CNN, especially the depth of the CNN, plays a decisive
role in the performance of CNNs [21]–[24]. In the traditional
design of the CNN architectures, the depth is set based on
domain expertise, which is not necessarily accurately assigned
for every task at hand. In the proposed algorithm, this issue
is addressed by the proposed variable-length gene encoding
strategy that is able to automatically find the optimal depth
without any expertise. In the proposed encoding strategy, the
CNN is built by multiple sequential blocks, and each block
consists of a convolution layer, a BN layer and a Rectified
Linear Unit (ReLU). In addition, we also add a RP layer after
the convolution layer whose kernel size unequal to one to
avoid the image size diminishing. Considering that the output
image is close to the real one, we set the last block as only a
convolution layer whose kernel size and out feature map size
are unchangeable.

As mentioned above, three different types of the layers, i.e.,
the convolution layer, the BN layer, and the RP layer exist in
the architectures of Evolve-CNN. Because the RP layer can
be regarded as the appurtenance of the convolution layer and
the BN layer works well in the default setting, we use the
information of the convolution layer to encode the architecture
into one chromosome for the evolution. An example of two
types of blocks and two chromosomes with different lengths

from Evolve-CNN is illustrated in Fig. 2. Commonly, hundreds
of thousands of weights may exist in a CNN, which cannot be
all initialized explicitly. In the proposed gene encoding strategy,
the mean and std are used to efficiently initialize the weights of
CNN using the Gaussian initialization mechanism. In addition,
the important parameters of the convolution layer, including
the filter width, filter height, and the number of feature maps
are all encoded into the chromosome.

C BN RPConvolution Batch Normolization Reflect Padding

RP
A block containing a convolution
layer with kernel size of not one

C BN

BN

A block containing a convolution 
layer with kernel size of one

C RP BN C RP BN

C

C

C BN RP BNC C

Fig. 2. An example to show two types of blocks and two chromosomes with
different lengths.

Algorithm 2: Population Initialization
Input: the population size N ; the maximal number of

blocks, Nmax; the minimal number of blocks,
Nmin

Output: Initialized population, P0

1 P0 ← ∅
2 while |P0| ≤ N do
3 head← ∅;
4 r ← uniformly generate a random integer between

[Nmin, Nmax];
5 while |head| < r do
6 l← generate a convolution layer with random

settings;
7 head← head ∪ l;
8 s←the kernel size of the convolution layer;
9 if s 6= 1 then

10 l← generate a reflect padding layer with
s−1
2 size;

11 head← head ∪ l;
12 end
13 l← generate a batch-normalization layer with

random settings;
14 head← head ∪ l;
15 end
16 l← generate a convolution layer with predefined

number of feature maps and kernel size;
17 head← head ∪ l;
18 P0 ← P0 ∪ head;
19 end
20 return P0



Algorithm 2 shows the population initialization by using the
proposed genetic encoding strategy, where |·| is a cardinality
operator. Firstly, an empty population of size N is initialized
(line 1). Secondly, individuals are created randomly to fill
in the population (lines 2-19) until the population reached
its predefined size of N. Finally, an initialized population P0

is returned (line 20). The CNN architecture encoded by the
individuals is divided into two parts, namely the head and
the last convolution layer, according to whether there are
fixed parameters or not, and the individual initialization is
also divided into two parts. The first part is generating the
head with the random settings (lines 3-15), and the second
part is adding a partially randomly initialized convolution layer
(lines 16-17).

Noting that line 4 sets the upper and the lower bounds of
the depth because a shallow CNN may not perform well on the
HSI denoising and a deep CNN will take up a lot of computing
resources unnecessarily. In addition, because the output size
of the CNN is determined, and the feature map size and the
filter size of the last convolution layer are fixed accordingly,
while the mean and std of filter elements are variable (line 16).
In order to find a suitable RP layer, the kernel size of the
convolution layer must be an odd number.

C. Offspring Generation

Because the Mean Squared Error (MSE) represents the pixel
value difference between the denoised image and the original
image, we use it as the fitness evaluation criterion for the task
investigated in this work. Specifically, the MSE is calculated
by Equation (1)

MSE =
||D −O||2

M ×N
(1)

where ||·|| denotes the L2 norm of a matrix, D and O denote the
pixel values of the image after the denoising and the original
image, respectively, M and N denote the length and width of
the image. The smaller MSE is, the better denoising effect is,
and the better fitness degree the individual is. In practice, there
will be multiple CNN architectures resulting in almost the same
MSE, while the one having the least number of parameters
should be the promising one because fewer parameters of the
CNN means the low complexity and potentially provides better
generalization ability. Thus, the number of CNN parameters,
indicating the complexity of the CNN, is also used as part of
the individuals’ fitness.

Just like traditional GAs and as mentioned in Section III-A,
after the population initialization and the fitness evaluation for
the original population, the offspring will be generated with
the proposed genetic operations. Traditionally, the offspring are
generated by performing the genetic operators, which usually
consists of the crossover operator and the mutation operator.
The steps of generating the offspring are shown below:

1) Select two parents by Algorithm 3 (Section III-D will
illustrate this algorithm in detailed);

2) Perform mutation and crossover on the chosen parent
individuals, and generate the offspring;

3) Store the offspring and reperform Step 1 until the number
of offspring reaches the predefined size.

In the proposed algorithm, the mutation operation is divided
into two steps. The first step allows the encoded variable
information mentioned above to mutate in a given range by the
Polynomial Mutation operator (PM) [25]. The second step is
to randomly increase or decrease the depth of the CNN. This
step may perform on each position of the CNN, where the
position is randomly decided. After that, one particular mutation
operation is randomly selected from: 1) adding a block which
is randomly initialized, 2) removing a block with the exception
of the last layer, and 3) keeping the depth unchanged. Then,
the operation performs on the selected position. Each type of
the operation has a 1/3 chance of being randomly selected.

In the proposed crossover operation, we use the Simulated
Binary Crossover (SBX) [26] to perform the crossover owing to
its promising performance on the real numbers, i.e., the encoded
variable information in the proposed encoding strategy.

Fig. 3 illustrates the crossover process where C denotes the
convolution layer, BN denotes the BN layer, and RP denotes
the RP layer. In this example, the first chromosome has three
blocks while the second chromosome has four. Initially, the
blocks of each chromosome align based on the order as shown
in Fig. 3.a. Secondly, the matched blocks perform the crossover
operation. There are two different situations when doing the
crossover operation: one is for the same structures when both
blocks consist of C+RP+BN or C+BN. The other is for the
different structures when one block is C+RP+BN and the other
is C+BN. The first case perform the crossover operation by
just swapping the encoded variable information, while for the
second case, not only the encoded variable information, but
also taking the RP to the side having no RP. It’s worth noting
that if the lengths of the chromosomes are not the same, the
crossover operation is performed on the last layer of the shorter
chromosome and the corresponding convolution layer of the
longer one. In order to get the valid image size, the number of
the feature maps will not participate this operation at the last
layer. Finally, the offspring is generated as shown in Fig. 3.b.
where bold and italics indicate that this layer has been modified.

D. Environmental Selection

In order to maintain a population with the promising
convergence and diversity, the elite mechanism is used in
the developed environment selection which is named as “Slack
Binary Tournament Selection”. Algorithm 3 shows the details of
the design. Firstly, two individuals are selected randomly from
the population (line 1). Secondly, the individual with the smaller
MSE assigns to i1, and the other one assigns to i2 (lines 2-
3). Thirdly, their MSE values and complexity assign to the
corresponding parameters (lines 4-5). In the end, the proportion
(line 6) and the difference (line 9) are compared with the given
threshold to choose the better individual. Specifically, if a
CNN’s performance is much better than the other one’s (lines 6-
7), we choose the better one directly, when their performances
are about the same, picking the one with less complexity
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Fig. 3. A crossover example.

Algorithm 3: Slack Binary Tournament Selection
Input: MSE threshold, α; complexity threshold, β; The

population
Output: The selected individual

1 Randomly select two individuals from the population
2 i1 ← the individual with smaller MSE;
3 i2 ← the other individual;
4 m1,m2 ← the MSE of i1, i2;
5 c1, c2 ← the complexity of i1, i2;

6 if
m2 −m1

m1
> α then

7 return i1
8 else
9 if c1 − c2 > β then

10 return i2
11 else
12 return i1
13 end
14 end

(lines 9-10). When the performance and the complexity are
both about the same, the performance is preferred (lines 11-12).

Noting that we use a proportion instead of a simple difference
as a threshold, because in the earlier stage of the evolution, the
MSE value of all individuals is relatively large, but in the later
stage of the evolution, most individuals have good denoising
performance, i.e., the MSE value is generally small. So the
proportion is better to maintain the consistency of selection
operation. When the evolution process is finished, the best

individual which has the smallest MSE is selected from the
last generation to perform the final training of the CNN.

IV. EXPERIMENT DESIGN

In order to quantify the performance of the proposed Evolve-
CNN algorithm, an experiment is designed to compare with
the state-of-the-art peer competitors on the chosen benchmark
dataset. In the following, the benchmark dataset and how to
build the training, the evaluation, and the test dataset are
introduced at first. Then, the peer competitors are listed. After
that, the parameter settings, including the training parameters
for the proposed algorithm, are detailed.

A. Benchmark Dataset

The Indian Pines dataset [27] which is widely used in HSI
denoising [12], [28] is chosen as the benchmark dataset. The
dataset is gathered by AVIRIS sensor over the Indian Pines test
site in North-western Indiana. Particularly, the Indian Pines
dataset contains two HSIs with different sizes. The first is with
the size of 614×2678×220, and the second is with the size of
1848×614×220. In order to do a fair comparison, the Gaussian
noise whose intensity level σ = 0.778 is added to the original
images to generate the data used by the compared algorithms
for the denoising.

Based on the conventions, the dataset has been divided into
three parts for the experiments, i.e., the training dataset, the
evaluation dataset, and the test dataset, which are randomly
selected and have 17535, 4000 and 4838 images, respectively,
i.e., account for 66.5%, 15.2%, and 18.3%, respectively. In
order to obtain the sufficient images to train the CNN, the
original clean images and generated noise images are cropped



with the size of 30×30, with the sampling stride equaling to
10.

B. Peer Competitors

Multiple state-of-the-art HSI denoising methods are chosen
as the peer competitors. Considering the proposed algorithm
focusing on the CNN methods, we also choose the algorithm
proposed by Chang [12], which recently reported its promising
performance on HSI denoising, as one of the peer competitors
in this experiment.

Overall, the chosen peer competitors are listed below: 1)
the BM3D method [8]; 2) the low-rank tensor approximation
(LRTA) method [29]; 3) the Total-variation-regularized low-
rank matrix factorization (LRTV) method [30]; 4) the tensor
dictionary learning method (TDL) [31]; 5) the block matching
4-D filtering method (BM4D) [32]; 6) the intrinsic tensor
sparsity regularization method (ITSReg) [33]; 7) the LRMR
method [9]; 8) the Chang’s method (Artificial-CNN) [12].

Noting that, the optimal CNN selected by the proposal
algorithm is chosen based on the evaluation dataset after it has
been trained on the training dataset. When the evolutionary
process is finished, the best performance is obtained by training
it on both the training dataset and the evaluation dataset
following the conventions of the deep learning community.
The test dataset remains unseen during this process.

C. Parameter Settings

In the experiment, the parameter settings include the pa-
rameters of the evolution in the proposed algorithm and the
parameters of the peer competitors.

All the parameter settings of the evolution are specified
following the conventions of GA community [25], [26].
Considering both the performance and the complexity, the depth
of CNN varies from 4 to 8. The filter size of convolution layer,
equivalent to the filter width and filter height, are randomly
chosen from {1, 3}. All layer’s feature map sizes vary from
128 to 512 except the last convolution layer whose size is fixed.
Preliminary experiment and experience specify the mean range
from -0.8 to 0.8, and the std from 0 to 0.5. In addition, the
population size and the total generation number are set to be
30 and 10, respectively. The distribution index of the SBX
and PM are both set to 1 based on the conventions [25], [26],
and their associated probabilities are specified as 0.9 and 0.2,
respectively. In the environment selection, the elitism rate is
specified as 20% based on the Pareto principle. As mentioned
in Section III-C, the MSE and the complexity are used in the
fitness function during the evolutionary stage.

In addition, all the parameters of peer methods are set by
default because their default settings can give them the best
performance.

D. Training Details

In this subsection, we give the training details in both the
evolution process and the final train.

In the evolution stage, each individual needs to be trained at
first for the fitness evaluation. We use the Adam method [34]

as the optimizer for this stage, and the learning rate is set to
0.004 and exponential decay rate is set as the default setting.
The training dataset will not be shuffled at evolution stage to
ensure the consistency in training each individual.

For the final train, the Adam configured with default setting
is used again as the optimizer of the CNN, respectively and
the learning rate is initialized to 0.001. It is worth noting that,
the training dataset and the evaluation dataset are both used
to train the CNN, and these two datasets are shuffled in this
stage.

The training of the Artificial-CNN uses the same settings as
those of the proposed Evolve-CNN, in addition to its weight
initialization method that uses the Xavier initializer [17]. We
employed the Pytorch to implement both CNNs on a Ubuntu
server with an NVIDIA 2080 Ti GPU card.

Noting that, the batch sizes of the proposed evolve-CNN
method and the Artificial-CNN are set to be 100 for both the
training and the test stage. Furthermore, we did not limit the
training epoch but stop the training and test by investigating
the performance does not increase.

V. EXPERIMENTAL RESULTS AND ANALYSIS

To acquire an integrated comparison for all peer competi-
tors and the proposed Evolve-CNN method, the quantitative
evaluation indicators and a visual comparison are used to
analyze the experimental results. We employ four Image Quality
Measurements (IQMs) as the quantitative evaluation indicators,
including the Mean Peak Signal to Noise Ratio (MPSNR), the
Mean Structural SIMilarity index (MSSIM) [35], the Mean
Feature Similarity index (MFSIM) [36], and the Mean Erreur
Relative Globale Adimensionnelle de Synthèse (MERGA) [37].
MPSNR, MSSIM and MFSIM evaluate the similarity between
the target image and the reference image based on the MSE
value, the structural consistency and the perceptual consistency.
The larger they are, the more similar the two images are, i.e., the
better the method is. Different from the former three indicators,
MERGA measures the fidelity, and the smaller MERGA is,
the better the method is.

A. Overall Results

The average results of the four performance evaluation
indicators are listed in Table I. Band 187 was chosen randomly
for visual comparison that is shown in Fig. 4.

In Table I, the best performance of each evaluation indicator
is marked in bold. As can be seen from Table I, the CNN-
based methods have the absolute leading position among the
compared algorithms. Specifically, the proposed Evolve-CNN
provides the highest values in MPSNR, MSSIM, and MFSIM,
and the lowest MERGA, and becomes the only method with
MPSNR over 70. In Fig. 4, the BM3D could not deal with this
noise well, furthermore, the BM4D produces over-smoothing in
this result. Residual gaussian noise is clearly visible in LRTA
and LRMR, and the left methods have high fidelity.



TABLE I
AVERAGE DENOISING PERFORMANCE COMPARISON EIGHT COMPETING METHODS WITH RESPECT TO FOUR PQIS OF THE INDIAN PINE UNDER

GAUSSIAN NOISE σ = 0.778

Measure
Method

Nosiy BM3D LRTA LRTV TDL BM4D ITSReg LRMR Artificial-CNN Evolve-CNN

MPSNR 50.311 62.881 64.939 64.852 67.248 65.122 66.979 65.115 69.317 70.051
MSSIM 0.98997 0.99905 0.99937 0.99954 0.99967 0.99951 0.99956 0.99958 0.99974 0.99977
MFSIM 0.96443 0.97201 0.99030 0.98072 0.98883 0.98107 0.98829 0.98599 0.99197 0.99213
MERGA 29.857 7.567 5.877 5.929 4.483 5.575 4.906 5.333 4.095 3.976

(a) Clean (b) Noise (c) BM3D (d) LRTA

(e) LRTV (f) TDL (g) BM4D (h) ITSReg

(i) LRMR (j) A CNN (k) E CNN

Fig. 4. Visual comparison in band 187. (a)Clean. (b)Noise. (c)BM3D. (d)LRTA. (e)LRTV. (f)TDL. (g)BM4D. (h)ITSReg. (i)LRMR. (j)Artificial-CNN.
(k)Evolve-CNN. .

B. Comparisons with Artificial-CNN

The CNN-based methods are compared separately to tell
the effect from the automatic architecture selection mechanism.
Table II shows the depth, the number of total parameters, the
training time and the performance derived from evaluation
indicators. We define one hour on one GPU service as a GPUh
to measure the training time.

As can be seen from Table II, the Artificial-CNN method
is much more complicated than the proposed Evolve-CNN
method. Meanwhile, the training time of Artificial-CNN is three
times more than that of Evolve-CNN. However, the shorter
CNN perform better in the evaluation indicators, although both

CNNs have excellent denoising effect. Furthermore, in terms of
the IQMs results upon the four employed measures, the Evolve-
CNN model is twice significantly better than Artificial-CNN,
and twice significantly equal to Artificial-CNN.

VI. CONCLUSIONS

We have proposed an automatic method by using the genetic
algorithm to design the CNNs for HIS denoising. Particularly,
we have designed an improved genetic encoding strategy for
encoding the CNN architectures and the weight initialization
parameters, the corresponding genetic operators to effectively
and efficiently find the optimal CNN architecture during the
evolution process, and a new tournament selection to choose



TABLE II
COMPARISON WITH ARTIFICIAL CNN. THE SYMBOLS “+”, “=,” AND “-”
DENOTE WHETHER THE IQMS RESULTS OF THE PROPOSED EVOLVE-CNN

ARE BETTER THAN, EQUAL TO OR WORSE THAN THAT OF THE
ARTIFICIAL-CNN WITH A SIGNIFICANT LEVEL 1%

Evolve-CNN Artificial-CNN

depth 5 16
total params 1,838,603 32,254,420
training time 15 GPUhs 54 GPUhs

evolutionary time 0.5 GPUh 0
+/=/- 2/2/0

the promising parent individuals for the evolution performance.
In the experiment, we found the proposed method is much
better than other methods in terms of the evaluation indicator
values and the visual assessments. The automated CNN by the
proposed algorithm has much fewer parameters than the state-
of-the-art CNN peer competitors. Furthermore, the automated
CNN by our proposed algorithm can achieve the performance
of that designed by experts. In the future, we will devote to
the research of fitness evaluation methods, and also investigate
which new components contribute more to the performance.
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