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Abstract—In this paper, we propose RCapsNet, a recurrent
capsule network for text classification. Although a variety of
neural networks have been proposed recently, existing models
are mainly based either on RNN or on CNN, which are rather
limited in encoding temporal features in these network structures.
In addition, most of these models require to integrate prior
linguistic knowledge into them, which is not practical for a
non-linguistician to handcraft such knowledge. To address these
issues on temporal relational variabilities in text classification, the
RCapsNet is presented by employing a hierarchy of recurrent
structure-based capsules. It consists of two components: the
recurrent module considered as the backbone of the RCapsNet
and the reconstruction module designed to enhance the gen-
eralization capability of the model. Empirical evaluations on
four benchmark datasets demonstrate the competitiveness of
the RCapsNet. In particular, it is shown that prior linguistic
knowledge is dispensable for the training of our model.

Index Terms—recurrent capsule network; text classification;
temporal feature; dynamic routing

I. INTRODUCTION

As an important and essential natural language processing
(NLP) task, text classification is to categorize a phrase, a
sentence, or sentences into distinct topics of interest, such as
opinions, attitudes, and emotions [1], [2]. In the past, many
traditional approaches are utilized to solve this problem. They
leverage expert knowledge about words by employing logistic
regression [3], support vector machine [4], and naive bayes [5],
among others for classification. In recent years, the deep
learning methods begin to dominate in this field, which can be
grouped into two types, recurrent neural networks (RNNs) [6],
[7] and convolutional neural networks (CNNs) [8].

With the great success being achieved, existing deep learn-
ing methods still bear several major issues. By introducing
convolutional kernels crossing features maps, the family of
CNN approaches are spatially sensitive, which unfortunately

leads to the limitation of addressing semantic information in
time domain [9]. On the other hand, RNNs are much more
capable of representing temporal variabilities by not only using
hidden states to keep historic context but also incorporating
either simple multiplication (vanilla RNN) or gate mechanism
(LSTM). However, they tend to be not robust to the out-
liers that one or few word vector(s) with enormous feature
values (called aberrant vector) may destroy the structure of
RNN models. Although the forget gate mechanism in LSTM
contributes to discard such aberrant vectors, it merely can
deal with part of such issue on outliers. In addition, a RNN
model typically engages one hidden vector for representing
semantic information, which may be rather limited in capturing
intricate semantics [10], since phrases are extremely diverse
under different context. Also, in NLP tasks, a RNN model
is often required to manually encode linguistic knowledge
such as negation words (e.g. no, never, not) and strong
words (e.g. pretty, extremely) into learning models to improve
prediction performance [11]. Therefore, it strongly relies on
prior expertise, which remains a challenging issue for deep
learning models in practice.

Recently, capsule network (or CapsNet in short) [12] is
proposed to possess a parse tree like structure, in which each
layer is divided into small groups of neurons rather than a
signal neuron. In CapsNet, a vector of neurons, called capsule,
is defined as the primary element, instead of single neurons
in CNN or RNN models. By employing an iterative routing
process, the CapsNet can establish probabilistic agreements
among parent capsules over child capsule, which compensates
the model for the limitation of max polling that ignores
all but the most active features. It is well known that the
CapsNet has achieved excellent performance on many visual
tasks [13]. In the field of NLP, Wang et al. [14] applied
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capsules as the output layer in the RNN model after a common
recurrent of LSTM. Their structure is however still a traditional
recurrent module that cannot handle the inherent robustness
issue of RNNs. Zhao et al. [9] proposed a novel convolutional
capsule network (ConvCaps) which possesses similar structure
as CNNs to text classification. By stacking three ConvCaps
of different scales, the ConvCaps obtains competitive results.
However, this model is still CNN-based, which lacks the
capability of modeling temporal features.

Inspired by the CapsNet, we propose a novel deep learning
model, called recurrent capsule network or RCapsNet in short,
to address the aforementioned issues for text classification.
Briefly speaking, this is achieved by integrating a hierarchy
of capsules in recurrent neural network. More specially, to
equip the model with the capability of representing temporal
context, hidden capsules are incorporated to remain the his-
toric features. In each recurrent step, new input capsules and
hidden capsules are coalesced to hidden capsules of the next
recurrent step. Different from the vanilla RNN and LSTM,
new hidden capsules are generated and estimated through an
iterative voting process, called routing. After each iteration,
the hidden capsules become more refined and precise on text
classification, which inherently surpasses the performance of
gate scheme. Comparing with RNNs, the occurrence of outlier
have only limited impact on our model due to the iterative
voting process. Also, the process is beneficial to capsule
identification, and it can discard aberrant feature capsules with
small voting score after routings. In this way, the model can
characterize more temporal relational variabilities of texts than
previous models, particularly without any manually encoded
linguistic knowledge. The main contributions of our work are
summarized as follows:

• To the best of our knowledge, the RCapsNet is the first
capsule-based recurrent neural network model for text
classification, which can explicitly model the temporal
variabilities in texts by generating a hierarchy of capsules.

• In particular, the RCapsNet addresses the major weak-
nesses of the family of existing CNN and RNN models
for text classification, including the limitation in encoding
temporal features, and the requirement of prior linguistic
knowledge manually encoded into them. Empirical ex-
periments demonstrate the superior performance of the
RCapsNet over the state-of-the-art models.

II. RELATED WORK

Text classification has been tackled with by a number of ma-
chine learning algorithm, including many traditional methods
mentioned above. Most of the previous methods heavily rely
on feature engineering techniques such as bag-of-words [15],
n-grams [16] to extract salient features or sufficient statistics
as input of the machine learning methods of interest. It
has been observed that the practical performance of learning
models highly depends on the feature representation of the
sentences and phrases involved [17]. Despite being practically
very effective, obtaining effective feature representation often

requires tremendous engineering effort, yet the result might
not be generalizable across various datasets.

Meanwhile, the recent development of deep learning tech-
niques provide an excited alternative in text classification,
where state-of-the-art performance is obtained with much
less effort in feature engineering [18]. They can be roughly
categorized into two groups: RNNs [19], [20] and CNNs [9],
[21]. Kim et al. [21] carried out a series of experiments using
CNNs on pre-trained word vectors, which demonstrated the
superiority of training model with such pre-trained vectors.
Kalchbrenner et al. [8] improved CNN structures by using
dynamic k-Max pooling, which can deal with input sentences
of varying lengths without resorting to a parse tree. In this
way, it can be readily applied to a new language. Peng et
al. [22] proposed a graph-based convolutional neural model
to convert texts to graph-of-words over a set of predefined
graph convolution operations being adopted to learn features.
However, due to the shortcoming of modeling temporal fea-
tures, the family of CNN models tend to fall behind the state-
of-the-arts. Subsequently, LSTM starts to become the default
choice for a range of NLP tasks. Tai et al. [7] proposed a tree-
based LSTMs model by utilizing the structures of sentence
on different NLP tasks. Yang et al. [23] integrated LSTM or
GRU with attention mechanism by introducing a hierarchical
structure and their models achieve competitive results over
six benchmarks. Sachan et al. [24] presented bidirectional
LSTM network in both supervised and semi-supervised ways.
However, LSTMs may crash in the presence of aberrant values.

To address the problems in the existing models, we intro-
duce capsules in our network model. The idea of capsules
is first designed by Hinton et al. [25], where transformation
matrices (both shared and non-shared parameters) are adopted
to provide networks the abilities of learning information like
part-whole relationships. Sabour et al. [12] proposed a capsule
network to replace single neuron by vector-valued capsule,
and substitute max pooling by dynamic routing. Their result
shows great potential in a number of visual tasks. For instance,
the results of CapsNet surpass all the state-of-the-arts on
MNIST [26] benchmark. More recently, convolutional capsule
network has been developed by Zhao et al. [9] for general
classification tasks, which outperforms others on four out
of six text classification benchmarks. This inspires us to
present the following recurrent capsule network to explicitly
model the temporal variabilities for text classification, which
is achieved by generating a hierarchy of capsules in recurrent
neural network with temporal dependencies. In this way, we
can represent words and learn their temporal features more
efficiently than other existing models.

III. BACKGROUND

A. Word Embedding

Given a text dataset, a sentence is often represented by a
sequence of n word vectors X = [x1, x2, ..., xn], where xi
(1 ≤ i ≤ n) can be a one-hot vector so that its length equals
the number of distinct words in the dataset. This representation
is however intrinsically sparse [27]. Another option which



becomes popular nowadays is to use a pre-trained embedding
corpus such as GloVe [28] to map the word xi into a low
dimension space called embedding space. In this paper, we
adopt GloVe to map each word into a 300-d embedding space.

B. Capsule Network

A capsule is a collection of neurons that represent the
parameters of a specific variety of entity like an object or
an object part. Formally, a capsule can be represented by a
vector with one element for each neuron to hold that neuron’s
instantiation value. A capsule network or CapsNet [12] takes
multiple capsules as input, and uses dynamic routing (or
routing for short) as its backbone to obtain capsules of the
next layer. Finally, the number of capsules in the output layer
is equal to the number of categories for classification tasks.
In what follows, we focus on the concept of dynamic routing,
which will be adopted in our RCapsNet model.

Given an element vector ûj|i, which is generated from the
i-th capsule of current l-th layer to the j-th capsule of its next
layer (l+1), its iterative coupling coefficient ϕj|i in a routing
is defined by

ϕj|i = softmax
(
γj|i, γi

)
, (1)

where γj|i is the logits of coupling coefficients that are
initialized to 0 at the first iteration. Then, the j-th capsule of
the next layer, denoted by oj , is a weighted sum of squashed
vectors ûj|i:

oj = S

(∑
i

ϕj|iûj|i

)
, (2)

where S is nonlinear squash function

S(z) =
‖z‖2

1 + ‖z‖2
z

‖z‖
. (3)

The last step of an iteration consists of updating each couple
coefficient γj|i by

γj|i = γj|i + ûj|i · oj , (4)

where · refers to an inner product. All γj|i in the current
iteration can be regarded as the initial coupling coefficients
of the next iteration. The whole process is repeated until the
number of iterations, which can be set manually, is reached.
The final outputs of a routing are all the capsules {oj} in the
last iteration. Note that the subscript j|i indicates the parameter
associated with the routing procedure from the i-th capsule in
the current layer to the j-th hidden capsule in the next layer.

IV. OUR APPROACH

Here we present the RCapsNet model, which endows cap-
sule network with the capability of encoding temporal depen-
dencies in sentences. We first briefly introduce the model, as
illustrated in Fig. 1. The inputs of our model are obtained by
mapping word vectors into an embedding space using a pre-
trained corpus as described in section III-A. The RCapsNet
mainly consists of a recurrent module and a reconstruction
module. The recurrent module plays the backbone role in
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Fig. 1: The structure of the RCapsNet model. The input sentence
consists of n word, with each being represented as ai ∈ Rv in an
embedding space as described in section III-A. There are four
levels of capsules, namely, input, hidden, integration and category
capsules, and they are denoted by m, h, p and o, respectively. r
means the reconstruction representation of o. I, II, and III refers
to dynamic routing stages I, II, and III, respectively, which are
responsible for generating capsules between two neighbouring
levels. q refers to the averaged integration capsule.

RCapsNet, which contains a hierarchy of four different levels
of capsules. In the first input capsule level, each input vector
multiplies a weighted tensor to attain input capsules (denoted
by m) for its layer. In the hidden capsule level, every lay-
er contains multiple hidden capsules inherited from hidden
capsules (denoted by h) in previous layer as well as input
capsules via dynamic routing stage I. In the integration capsule
level, routing stage II is adopted to generate the layer of
highly clustered capsules called integration capsules (denoted
by p). Finally, the output level (i.e. category capsule level)
is composed of category capsules (denoted by o), with each
corresponding to a unique output class. These category cap-
sules are generated from integration capsules in all layers via
routing stage III. To improve the diverseness and robustness of
RCapsNet, the reconstruction module is introduced to maintain
the heterogeneous characteristics of input word vectors. Also,
it helps to alleviate the outlier issue by constructing on a wide
variety of features obtained from the entire sentences rather
than relying on only a few salient features.

A. Embedded Input Vector

Let n be the length of a sentence, and v the dimension
of a word vector. Denote a word vector by ai ∈ Rv , the v-
dimensional vector representing the i-th word in a sentence.
Let W(0) ∈ Rnc×d×v be a 3d-tensor to generate input
capsules, with nc being the number of input capsules, and d



the dimension of the input capsule. As depicted in Fig. 1, input
capsules are obtained by respectively multiplying a 3d-tensor
called W(0) and the corresponding vectors of input words,
namely a1, a2, ..., an. The the j-th input capsule of the i-th
word, denoted by mj

i ∈ Rd, is obtained by

mj
i = W

(0)
j ai + b(0), (5)

where b(0) is a bias term, W(0)
j ∈ Rd×v is the j-th matrix

slice of the tensor W(0). Thus, for j = 1, 2, ..., nc, a total
number of nc input capsules of dimension d for word vector
i are generated and can be formalized as

Mi = [m1
i ,m

2
i , ...,m

n
i ] ∈ Rd×nc . (6)

B. Recurrent Module

The capsule recurrent module plays a role similar to that of
the recurrent units in RNN. Normally, RNN adopts a directed
cycle layer that multiplies a hidden vector and a input vector
with different parameter matrixes separately and adds them to
integrate the input vector and the hidden vector, which gives
networks the ability to extract dynamic temporal information
from a sentence. Due to the construction of hidden vectors,
RNN can record feedforward information of word sequences,
making it suitable for NLP tasks. Inspired by the structure of
RNN, we design a recurrent module containing capsules with
dynamic routing.

Let hj
l ∈ Rd be the j-th hidden capsule in the l-th layer.

We suppose that the number of input capsules is equal to
the number of hidden capsules. For simplicity, we denote
the set of hidden and input capsules in the l-th layer by
Kl = [h1

l ,h
2
l , ...,h

nc

l ,m1
l ,m

2
l , ...,m

nc

l ] ∈ Rd×2nc .
Normally, the capsule network uses transformation matrixes

to generate element vectors and learn part-whole relationships.
In particular, there are three transformation matrixes defined
in our model, i.e., W(1), W(2), and W(3), corresponding to
the three stages of routings, respectively. It is worth to note
that we also call the transformation matrix as transformation
tensor. It can be catalogued into two types, i.e., shared trans-
formation matrix and non-shared transformation matrix. We
will elucidate them in the following definitions of the three
transformation matrixes.

(Routing stage I) Let W(1) ∈ Rnc×2nc×d×d be a non-share
transformation tensor in routing stage I. Figure 2 illustrates the
process of dynamic routing with a non-shared transformation
tensor. To generate the element vector û(1)j|i ∈ Rd, named
vote, from the i-th capsule in the l-th layer to the j-th hidden
capsule in the next layer l + 1, each corresponding vote can
be formalized as:

û
(1)
j|i = W

(1)
j|i k

i
l + b

(1)
j|i (7)

where ki
l is an element of Kl, W

(1)
j|i ∈ Rd×d is the j|i-th

matrix of tensor W(1), and b
(1)
j|i is a capsule bias term. So

far, we can compute out the hidden capsule h based on the
Equation (2).

Routing

Hidden 

Capsules

Input 

Capsules

Transformation 

Tensor 

Votes Capsules

X
Eq.(7)

Fig. 2: The illustration of dynamic routing process with non-
shared transformation tensor. Element vectors are computed
out by multiplying both hidden and input capsules with a
transformation tensor. Then, the routing is adopted to iteratively
generate nc capsules of dimension d based on the Equation (2).
The cross sign

⊗
refers to the Equation (7).

(Routing stage II) We observe that generating the category
capsule directly at the last level cannot obtain a prominent
result, which is reported in our experimental results. This is
because our model relies on recurrent structure where the
hidden capsules sequentially reads input capsules of a word
and updates its value, which leads to the overwhelming state
estimation from the inputs in current steps. To this end, we
design another routing stage to generate integration capsule
from hidden capsules in each layer, which can remain the high-
level information about hidden capsules from one recurrent
step. Let W(2) ∈ R1×nc×d×d be the non-share transformation
tensor used in routing stage II.

û
(2)
1|i = W

(2)
1|ih

i
l + b

(2)
1|i (8)

where W
(2)
1|i ∈ Rd×d is the 1|i-th matrix of tensor W(2).

The element vectors obtained from above formula are fed into
routing stage II to generate integration capsules p. It is worth
to mention that given the set of all the hidden capsules {hi

l}
from the same layer l this routing stage generates a unique
integration capsule pl.

(Routing stage III) As the last part of recurrent module,
category capsules can be generated by using integration cap-
sules. Let W(3) ∈ Rc×do×d be the shared transformation
tensor in routing stage III, where c is the number of categories
and do is the dimension of category capsules. The element
vector û(3)j|i in this routing stage is calculated by

û
(3)
j|i = W

(3)
j pi + b

(3)
j (9)

where W(3)
j is the j-th matrix of tensor W(3) corresponding to

the j-th category. The category capsule with the largest vector
L2-normalization value is regarded as the category of sentence.
We use a separate margin loss function [12] to estimate the
optimal category capsules:

L1 =

c∑
i=1

(1i ×max(0, β+ − ||oi||)2

+ η(1− 1i ×max(0, ||oi|| − β−)2), (10)



where oi is the i-th category capsule and ||oi|| is its L2-
norm. 1i is an indicator function where 1i = 1 if the sentence
belongs to the i-th category; otherwise, 1i = 0. β+ and β−

are tuning parameters. η is a regularization parameter. In this
work, we set β+ = 0.9, β− = 0.1 and η = 0.5.

C. Reconstruction Module

A reconstruction module can encourage the capsules to
encode the representation of the input word vectors, which
can improve the robustness of the model [12]. To this end,
we design a reconstruction module based on the capsules
of sentence representations obtained from recurrent module,
instead of reconstructing the whole part of the raw inputs. In
our model, the category capsules obtained from the integration
capsules are a high-level encoding of the input word sequence,
assembling the most important features and discard others. In
this way, it is possible to reconstruct representations by lever-
aging category capsules. Inspired by [10], [29], we generate
the reconstruction representation ri of the category capsule oi

by multiplying oi and its L2 norm:

ri = ||oi||oi. (11)

On the other hand, we define the averaged integration capsules
to be the representation of a sentence:

q =
1

n

n∑
i=1

pi (12)

where pi is the i-th integration capsule obtained from routing
stage II.

Now, the goal of reconstruction module is to ensure that the
reconstruction representation ri is similar to its corresponding
sentence representation q. Meanwhile, other category capsules
are far from the sentence representation. To this end, it can be
formulated by using the hinge loss:

L2 = max(0, 1 +

c∑
i=1

1iq
ᵀri). (13)

Finally, the parameters W = {W(0),W(1),W(2),W(3)} and
b = {b(0), b(1), b(2), b(3)} in our capsule-based model can be
estimated by optimizing the following objective:

argmin
W,b

L = argmin
W,b

(L1 + λL2), (14)

where λ is a tuning parameter and we set λ = 0.01 in this
work.

V. EXPERIMENTS

A. Datasets

Experiments are carried out on four benchmarks. Movie
reviews (MR) [30] is a collection of movie reviews, contain-
ing 5,331 positive and 5,331 negative reviews. Subjectivity
datasets (SUBJ) [31] contains 5,000 subjective and 5,000 ob-
jective sentences. In TREC question dataset (TREC) [31], each
sentence is annotated with one of the six classes: Desc, Enty,
Abbr, Hum, Loc, and Num. Finally, AG’s news corpus [32]

Dataset Sentences Classes Training Testing

MR 10,662 2 7463 3199
Subj 10,000 2 7000 3000
TREC 15,952 6 7463 3199
AG’s news 127,600 4 7463 3199

TABLE I: Summary of the four publicly available datasets.

covers more than one million articles from more than two
thousands newspapers and magazines, which are divided into
four categories: World, Sports, Business, and Sci/Tec. Table I
provides the detailed descriptions of the four benchmarks.

Besides, we evaluate our model on two challenging NLP
tasks, i.e,, natural language inference and multi-label text
classification.

B. Parameters

The GloVe vectors [28] are adopted to provide a mapping
of raw word vector to a 300-dimensional space of embedded
vectors (v = 300) based on a pre-trained model over 840 bil-
lion unlabeled corpus. All the dimensions of hidden capsules,
integration capsules and category capsules are set to 64 (i.e.
d = do = 64). The number of hidden capsules is set to 3 on
TREC, AG’s news and SUBJ, and 4 on MR.

Regarding the RCapsNet parameters, our models are trained
with a mini-batch of 128 samples. The embedding dropout is
0.7, while the dropout for capsules in each recurrent layer is set
to 0.8. Adam [33] is utilized as the optimization tool with its
parameters β1 and β2 being set to 0.9 and 0.999, respectively.
The learning rate is set to 0.001. All the model parameters
are initialized by Xavier initializer [34]. The experimental
results are averaged over 7-fold cross-validations. Finally, the
RCapsNet is implemented on Tensorflow 1.2.

C. Baseline Methods

The classification performance of our RCapsNet model is
compared against 11 established deep network-based models:
LSTM/Bi-LSTM [20]: LSTM is designed to solve the prob-
lem of gradient vanishing or exploding on standard RNNs.
Bi-LSTM is a variant of LSTM.
Tree-LSTM [7]: It generalizes LSTM to tree-structured neural
network using memory cells and gates.
LR-LSTM/LR-Bi-LSTM [11]: They are variants of LSTMs
using linguistical regularization.
CNN-rand/-static/-non-static/-multichannel [21]: They use
convolution and pooling operations to generate sentence rep-
resentation and category. CNN-multichannel and CNN-non-
static utilize different strategies on training and initialization.
VD-CNN [32]: It is a very deep CNN with up to 29 convo-
lutional layers.
ConvCaps [9]: It adopts the rationale of capsules and convo-
lutional operations.

VI. RESULTS AND DISCUSSION

A. Evaluation and Comparison

Table II shows the averaged accuracy results over 7-fold
cross-validations. Overall our RCapsNet model clearly out-



Method MR% TREC% AG’s% Subj%

RCapsNet 81.1 94.1 92.4 94.0

LSTM 77.4 86.8 86.1 89.3
Bi-LSTM 79.3 89.6 88.2 90.5
Tree-LSTM 80.7 91.8 90.1 91.3
LR-LSTM 81.5 - - 89.9
LR-Bi-LSTM 82.1 - - 90.4

CNN-rand 76.1 91.2 91.2 89.6
CNN-multichannel 81.1 92.2 - 93.2
CNN-static 81.0 92.8 91.4 93.0
CNN-non-static 81.5 93.6 92.3 93.4
VD-CNN - 85.4 91.3 88.2

ConvCaps 81.3 91.8 92.1 93.3

TABLE II: Accuracies on the four evaluation datasets.

Method MR Subj

RCapsNet 81.5% 94.0%
RCapsNet(-NRR) 79.9% 92.0%
RCapsNet(-L1) 80.9% 92.3 %
RCapsNet(-L2) 81.0% 92.2%

TABLE III: Comparison of RCapsNet with different reconstruc-
tion settings. NRR, L1 and L2 refers to non-reconstruction regu-
larization, L1 regularization, and L2 regularization, respectively.

perform other competitive models with a large margin on the
four benchmarks. This is mainly due to its abilities to take
advantage of the rich temporal dependency information be-
tween words by recurrently generating a hierarchy of capsules.
Notably, although ConvCaps also produces capsules through
convolution operation, during training it does not encode
temporal information among words. This might explain why
RCapsNet has the best performance on the four benchmarks
(94.1% vs 91.8%, 92.4% vs 92.1%, 94.0% vs 93.3%) expect
MR. On the MR dataset, RCapsNet sightly underperforms
LR-Bi-LSTM due to the linguistic regularizer and bidirection-
al structure in LR-Bi-LSTM, which are manually encoded.
However, bidirectional structure, which contains tremendous
parameters and linguistic regularizer, has to be handcrafted
over prior linguistic knowledge that is impractical for most of
the non-linguistician.

B. Ablation Study

To analyze the effect of different components in RCapsNet,
we carry out the ablation test in this subsection to answer two
intuitive questions: (1) What will happen if RCapsNet does
not have reconstruction module? (2) Are integration capsules
redundant?

To answer the first question, we remove the reconstruction
module and train the model on MR and Subj datasets. Instead
of reconstruction module, we adopt other two commonly used
regularization approaches, such as L1 regularization and L2
regularization. The regularization weight λ is set to 0.01, keep-
ing the same as it in reconstruction module. In addition, we
also compare it with non-reconstruction regularization where
no reconstruction module is designed. As shown in Table III,
it is obvious that RCapsNets with different reconstruction

Method MR Subj

RCapsNet Accuracy 81.5% 94.0%
Iteration epochs 12 10

RCapsNet(-OCC) Accuracy 78.0% 86.8%
Iteration epochs 50 53

TABLE IV: Comparison of RCapsNet with integration capsules
and without them.
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Fig. 3: Accuracy comparison by varying the length of sentences.

settings (i.e. RCapsNet, RCapsNet(-L1) and RCapsNet(-L2))
outperform RCapsNet without it (i.e. RCapsNet(-NRR)). R-
CapsNet surpasses 1.6% of accuracy than RCapsNet(-NRR)
on MR dataset and 1.8% on Subj dataset. Also, it is clear
that RCapsNet with reconstruction module is more robust than
those with L1 regularization or L2 regularization.

For the second question, we remove the integration capsules
as well as routing stage III. Instead, we use another routing
process called OCC, which obtains category capsules directly
from hidden capsules. The accuracy and its corresponding
iteration epoches are shown in Table IV, which suggest that R-
CapsNet preforms remarkably more accurate than RCapsNet(-
OCC) on both MR and Subj datasets. Also, RCapsNet con-
verges much faster than RCapsNet(-OCC). Additionally, it
can be seen from Figure 3 that RCapsNet is significantly
more robust than RCapsNet(-OCC) for sentences of various
lengthes.

C. Experiments on Other NLP Tasks

To evaluate the performance of our model for more so-
phisticated natural language process takes, we carry out two
additional experiments on natural language inference and
multi-label text classification.

1) Natural Language Inference (NLI): NLI aims to find the
semantic relationship between a premise sentence and a cor-
responding hypothesis sentence. We carry out an experiment
on a widely used benchmark dataset called Stanford Natural
Language Inference (SNLI) dataset [35]. This dataset contains
three relationships (i.e. entailment, neutral, contradiction) and
consists of 549, 367/ 9, 842/ 9, 824 premise-hypothesis pairs
on train/dev/test set. The dataset has been annotated manually.

We constructed all the model structure designed in [35],
launching two separated sentence encoding RCapsNet for



premise sentence and hypothesis sentence. We feed the in-
tegration capsules of each encoding model into a new non-
shared parameter dynamic routing to get final category cap-
sules. Note that in this experiment we abnegated the recon-
struction module because it is only suitable for text classifica-
tion task so far. For hyperparamters, the number of integration
capsules of each model is set to be 5 with its dimension of
128. The number of category capsules with dimension of 64
is 3, which is equivalent to the number of categories.

The performance of RCapsNet and other typically com-
petitive models are showed in Table V. It can be seen that
RCapsNet outperforms most of the pervious model. In details,
RCapsNet performs more accurate than the LSTM encoder
model with around 7.7% (100D LSTM), 4.7% (300D LSTM),
2.0% (600D BiLSTM), 1.1% (600D BiLSTM with intra-
attention) and 0.7% (memory-based NSE encoder network)
boost. It is worth to notice that the 300D CAFE model slightly
outperforms our model about 0.3% in accuracy. This is mainly
because semantics are required to manually encode in its
structure, which are more capable to handle the long sentence
than ours.

2) Multi-Label Text Classification: The previous exper-
imental results have shown that RCapsNet is capable of
achieving competitive performance on single-label NLP tasks.
However, an important problem in NLP field is associated
with multiple classes or labels, leading to more challenges
than single-label NLP tasks. For instance, in multi-label tasks,
the label space is expanded from n to 2n, which makes it
difficult for a model to get accurate results in a reasonable
time. To this end, we evaluate the capability of our RCapsNet
on multi-label text classification in the following. Note that
there is not sufficient datasets of multi-label text classification
due to the difficulty and extremely high cost of collection and
labelling. In this experiment, we evaluate our model on one
publicly available dataset, Reuters-21578 dataset [42], which
is a collection of documents with financial news articles. The
original corpus has 10, 788 documents and a vocabulary of
29, 930 words, with each sentence either belonging to one
single label or multiple labels. To make our model comparable,
we followed the steps in [9] to preprocess the dataset. We
utilized all the single-label and multi-label documents during
training stage, and only multi-label samples were used during
testing stage. We adopt precision, recall and F1 score as
evaluation metrics on this dataset.

As shown in Table VI, it is clear that RCapsNet outperforms
all other competitive models. In particular, RCapsNet and
ConvCaps are more accurate than LSTM-based networks and
CNN-based networks on multi-label text classification. This is
mainly due to their abilities to take advantage of capsules that
can catch rich temporal dependencies among words. RCapsNet
outperforms ConvCaps with around 0.6% accuracy boost. This
may be due to the fact that RCapsNet generates hierarchically
organized capsules which contains more temporal relations.
Overall, the experimental results demonstrate RCapsNet is
capable of handling multi-label NLP tasks.

Accuracy% Recall F1 Score

LSTM 86.7 54.7 63.5
BiLSTM 82.3 55.9 64.6
CNN-rand 88.6 56.4 47.1
CNN-static 91.1 59.1 69.7
CNN-non-static 92.0 59.7 70.4
ConvCaps 95.4 82.0 85.8

RCapsNet 96.0 85.6 86.4

TABLE VI: Performance comparison on multi-label text classifi-
cation.

VII. CONCLUSION

In this paper, we present a recurrent capsule network
for text classification called RCapsNet, which generate a
hierarchy of capsules via dynamic routing to encode rich
temporal dependencies in sentence sequences without any
prior linguistic knowledge. Experiments on four benchmarks
and two challenging NLP tasks show the effectiveness and
practicability of our RCapsNet model on text classification.
As for future work, we will consider improving reconstruction
module, and we will further investigate the performance of our
model on more NLP tasks. Transplanting the model to another
fields like vision task is also a potential option.
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