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Abstract—Human activity recognition has a wide range of
applications, especially for the care of elderly people living alone
and the monitoring of abnormal behaviors of key personnel.
Although conventional video surveillance technology has made
many research advances in this field, this technology destroys
people’s privacy. Activity recognition technology based on RFID
avoids damage to people’s privacy, and is being widely studied
and applied. This paper uses RFID Received Signal Strength
Indicator (RSSI) to identify and classify human behaviors.
Predecessors employed CNN and LSTM for human activity
identification, but there were still some shortcomings: 1) The 2D
convolution loses the temporal information of continuous actions
and reduces the classification accuracy. 2) LSTM network has a
series of training difficulties. 3) No available public dataset for
the current mission.

To solve these problems, this paper proposes a convolutional
neural network called temporal spatial convolutional neural net-
work (TSCNN). Taking the continuous frame sequence as input,
the network is designed using 3D convolution to realize real-
time activities recognition. The average classification accuracy
of our network is 94.6%, 15.6% higher than the state-of-the-
art Tagfree. Our lowest accuracy is 81.8%, and Tagfree is
35.4%. Besides, the ablation experiment proves the necessity
of the design in the TSCNN network. Furthermore, we collect
more than 60000 RFID signal data and transform them into
corresponding pixel maps to form a new dataset. We present
and expose the dataset called RF-men.

Index Terms—human activity recognition, RFID, 3D convolu-
tion, ablation experiment, dataset

I. INTRODUCTION

Currently, activity recognition is an essential task and has
wide applications. The elderly living alone need to monitor,
classify and identify their unsafe behaviors at home through
activity identification. In important meeting rooms of com-
mercial companies, event activity recognition is also applied
to human behavior control. The main task of this paper
is to classify human behaviors based on Radio Frequency
Identification (RFID) RSSI. RFID has the advantages of low
cost, small size, maintenance-free, etc., and is widely used
in many public places, such as identity cards, ETC, access
control cards, bus cards, bank cards and the field of mobile
applications, including human-object interaction detection [2],
human-object tracking [3] and more complex activity identi-
fication [6]. Since the camera has problems with high line of
sight (LOS) requirements, and unfriendly privacy protection,
RFID technology can also be used as an alternative to cameras

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

S =

g (R
-]

Swing Pixel Map H‘

Probability vector

Fig. 1. Overall flow chart of experiment. The first picture from the left is the
movement captured by the experimenter. The second picture from the left is a
pixel map after pre-processing and visualizing the collected RFID RSSI. The
third image from the left is a simple thumbnail of TSCNN. The last graph
shows that the output of the network is a probability vector. The orange block
represents the maximum value of the probability vector. Its subscript is the
output classification of TSCNN.

for detection tracking [11] and indoor positioning [5] and other
scenarios. Therefore, we hope to come up with a method to
use RFID to classify human behaviors and achieve the purpose
of monitoring activity recognition.

Researchers in this field have done a lot of work and made
breakthroughs to solve this problem, but there are still some
shortcomings. Early activity recognition algorithms [33] were
based on manual feature extraction methods. The ability to
represent behaviors was limited by the extracted features,
and it was difficult to reflect behaviour features effectively.
With the development of deep learning, predecessors used two
dimensional (2D) convolution to design classification networks
[17] [18]. However, due to the limitations of 2D convolution,
it is impossible to process time domain information, but the
relative position relationship between human limbs and torso
over a period of time defines the current person’s movement.
To accurately judge the behavior of others, neural network
models are required to extract spatiotemporal features from
the input data, so the recent study mixes 2D convolution and
long-short-term-memory (LSTM) [20]. LSTM is memorable,
so it is often used in the task of dealing with the nonlinear
features of sequences, but LSTM itself has problems such as
difficulty in training, large footprint, slow convergence, and



easy to overfit. At the same time, the dataset used in the
previous training network, such as weightlifting and falling,
are not frequently used in daily life. So we came up with a
dataset that is more consistent with everyday human behavior.
Inspired by the idea of ‘video’, different from previous work,
we transform an RSSI to a corresponding pixel map, treat it
as a frame and stack adjacent frames together as input to the
network. The graph method is more suitable for training with
convolutional neural network (CNN) than RFID RSSI.

In our work, we propose an end-to-end trainable deep neural
network called temporal spatial convolutional neural network
(TSCNN). This network has the ability to categorize real-time
data. Since we are dealing with ‘video’ data, we use three
dimensional (3D) convolution instead of 2D convolution in
previous work to extract feature map. 3D convolution can ex-
tract time domain information and space domain feature, so 3D
convolutional neural network has better temporal information
modeling ability than 2D convolutional neural network, and
the classification of action is more accurate. We collected and
exposed a dataset that is more consistent with everyday human
behaviors.

To prove the superiority of TSCNN network, we compare
with the state-of-the-art models. All the training and testing is
based on our dataset. The average classification accuracy of
TSCNN network is 94.6%, which is 22.1%, 16.9%, and 15.6%
higher than the average classification accuracy of CSI-DFLAR,
RF-finger, and Tagfree networks. We also performed ablation
experiments to show that the hyperparameter we selected were
the best.

Our contributions are as follows:

o We collected more than 60,000 pieces of data, produced
a new dataset called RF-men, and made it public.

« Based on the idea of ‘video’, a new deep learning network
is constructed by using 3D convolution to realize RFID-
based activity recognition.

o Our network can distinguish the classification of current
actions in real-time, and our experiment proves the va-
lidity of the model.

« Ablation experiments shows that the hyperparameter we
selected were the best.

II. RELATED WORK

As we all know, RFID is a promising and practical tech-
nology. With the increasing maturity of sensors, RFID has
been widely used in mobile applications [3], human-object
interaction [2] and more complex activity recognition [6].

A. Experimental Environment Deployment

Compared with indoor positioning [4] [5] [7] [8], activity
recognition [10] needs to capture fine-grained body move-
ments. There are generally two ways to identify human be-
haviors through RFID: i) Device-based method employs RFID
tags to attach to the human body. Reference [7] proposed a
method to carry out on-site free-weight activity recognition
and assessment of tags by using the doppler frequency shift of
RFID signals when RFID tags are pasted on the dumbbell. The

downside is that attaching labels to the body can sometimes
be inconvenient and can be considered intrusive. ii) Device-
free method apply multiple tags to fix in the environment as
fixed references. Reference [2] fixed the RFID tag array to a
wall and identified the behaviors by referring to the influence
of human activities on the signal strength of the tag.

B. Conventional Classification Treatment

In [1], the RSSI from RFID tag array is analyzed, and
attitude classification is performed by using support vector
machines and linear kernel functions. Han et al. proposed
a method to use of the doppler shift to combine activity
sensing, recognition and counting [7]. These classification
methods have complicated processes and high computational
cost. When new actions are added, the whole layered activity
recognition framework needs to be redesigned with poor
scalability. Shang guan et al. proposed spatiotemporal phase
analysis (STPP) [12]. By analyzing the temporal and spatial
dynamics of phase distribution, STPP can calculate the spatial
order between tags and use template matching to classify
human behaviors. Some researches also use hidden markov
model, enhancement algorithm, bayesian network and other
classification algorithms to infer daily activities from the
trajectories used by objects [14], [15]. Reference [16] used
RFID radio patterns to extract spatial and temporal features,
which in turn were used to describe activities.

C. Neural Network Classification Processing

With the great improvement of computational power, deep
learning has become a very active research field of general
activity understanding, and has achieved excellent results. Ref-
erence [17] employed CNN to recognize image-based multi-
touch gestures. In [18], the wireless image processing method
is proposed to extract wireless location and activity recognition
without devices from wireless image features through deep
learning.

Reference [19] proposed a neural network which combined
CNN and GRU to process the velocity profiles of gestures
and realize gesture recognition. In [20], a device-free activity
identification system based on RFID is proposed. The clas-
sification network combining CNN and LSTM was adopted.
However, LSTM network is not only very difficult to train,
but also has a series of defects such as large space occupied,
slow convergence speed and easy to overfit.

Reference [31] proposed the skip-connection mechanism, so
that when the network going deeper, the gradient will not dis-
appear. In [32], it enabled neural networks to extract semantic
information and increase receptive field while minimizing loss
of information. With these two mechanisms, 3D convolution
has a lot of applications, such as human action recognition
in videos [21]-[23], action detection [24], video caption [25],
hand gesture detection [26], video learning [27], video super-
resolution [9], [13]. This paper extends the application of 3D
convolution and designs a 3D convolutional neural network
based on RFID RSSI to classify human behavior.
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Fig. 2. Overview of our TSCNN model. TSCNN model has 3 modules, edge feature extraction module, semantic feature processing module and fully
connected classification module. The orange cuboid represents convolutional layer with BN and ReLU. The blue cuboid represents maxpooling Layer. The
green cuboid represents convolutional layer in resnet. € represents element-wise add operation. Fully connected classification module consists of two fully

connected layers.

III. METHOD

In this section, we will introduce our model called temporal
spatial convolutional neural network (TSCNN), which is an
end-to-end deep neural network based on 3D convolution, to
deal with the problem of behavior classification based on RFID
RSSI. We defined f as the TSCNN network, (zg, Z1,..., 15)
as the network input, and C' as the real classification of the
behavior sequence x. We formulated the network objectives
as follows

arg max(f(xo,x1,...,215)) = C (1)
A. 3D Convolution

The 3D convolutional network is suitable for the study of
spatiotemporal features. 2D convolution is used in the fusion
model [30], and most networks will lose the input time signal
after the first convolutional layer. In [29], although the time-
flow network uses multiple frames as input, the time infor-
mation completely collapses after the first convolutional layer
because of the 2D convolution. In contrast, 3D convolution
network can extract spatiotemporal features across frames, and
it leads to a better ability to acquire time domain information
than 2D convolution network. The time relationship between
our RFID RSSI is the reason why we employ 3D convolution
to our network.

B. Model Framework

Our model is divided into three parts: edge feature extrac-
tion module, semantic feature processing module and fully
connected classification module.

The function of the edge feature extraction module is to
extract the shallow features of successive frames and enlarge
the receptive field. This module consists of four convolution
blocks and three max-pooling layers. Thereinto, convolution
block is composed of a convolution layer, a batch normal-
ization layer and a ReLU layer. The function of convolution
block is to extract the spatiotemporal feature and improve the
nonlinearity of the network. The aim of batch normalization

is to assist network training and make the training process
more stable. As for the ReLLU layer, its purpose is to add the
nonlinearity of the network. Max-pooling layer can enlarge
the receptive field and reduce training costs. The equation of
the module as follows.

Feasy = EFEM (z9, 21, ..., 15) 2)

where (zg, 21,..., 15) are 16 frames that are stacked together
and are the input of the network. EFEM represents edge
feature extraction module and F'ea,; represents the spatiotem-
poral feature.

After edge feature extraction module, we gain enough
spatiotemporal features. Through semantic feature process-
ing module, semantic information of multiple frames can
be extracted from the spatiotemporal feature. The structure
of semantic feature processing module is kind of like edge
feature extraction module. The difference between them is
that semantic feature processing module references the skip-
connection mechanism. The skip-connection mechanism gives
semantic feature processing module ability to add depth of the
network and avoid gradient disappearance problem at the same
time.

F =SFPM(Feag) (3)

where SF P M represents semantic feature processing module
and F' represent the output of semantic feature processing
module.

Fully connected classification modules integrates feature
representations together and outputs a value, which greatly re-
duces the impact of feature positions on classification. Through
fully connected layer, the probability of all classifications is
generated.

P=FC(F) “4)

C = argmax P; (5)



where F'C is on behalf of Fully connected classification
module and P is the output of our network. C is a visual
representation of P.

C. Loss Function

We use the Binary-Cross-Entropy (BCE) function as a loss
function to limit our model training. The objective variable
of the classification problem is discrete, while the objective
variable of the regression problem is continuous. The cross
entropy describes the distance between two probability distri-
butions. The smaller the cross entropy is, the closer the two
are to each other.

L = BCE(P,label) (6)

where ‘label’ is the label information corresponding to the
input sample, that is the true category. L is the loss function.

TSCNN network training process is shown in algorithm 1.
Its objective function is shown in equation 7.

f(0) = L(TSCNN (xg, 1, ..., 215), label) @)

Algorithm 1 Training Process of TSCNN.
Require:
f(6): TSCNN model objective function with parameters 6;
learning rate: «;
Exponential decay rate for the moment estimates: 31, (2;
0p: Initial parameter which is initialized by kaiming_normal;
mg < 0: Initialize 1°® moment vector;
vg < 0: Initialize 274 moment vector;
t < 0: Initialize timestep;
max_t: Initialize max timestep;
procedure UPDATE TSCNN
while ¢ < max_t do
t—t+1
gt < Vo fi(0:—1)
my < B1 mg_q + (1 - B1)g
v < PBo vim1 + (1 - Bo) g}
my  my/(1 - fy)
0+ vi/(1- B2)
9,5 — gtfl -« T/I’L\t/(\/UTt + 6)
end while
Return 6; (Resulting parameters)
end procedure

IV. EXPERIMENT
A. Dataset

In our investigation, since the current task does not have a
public available dataset for experimentation, we produced our
own training dataset and testing dataset and published them
called RF-men !.

The experimental environment for collecting the RFID RSSI
is shown in Figure 3. To ensure the universality and authentic-
ity of the collected data, the sexes of our volunteers are male

IConnection: https://pan.baidu.com/s/ImfRf7dAdUAS57jaHleXHfFw Ex-
traction code: jldk

and female and volunteers’ height ranges are 163cm~185cm
and weight ranges are 50kg~85kg. The volunteer stands
between the RFID tag wall and the four antennas array in
any position. There are 8 rows and 12 columns of tags on the
wall. The antenna array communicates with the RFID tag wall.
When the volunteer actions between the four antennas array
and the RFID tag wall, the RSSI will be sharply decreased
due to the occlusion effect of the human body. Four antennas
collect the RSSI values of all tags on the RFID tag wall every
turn to form a matrix, that is, the original data. In this work,
we formulate our problem as follows.

Let O C R" ¢ ( rxc is the number of tags) be the domain
of observable RSSI 0. Suppose we have n rounds RSSI {o; €
O, i =1,.., n}. When n = 1, the processed data is real-time
data. The raw data can be represented as:

0 = [0y,...,0,] € R"**" (8

The original data is transformed into the corresponding pixel
map x by radio tomographic imaging (RTI) [28]. We obtain
the weight matrix W by setting the width of weighting ellipse
to 0.007 and set « to 4.5.

M= (WI'W 4 o) 'WT )
z =110 (10)

where I is the identity matrix.

The details of our dataset are as follows. Our data sets are
all half-body data, not whole-body data. In real life, there may
be obstacles to block. We can not guarantee that we collect
the whole body data. The difference between RFID and image
recognition is that it can only use the data pre-processing
method without the need for an additional neural network to
separate the upper and lower limbs, so we choose half-body
data instead of whole-body data.

1) Training data: There are seven classes in our training
data: swing, wave, still, sit, bow, stand and walk. Among them,
swing, wave, still and bow are upper limb movements, while
sit, stand and walk are lower limb movements. Our various
data quantities are shown in Table I. The action classification
diagram is shown in Figure 4.

TABLE I
THE AMOUNT OF TRAINING DATA
Classes | swing | wave still sit bow | stand | walk
Amount | 3688 | 3751 | 8312 | 8085 | 3930 | 7974 | 8265

2) Testing data: There are eight classes in our training
data: sit-bow, sit-wave, sit-still, stand-bow, stand-wave, stand-
still, walk-swing and walk-still. Each class corresponds to its
respective upper and lower limb movements, and the specific
data amount is shown in Table II.

The reason why Testing data and Training data are not
completely unified is that the movements of the same upper
limb can correspond to the movements of different lower
limbs. Due to the difference in overall movements, the data
collected for the same upper limb movements will also differ.
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Fig. 3. RSSI data acquisition experiment scenario. The wall in the upper
right corner of the picture is the ordinary solid white wall of the experimental
site. The small powders on the wall are RFID tags. In practical applications,
the RFID tag is a small square piece of transparent plastic, which is almost
invisible to the naked eye. The four antennas in the lower-left corner of the
figure are fixed directly in front of the RFID tag wall through two metal
racks. They are 1.8m from the wall and are used to collect RFID signals. The
experimenter acted at any point between the wall and the antenna.

In training data, we combine all the data that belong to the
same category, but slightly different due to different upper or
lower limbs, as one class. However, in practical applications,
the whole-body behavior is classified, so testing data has
practical significance.

B. Training Details and Parameter

1) Training Details: We preprocessed the pixel maps x as
follows to form the input suitable for the TSCNN network.
First, we interpolate the 18 x 47 pixel map to 48 x 48 by
bicubic interpolation, making the new pixel map x. Then, we
use a similar sliding window mechanism to generate real-time
data, with the window sliding back one frame at a time and the
window size is 16. Stack the pixel map z in the sliding window
together to form a continuous pixel map flow (zg, z1,..., 15),
which we view as a ‘video clip.” In this way, our network can
handle real-time data. Finally, we take this continuous pixel
map flow (zg, x1,..., 15) as the input to our TSCNN network.

2) Parameter: During the training, we set the batch size
to 16 and trained a total of 200 epochs. For optimization, we
use Adam with 8 = 0.9, learning rate = 0.0001. The detailed
network hyperparameters are shown in Table III.

C. Baseline

We used our dataset to train CSI-DFLAR [18], RF-finger
[17], Tagfree [20] networks. Their batches are 16, 32, 32. They
are all trained in 200 epochs, and learning rate is 0.0001. Their
performance are shown in Table IV. The first column corre-
sponds to the whole body classification, the second column
corresponds to the upper and lower limb classification, and

the remaining four columns correspond to the classification
accuracy of CSI-DFLAR, RF-finger, Tagfree, and TSCNN
(ours), respectively.

D. Performance of Network

It can be intuitively seen from the confusion matrix in
Figure 6 that the TSCNN network has achieved a good
behavior classification effect. The abscissa is the predicted
classification result of TSCNN network. The ordinate is the
true classification. The confusion matrix is diagonally dis-
tributed.

We compared it with several state-of-the-art networks. Re-
sult shows in Table IV and Figure 5. We can easily find
out our network has the highest average accuracy rate. In
detail, compared with the CSI-DFLAR network, the average
accuracy rate of our TSCNN network is 22.1% higher than
it. Especially in the three types of whole-body classification
of stand-bow, stand-still, and stand-wave, whether it is upper
limb classification or lower limb classification, the accuracy
rate of our TSCNN network has been greatly improved, and
even for the classification of stand-still stand (lower limb),
our accuracy rate is improved by up to 70.7%.

Compared with the CSI-DFLAR network, the average ac-
curacy rate of RF-finger network is 5.2% higher than it. It
seems that the RF-finger network has made some progress,
but still 16.9% lower than our TSCNN network. For the three
categories of stand-bow, stand-still, and stand-wave, the CSI-
DFLAR network performs poorly, and the RF-finger network
does not perform better. In these three categories, the best
accuracy rate obtained by the RF-finger network is 74.8%,
while the worst accuracy rate of our TSCNN network is
82.4%.

Due to the introduction of LSTM network, the experimental
effect of Tagfree network is slightly improved, with an average
classification accuracy of 79.0%. However, It is still 15.6%
lower than our TSCNN network. According to the experiment,
the lowest classification accuracy of Tagfree is 35.4%. There-
fore, Tagfree network does not well solve this task.

E. Analyses

There is essentially no difference between the RF-finger
network and the CSI-DFLAR network. The difference between
those two networks is that the RF-finger network is deeper
than the CSI-DFLAR network. In most classifications, RF-
finger is slightly better than CSI-DFLAR networks, but in
sit-bow and walk-swing classifications, it is lower than CSI-
DFLAR networks. This phenomenon directly proves that the
deeper the number of layers, the effect of the network on all
classifications may not be better.

Through Table IV, we can easily find that when the action
to be detected is a dynamic action, the network (Tagfree,
TSCNN) recognition effect with multiple frames as the model
input is better than the network (CSI-DFLAR, COTS) with
single frame as the model input. Compared with single frame
activity recognition, frame series have additional temporal
information. The Tagfree network introduces LSTM in order to
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Fig. 4. Action classification diagram. The dataset is classified into two main categories, upper limb behaviors and lower limb behaviors. There are four types
of upper limb behaviors: bow, wave, still, and swing, and three types of lower limb behaviors: sit, stand, and walk.

TABLE II
THE AMOUNT OF TESTING DATA
Classes sit-bow sit-wave sit-still stand-bow stand-still stand-wave walk-swing walk-still
Fine bow sit wave sit still sit bow | stand | still | stand | wave | stand | swing | walk still walk
Amounts | 832 | 832 | 789 | 789 | 1017 | 1017 | 845 845 969 | 969 813 813 1574 | 1574 | 1563 | 1563
TABLE III TABLE IV
THE DETAILED NETWORK HYPERPARAMETERS EFFECT COMPARISON WITH STATE-OF-ART
Layer Fliter Num Classes Detail | CSI-DFLAR | RF-finger | Tagfree | TSCNN
Convolutional Layer with BN, ReLU 32 x3x3 it-b bow 92.8% 84.0% 93.7 % 88.4%
Maxpooling Layer 2x2x2 si-bow sit 93.4% 99.8% 96.2% | 100.0%
Convolutional Layer with BN, ReLU 64 x 3 x3 . wave 84.9% 88.0% 92.4% 100.0%
Maxpooling Layer 2x2x2 sit-wave Sit 99.7% 99.6% 99.9% | 100.0%
Convolutional Layer with BN, ReLU 128 x 3 x 3 . still 86.7% 99.3% 84.2% 95.3%
Convolutional Layer with BN, ReLU 128 x 3 x 3 sit-still Sit 100.0% 99.5% | 99.0% | 100.0%
Maxpooling Layer 2x2x2 bow 40.4% 49.6% 433% | 82.4%
Convolutional Layer with BN, ReLU 256 x 3 x 3 stand-bow  —cry 45.7% 52.0% 354% | 925%
Convolutional Layer with BN, ReLU 256 x 3 x 3 . still 53.7% 74.8% 82.5% 935%
Resnet (Convolutional Layer x 4) 256 x 3 x 3 stand-still stand 26.2% 35.0% 53.0% 96.9%
Maxpooling Layer 2xX2x2 wave 60.6% T4.7% 86.7% | 100.0%
Convolutional Layer with BN, ReLU 256 X 3 x 3 stand-wave stand 292% 50.8% 262% 1 100.0%
Convolutional Layer with BN, ReLU 256 x 3 x 3 - swing 66.0% 37.9% 82.0% 82.7%
Resnet (Convolutional Layer x 4) 256 x 3 x 3 walk-swing walk 97.1% 97.6% 99.6% 100.0%
Maxpooling Layer 2x2x2 ) stll 653% 38% | 713% | 81.8%
Fully Connected Layer with ReLU 2048 walk-still walk 98.5% 938.3% 99.1% 100.0%
Fully Connected Layer with Softmax 7 : : :

record the temporal information. Compared with CSI-DFLAR
and COST networks, the accuracy of classifying dynamic
actions has been significantly improved, but it is still not
satisfactory. This is due to the shortcomings of LSTM itself.
LSTM’s training process is slow and unstable. The loss of the
LSTM is hard to constringe. In contrast, 3D convolution does

not have such a problem. The experimental results prove that
TSCNN has significantly improved the classification effect of
dynamic classes than Tagfree.

F. Ablation Experiment

Due to the uncertainty of the actions, the completion time
of each action, the start and end time of each action cannot be
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determined. Unlike computer vision task, RFID gathers one
frame to require about 1 second. Although the smaller the
number of frames input by the model each time, the faster
the model starts, but the model detection effect is unstable.
In the case of high accuracy, we need to ensure that the
correct recognition rate of all actions can be guaranteed. As
can be seen from Figure 7, with 16 frames as model input,
the minimum recognition rate of motion is 81.8%. Therefore,
we choose 16 frames as the model input.

Table V compares the computational processing time for
each frame tested. CSI-DFLAR takes the shortest time due to
the simplest network. Tagfree uses the LSTM network for the
longest time.

V. FUTURE WORK

Our model has achieved excellent results on the current
task, but there are still some shortcomings. The minimum
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Fig. 7. Line chart of ablation experiment results. Among them, the x-axis
is the behavior classification, and the y-axis is the correct rate. Line chart of
ablation experiment results. The purple line is the performance of the TSCNN
network on the test data when the input is 4 frames. The orange line is the
performance of the TSCNN network on the test data when the input is 8
frames. The red line is the performance of the TSCNN network on the test
data when the input is 16 frames. It can be seen that when the input is 16
frames, the TSCNN network performs best and most stable.

TABLE V
TEST CALCULATION PROCESSING TIME COMPARISON

CSI-DFLAR
0.0109

Classes
Times(s)

RF-finger
0.0221

TSCNN
0.0268

Tagfree
0.0425

accuracy rate of TSCNN network recognition is 81.8%, which
already meet the basic requirements. However, in the case
of monitoring the behavior of key personnel and monitoring
important meeting rooms of commercial companies, such
accuracy is insufficient. We hope to propose a new network
and increase the accuracy rate of all classification to more than
95%.

On the basis of behavior classification, RFID-based behav-
ior detection and abnormal behavior detection are further im-
plemented. We will supervise whether there is any interesting
action in the monitoring area, locate the time of action, trim
the action type according to the time of action, and define the
abnormal, so as to achieve the detection of abnormal behavior
in a specific place, and report to the police in time.

Due to the difficulty of RFID data collection and prepro-
cessing, for example, it takes too long to collect data, specific
experimental sites need to be set up, and the method of data
preprocessing directly affects the success of the experiment.
Therefore, it takes a lot of time and energy to make the dataset
required for the experiment. In the future, we hope to expand
the dataset and improve the robustness and accuracy of the
model by generating adversarial samples.



VI. CONCLUSION

In this paper, we design the TSCNN network which suc-
cessfully extracted the spatiotemporal features of RFID RSSI,
and identify and classify 8 common human behaviors. TSCNN
is suitable for situations where LOS requirements cannot
reach the installation of video surveillance equipment or
privacy protection is required. The TSCNN network uses 3D
convolution to extract the temporal and spatial features in
consecutive frames. At the same time, we also collected and
disclosed the dataset called RF-men used in our experiments.
Through experiments, we have proved the effectiveness of the
TSCNN network. Its average classification accuracy rate is
94.6%, which is far more better than the state-of-art solutions.
We also demonstrate through ablation experiments that the
hyperparameters we selected are satisfactory and can meet the
daily needs of the high privacy protection place.

VII. ACKNOWLEDGEMENT

This research was supported by the National Key Research
and Development Project “High precision, low delay electro-
magnetic spectrum monitoring and comprehensive situation
analysis system” (grant No. 2018 YFF0301202).

REFERENCES

[1]1 Yao, Lina, et al. “RF-Care: Device-Free Posture Recognition for Elderly
People Using A Passive RFID Tag Array.” Eai Endorsed Transactions
2015. in press.

[2] Wang, Jue , D. Vasisht , and D. Katabi . “RF-IDraw: virtual touch screen
in the air using RF signals.” Acm Conference on Sigcomm ACM, 2014.
in press.

[3] Lei Yang, Yekui Chen, Xiang-Yang Li, Chaowei Xiao, Mo Li, and
Yunhao Liu. “Tagoram: Real-time tracking of mobile RFID tags to high
precision using COTS devices.” ACM, 2014. In press.

[4] Dong Cui, Qiang Zhang. “The RFID data clustering algorithm for im-
proving indoor network positioning based on LANDMARC technology.”
Cluster Computing 5(2017):1-8.

[5] He Xu , Manxing Wu, Peng Li, Feng Zhu, Ruchuan Wang. “An
RFID indoor positioning algorithm based on support vector regression.”
Sensors 18.5(2018):1504-.

[6] Ding, Han , et al. “FEMO: A Platform for Free-weight Exercise
Monitoring with RFIDs.” Acm Conference on Embedded Networked
Sensor Systems 0. in press.

[7] Ding, Han , et al. “A platform for free-weight exercise monitoring with
passive tags.” IEEE Transactions on Mobile Computing (2017):1-1.

[8] He Xu, Ye Ding, Peng Li, Ruchuan Wang, Yizhu Li. “An RFID Indoor
Positioning Algorithm Based on Bayesian Probability and K-Nearest
Neighbor.” Sensors 17.8(2017):1806-.

[9] Yan Huang, Wei Wang, and Liang Wang. “Video Super-Resolution via

Bidirectional Recurrent Convolutional Networks.” IEEE Transactions on

Pattern Analysis and Machine Intelligence PP.99(2017):1-1.

Takanobu Nakahara, and Katsutoshi Yada. “Analyzing consumers’ shop-

ping behaviour using RFID data and pattern mining.” Advances in Data

Analysis & Classification 6.4(2012):355-365.

W. Huang, S. Zhu, S. Wang, J. Xie and F Zhang, “Sparse Representation

for Device-Free Human Detection and Localization with COTS RFID,”

2019 International Conference on Algorithms and Architectures for

Parallel Processing (ICA3PP), Melbourne, 2019.

Longfei Shangguan, Zheng Yang, Alex X. Liu, Zimu zhou, Yunhao

Liu. “Relative localization of RFID tags using spatial-temporal phase

profiling.” Usenix Conference on Networked Systems Design & Imple-

mentation USENIX Association, 2015. in press.

Li, Sheng , et al. “Fast Spatio-Temporal Residual Network for Video

Super-Resolution.” CVPR, 2019. in press.

Maja Stikic, Tam Huynh, Kristof Van Laerhoven, Bernt Schiele. “ADL

recognition based on the combination of RFID and accelerometer

sensing.” Pervasive Computing Technologies for Healthcare, 2008. in
press.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]
[32]

[33]

Michael Buettner, Richa Prasad, Richa Prasad, Matthai Philipose, David
Wetherall. “Recognizing daily activities with RFID-based sensors.”
UbiComp 2009: Ubiquitous Computing, 11th International Conference,
UbiComp 2009, Orlando, Florida, USA, September 30 - October 3,
2009, Proceedings ACM, 2009. in press.

L. Wang, T. Gu, H. Xie, X. Tao, J. Lu, and Y. Huang. “A Wearable RFID
System for Real-Time Activity Recognition Using Radio Patterns.” In-
ternational Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services Springer, Cham, 2013. in press.

Chuyu Wang, et al. “Multi-Touch in the air: Device-free finger tracking
and gesture recognition via COTS RFID.” IEEE INFOCOM, 2018. in
press.

Qinghua Gao, Jie Wang, Xiaorui Ma, Feng Xueyan, Hongyu Wang.
“CSI-based device-free wireless localization and activity recognition
using radio image features.” IEEE Transactions on Vehicular Technology
(2017):1-1.

Yue Zheng, et al. “Zero-effort cross-domain gesture recognition with
Wi-Fi.” Proceedings of the 17th Annual International Conference on
Mobile Systems, Applications, and Services, 2019. in press.

Xiaoyi Fan, Wei Gong, Jiangchuan Liu. “TagFree activity identification
with RFIDs” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 2018.

Du Tran, et al. “A closer look at spatiotemporal convolutions for action
recognition.” CVPR, 2018. in press

Moez Baccouche, Franck Mamalet, Franck Mamalet, Christian Wolf,
Atilla Baskurt, Christophe Garcia, Atilla Baskurt. “Sequential Deep
Learning for Human Action Recognition.” Human Behavior Unterstand-
ing - Second International Workshop, HBU 2011, Amsterdam, The
Netherlands, November 16, 2011.

Shuiwang Ji, Wei Xu, Ming Yang, Kai Yu. “3D Convolutional Neural
Networks for Human Action Recognition.” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(1):221-231, Jan 2013.

Shou Zheng, Dongang Wang, Shih-Fu Chang. “Temporal action local-
ization in untrimmed videos via multi-stage cnns.” CVPR, 2016. in press
Yingwei Pan, Tao Mei, Ting Yao, Houqgiang Li, Yong Rui. “Jointly
modeling embedding and translation to bridge video and language.”
CVPR, 2016. in press.

Molchanov, Pavlo , et al. “Online detection and classification of dynamic
hand gestures with recurrent 3D convolutional neural networks.” CVPR,
2016. in press

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, Manohar
Paluri. “Learning spatiotemporal features with 3d convolutional net-
works.” 2015 IEEE International Conference on Computer Vision
(ICCV) IEEE, 2015. in press.

Joey Wilson, Neal Patwari. “Radio tomographic imaging with wireless
networks.” IEEE Transactions on Mobile Computing, 2010, 9(5):621-
632.

Simonyan Karen, Zisserman Andrew. ‘“Two-stream convolutional net-
works for action recognition in videos.” NIPS, 2014. in press.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei. “Large-scale video classification with convolutional neural
networks.” CVPR, 2014. in press.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, Jian Sun. “Identity map-
pings in deep residual networks.” ECCYV, 2016. in press.

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger.
“Densely connected convolutional networks.” CVPR, 2017. in press.
Laptev Ivan. “On space-time interest points.” International Journal of
Computer Vision 64.2-3(2005):107-123.





