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Abstract—Binary Convolutional Neural Networks (CNNs) have
significantly reduced the number of arithmetic operations and
the size of memory storage needed for CNNs, which makes
their deployment on mobile and embedded systems more feasible.
However, after binarization, the CNN architecture has to be re-
designed and refined significantly due to two reasons: 1. the large
accumulation error of binarization in the forward propagation,
and 2. the severe gradient mismatch problem of binarization in
the backward propagation. Even though substantial effort has
been invested in designing architectures for single and multiple
binary CNNs, it is still difficult to find an optimized architecture
for binary CNNs. In this paper, we propose a strategy, named
NASB, which adapts Neural Architecture Search (NAS) to find
an optimized architecture for the binarization of CNNs. In the
NASB strategy, the operations and their connections define a
unique searching space and the training and binarization of
the network progress in the three-stage training algorithm. 1

Due to the flexibility of this automated strategy, the obtained
architecture is not only suitable for binarization but also has low
overhead, achieving a better trade-off between the accuracy and
computational complexity compared to hand-optimized binary
CNNs. The implementation of the NASB strategy is evaluated on
the ImageNet dataset and demonstrated as a better solution com-
pared to existing quantized CNNs. With insignificant overhead
increase, NASB outperforms existing single and multiple binary
CNNs by up to 4.0% and 1.0% Top-1 accuracy respectively,
bringing them closer to the precision of their full precision
counterpart.

Index Terms—binary neural networks, neural architecture
search, quantized neural networks, efficiency

I. INTRODUCTION

With the increasing depth and width of Convolutional Neu-

ral Networks (CNNs), these networks have demonstrated many

breakthroughs in a wide range of applications, such as image

classification, object detection, and semantic segmentation [1]–

[3]. However, the large number of Flops and the storage

associated with large numbers of parameters limits deployment

on resource-constrained mobile and embedded platforms.

Numerous researchers have proposed a variety of ap-

proaches to address the efficiency problems associated with

deploying CNNs, including low bit-width quantization [4],

[5], network pruning [6], and efficient architecture design [2],

[7]. Binarization [8], [9] is the most efficient quantization

method among all those methods with reduced bit-widths,

1The code and pretrained models will be publicly available.

where a real-valued weight or activation is represented with a

single bit and the multiplication and addition of a convolution

can be implemented simply by XNOR and popcount bitwise

operations, which are roughly 64 times faster to compute and

require thirty two times less storage than their full precision

counterparts. However, the extreme quantization method of

single binary CNNs introduces the largest accumulation error

in the forward propagation. In addition, during the backward

propagation, its gradient flow is the most difficult to determine

due to the high gradient mismatch problem [10] among all

quantization methods with reduced bit-widths.

Existing published work focuses on improving the quantiza-

tion quality mainly by using value approximation and structure

approximation. These two approximations are complemen-

tary and could be exploited together. Value approximation

seeks to find an optimized algorithm to quantize weights and

activations while preserving the original network architec-

ture. Knowledge distillation [11], [12] and loss-aware [13]

objectives are introduced to find optimized local minima

for quantized weights and activations. Advanced quantization

functions [4], [5], [10] are proposed to minimize the quanti-

zation error between quantized values and their full-precision

counterparts. Tight approximation of the derivative of the

non-differentiable activation function [9], [14] is explored to

alleviate the gradient mismatch problem. Unlike the above

value approximation methods, structure approximation seeks

to redesign the architecture of quantized CNNs to match

the representational capacity of their original full-precision

counterpart. Structure approximation is more important for

binary CNNs than for other low bit-width CNNs because

binarization introduces the largest accumulation error and

the severest gradient mismatch problem among all quantiza-

tion methods with reduced bit-widths. Bi-Real Net [9] and

Group-Net [15] are the state-of-the-art structure approximation

methods for single and multiple binary CNNs, respectively.

However, designing architectures for quantized CNNs is highly

non-trivial especially for binary CNNs.

In this paper, the NASB strategy, a version of Neural Archi-

tecture Search (NAS) adapted for binarization, is proposed to

automatically seek an optimized structure approximation for

binary CNNs. After searching in a large space, the finalized

CNN architecture is suitable for binarization, and the accuracy
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of the binarized version outperforms previous binary CNNs

with insignificant computational complexity increase.

The main contributions of this paper are:

• The NASB strategy, which adapts NAS to automatically

find an optimized architecture for the binarization of

CNNs. In the NASB strategy, the operations and their

connections define a unique searching space and the

training and binarization of the network progress in the

three-stage training algorithm.

• A comparison to the recent literature of binary CNNs.

NASB achieves a sizable accuracy increase with neg-

ligible additional overhead, providing a better trade-off

between accuracy and efficiency.

• An evaluation of the NASB strategy for ResNet on

the ImageNet classification dataset, providing extensive

experimental results to show its effectiveness.

II. RELATED WORK

In this section, recent network quantization methods and

efficient architecture design developments of CNNs are de-

scribed.

A. Network quantization

There is substantial interest in research and development of

dedicated hardware for CNNs to be deployed on embedded

systems and mobile devices, which motivates the study of

network quantization. Low bit-width approaches [4], [5], [16],

[17] use quantized weights and activations using fixed-point

numbers, which reduces model size and compute time, but

still requires multipliers to compute. Binary CNNs [8], [18],

[19] are trained with weights and activations constrained to

binary values +1 or −1, which can be categorized as single

binary CNNs. The Ternary Weight Networks (TWN) [20]

approach is proposed to reduce the loss of single binary CNNs

by introducing 0 as the third quantized value, while Trained

Ternary Quantization (TTQ) [21] enables the asymmetry and

training of its scaling coefficients. However, the accuracy

degradation of single binary and ternary CNNs is unacceptable

for advanced CNNs like ResNet and large scale datasets

like ImageNet. Multiple binary CNNs [15], [22]–[24] are

promising attempts to reduce the accuracy gap between binary

CNNs and their full precision counterpart. However, all the

architectures of current single or multiple binary CNNs are

human-designed. Further architecture optimization is possible

using automated methods, such as [19], which encodes the

number of channels in each layer, but does not change the

operations and their connections in the model; changes that

we do consider in our proposed NASB strategy.

B. Efficient architecture design

Recently, more and more literature focuses on the efficient

architecture design for the deployment of CNNs. Replacing

3×3 convolutional weights with 1×1 weights (in SqueezeNet

[3] and GoogLeNet [25]) have been suggested to decrease the

computational complexity. Moreover, separable convolutions

are adopted in Inception series [26] and further generalized as
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Fig. 1. Human-designed architecture for single and multiple binary CNNs.
conv and bconv refer to full precision and binary convolutional layer,
respectively, while Batch Normalization and the Relu layers are omitted.

depthwise separable convolutions in Xception [27], MobileNet

[2] and ShuffleNet [7]. Group convolution has been used as an

efficient way to enhance efficiency in [7], [28], where the input

activations and convolutional kernels are factorized into groups

and executed independently inside each group. The MobileNet

[29] and ShuffleNet [30] series have been leveraging depthwise

separable convolutions and shuffle operations to achieve a

better trade-off between efficiency and accuracy. ESPNetv2

[31] uses group point-wise and depth-wise dilated separable

convolutions to learn representations from a large effective

receptive field, delivering state-of-the-art performance across

different tasks. NAS [32]–[34] has demonstrated much success

in automating network architecture design, achieving state-of-

the-art efficiency [35], [36].

III. METHOD

In this section, the problem of finding an architecture for

the binarization of CNNs is defined and presented. Then, we

explain the NASB strategy, which adapts the NAS technique

to find an optimized architecture for binarizing CNNs. Finally,

variants of the NASB strategy are illustrated to enhance its

efficiency.

A. Problem definition

Given a full-precision convolutional cell, what is an opti-

mized architecture to binarize it? The accumulation error in

the forward propagation of binarization is the largest and the

gradient flow in the backward propagation is the most difficult

to take care of among all quantization methods with different

bit-widths. As a result, it is non-trivial to find an optimized

architecture for binarizing CNNs. For the purposes of this

paper, a convolutional cell can be a convolutional layer, block,

group, and network.

There have been various attempts to answer the above

question, as shown in Fig. 1. Fig. 1(a) is a full precision

convolutional block. Fig. 1(b), (c), and (d) describe proposed

architectures in the literature representing XNOR [8], Bi-

Real [9], and Group-Net [15], respectively, where the scaling

coefficients have been omitted. Although a lot of effort has

been dedicated to manually designing an architecture for single

and multiple binary CNNs, using an automated approach

to explore an optimized convolutional cell architecture as



represented by the question marks in Fig. 1(e) remains a fertile

area for research.

The question can be expressed as a directed acyclic graph in

Fig. 1(e), which represents an ordered sequence of three nodes

and three edges with one operation for each edge. The number

of nodes, edges, and operations for each edge can be freely

selected. Each node xi represents a feature map and each edge

(i, j) is associated with several operations oi,j to transform xi.

Here the convolutional cell has one input and output node, and

its output is obtained by addition of all intermediate nodes. In

the following, the binarization and NAS techniques adapted in

this paper are presented.

a) Binary convolutional neural networks: Given a full

precision convolutional layer, its inputs, weights and outputs

are denoted as I ∈ RN×Cin×H×W , W ∈ RCin×Cout×h×w

and O ∈ RN×Cout×H×W , respectively, where N , Cin, Cout,

H , W , h and w refer to the batch size, the number of input

and output channels, the height and width of the feature maps,

and the height and width of the weights, respectively.

Using the binarization method of weights in [8], we ap-

proximate the full precision weights W as binary weights bW

with the sign of W and the scaling coefficient s, where the

scaling coefficient is computed as the mean of the absolute

values of W . Adopting the Straight Through Estimator (STE)

[37], the forward and backward propagations of the weights

binarization are shown as follows.

Forward: bW = s× sign(W )

Backward:
∂L

∂W
=

∂L

∂bW
× ∂bW

∂W
≈ s× ∂L

∂bW

(1)

where L is the total loss.

Using the binarization method of activations in [9], we

approximate the full precision activations as binary activations

bI by a piecewise polynomial function. The forward and

backward propagations of the activations binarization can be

written as follows.

Forward: bI = sign(I)

Backward:
∂L

∂I
=

∂L

∂bI
× ∂bI

∂I

where
∂bI

∂I
=







2 + 2I,−1 ≤ I < 0
2− 2I, 0 ≤ I < 1
0, otherwise

(2)

b) Gradient based neural architecture search: We adapt

a gradient-based NAS in [38]. To reduce the memory footprint

during training the over-parameterized network, we use the

strategy from [34] to binarize and learn the M real-valued

architecture parameters αi.

In the forward propagation, the M real-valued architecture

parameters αi are transformed to the real-valued path weights

pi, and then to the binary gates gi as follows.

pi =
exp(αi)

M
∑

j=1

exp(αj)

(3)

gi = binarize(pi) =

{

1,with probability pi
0,with probability (1− pi)

(4)

In the backward propagation, the STE [37] is also applied.

∂L

∂pj
≈ ∂L

∂gj
(5)

The gradient w.r.t. architecture parameters can be estimated

as follows.

∂L

∂αi

=

M
∑

j=1

∂L

∂pj

∂pj
∂αi

≈
M
∑

j=1

∂L

∂gj

∂pj
∂αi

=
M
∑

j=1

∂L

∂gj
pj(δij − pi)

(6)

where δij = 1 if i = j and δij = 0 if i 6= j.

B. NASB strategy

In this section, we present the details of the NASB strategy.

To apply NAS for binarizing CNNs, the key innovation is to

leverage the NAS technique to find a NASB-convolutional cell

as an optimized architecture for binarizing their full precision

counterpart, where the NASB-convolutional cell can be a

replacement for a binarized convolutional layer, block, group,

and network. The NASB strategy consists of the following

stages: searching stage, pretraining stage, and finetuning stage.

In the following, the search space of a NASB-convolutional

cell in the NASB strategy is described, including its connec-

tions and operations. The corresponding training algorithm is

also presented.

a) Connections of a NASB-convolutional cell: Consid-

ering that we are exploring an optimized architecture for

a convolutional group as an example, the connections of a

NASB-convolutional cell in the NASB strategy are explored

at the searching stage as shown in Fig. 2.

Fig. 2(a) describes all the connections of a NASB-

convolutional cell during the training of the searching stage,

which consists of a backbone and a NAS-convolutional cell.

The left cell is the backbone of the NASB-convolutional cell,

which is a standard convolutional group in ResNet [1]. The

right cell is considered as a NAS-convolutional cell, which is a

directed acyclic graph consisting of five nodes, ten edges, and

ten operations for every edge. Here five nodes are used to keep

the layer depth of a NASB-convolutional cell in the NASB

strategy the same as its full precision counterpart, which will

not increase the latency during inference. The connections

of the backbone are fixed and there is no need to specify

architecture parameters for it. During the training of the

searching stage, the model weights of the NASB-convolutional

cell and architecture parameters of the NAS-convolutional cell

can be updated alternately, and only one operation on every

edge in the NAS-convolutional cell is sampled and active at

every step. In this way, the inactive paths reduce the memory

requirements.
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Fig. 2. Exploring connections of a NASB-convolutional cell at the searching stage. conv and bconv refer to full precision and binary convolutional layer,
respectively. ops refers to a set of operations as shown in Fig. 3, among which one operation is active during the training of the searching stage. ⊕ refers to
the element-wise addition between the tensors of the two nodes with the same number.

...identityzero bconv max pool

Fig. 3. A set of operations in every ops.

Fig. 2(b) is an example of the finalized architecture after

completing the training of the searching stage. In the NAS-

convolutional cell, we retain only one predecessor for every

node and one operation for every edge except for the node

with the number 0. Fig. 2(c) is a more compact representation

of Fig. 2(b), showing the output of every node in the NASB-

convolutional cell (except for the node with the number 0)

defined as the addition of the two inputs from the backbone

and the NAS-convolutional cell.

b) Operations of a NASB-convolutional cell: Taking the

number of bitwise operations and binary parameters of a 3×3
binary convolution as one unit, the number of bitwise opera-

tions and binary parameters of all the operations used in the

NASB strategy are unified as shown in Table I. The overhead

of Batch Normalization and Relu layer is not included.

The number of bitwise operations and binary parameters

of the binary convolution is NCoutHW × 2Cinhw and

CoutCinhw, respectively, when no bias is added. Scaling the

kernel size of the binary convolution by a scaling coefficient

of sk, both the number of bitwise operations and binary

parameters are scaled by s2k. Changing the dilation rate will

not increase the number of bitwise operations and binary

parameters of the binary convolution when the additional cost

introduced by padding is omitted. The number of bitwise

operations required for computing every individual output of

the binary convolution is approximately 2Cinhw, while the

TABLE I
THE NUMBER OF BITWISE OPERATIONS AND BINARY PARAMETERS OF THE

OPERATIONS USED IN NASB. F AND B REFER TO FULL PRECISION AND

BINARY PRECISION, RESPECTIVELY. BO AND BP REFER TO BITWISE

OPERATIONS AND BINARY PARAMETERS, RESPECTIVELY.

Operations Bo Bp

op0 = Zero (F) 0 0

op1 = 3× 3 average pooling (F) < 1 0

op2 = 3× 3 max pooling (F) < 1 0

op3 = Identity (F) 0 0

op4 = 1× 1 convolution (B) 1/9 1/9
op5 = 3× 3 convolution (B) 1 1

op6 = 5× 5 convolution (B) 25/9 25/9
op7 = 1× 1 dilated convolution (B) 1/9 1/9
op8 = 3× 3 dilated convolution (B) 1 1

op9 = 5× 5 dilated convolution (B) 25/9 25/9

number of bitwise operations required for computing every

individual output of a 3 × 3 max and average pooling is 8d
and 16d, respectively, where d is the bit-width of pooling

operations and 2Cinhw ≫ 16d in general. Pooling will not

introduce any parameters.

c) Three-stage training algorithm: As shown in Algo-

rithm 1, the training algorithm of the NASB strategy consists

of three stages: the searching stage, pretraining stage, and

finetuning stage. The goal of the searching stage is to get an

optimized binary CNN architecture, which is done by using

NAS to train a binary CNN model Ms from scratch on dataset

D. The pretraining stage is used to train a full precision CNN

model Mp from scratch on dataset D′, whose architecture is

finalized from the searching stage. The finetuning stage is used

to binarize the pre-trained CNN obtained from the pretraining

stage and finetune it on dataset D′ to get a binary CNN model

Mf .

The binary CNN model finalized from the searching stage

is the same as model Mf used in the finetuning stage except



Algorithm 1 Three-stage training algorithm

Input: Dataset D = {(Xi, Yi)}Si=1
for the searching stage,

dataset D′ = {(X ′

i, Y
′

i )}Si=1
for the pretraining and fine-

tuning stages.

Output: Binary CNN model Ms for the searching stage, full

precision CNN model Mp for the pretraining stage, and

binary CNN model Mf for the finetuning stage.

Stage 1: The searching stage

1: for epoch = 1 to L do

2: for batch = 1 to T do

3: Randomly sample a mini-batch validation data from

D, freeze the model weights of model Ms, and

update its architecture parameters.

Randomly sample a mini-batch training data from D,

freeze the architecture parameters of model Ms, and

update its model weights.

4: end for

5: end for

Stage 2: The pretraining stage

6: for epoch = 1 to L do

7: for batch = 1 to T do

8: Randomly sample a mini-batch training data from D′

and update the weights of model Mp.

9: end for

10: end for

Stage 3: The finetuning stage

11: for epoch = 1 to L do

12: for batch = 1 to T do

13: Randomly sample a mini-batch training data from D′

and update the weights of model Mf .

14: end for

15: end for

for some minor differences because of their different datasets.

Performing the searching stage on a small dataset D rather

than directly on target dataset D′ can be regarded as a proxy

task to find the optimized binary architecture model Mf for

the finetuning stage, which can enable a large search space and

significantly accelerate the computation of the NASB strategy.

After binarizing the full precision CNN model Mp from the

pretraining stage, we directly get the binary CNN model Mf

for the finetuning stage.

C. Variants of the NASB strategy

In this section, a number of variants of NASB are presented

to improve the accuracy over state-of-the-art multiple binary

CNNs. Taking NASB ResNet18 as an example, there are four

NASB-convolutional cells, and each of them is composed of

five nodes. We retain only one predecessor for every node

and one operation for every edge except for the node with the

number 0. By changing the number of NASB-convolutional

cells and operations for every node, different variants of the

NASB strategy are explored.

The NASBV1 strategy enlarges the search space of a

NASB-convolutional cell. In NASBV1 ResNet18, there are

TABLE II
ACCURACY OF NASB RESNET18 VARIANTS

Variants Top-1 Top-5

NASB ResNet18 60.5% 82.2%
NASBV1 ResNet18 60.3% 82.3%
NASBV2 ResNet18 61.1% 82.7%
NASBV3 ResNet18 62.8% 84.1%
NASBV4 ResNet18 65.3% 85.9%
NASBV5 ResNet18 66.6% 87.0%

TABLE III
COMPARISONS OF RESNET18 WITH MULTIPLE BINARY METHODS.

Model Top-1 Top-5

Full precision 69.7% 89.4%
ABC-Net (M = 5, N = 5) 65.0% 85.9%
Group-Net (4 bases) 64.2% 85.6%
Group-Net** (4 bases) 66.3% 86.6%
NASBV4 65.3% 85.9%
NASBV5 66.6% 87.0%

two NASB-convolutional cells, and each of them is composed

of nine nodes. In NASBV2 ResNet18, we adapt the method

in [38] to retain four operations instead of one operation for

the output node of the NASB-convolutional cell. In NASBV3

ResNet18, all the NASB-convolutional cells are copied once

to get two binary branches. The two branches can be par-

allelized thoroughly except that we merge the information

of the two branches at the end of every block using an

addition operation as in [15]. All the NASB-convolutional

cells are different from each other, which can explore the

optimized binary architecture for every NASB-convolutional

cell. In NASBV4 ResNet18, we retain four operations (except

for identity) instead of one operation for every node of the

NASB-convolutional cell. In NASBV5 ResNet18, we retain

eight operations for the output node and six operations for

the other nodes of the NASB-convolutional cell. Fig. 2(a) is

the connections of a NASB-convolutional cell at the searching

stages for the NASB strategy and the NASBV5 strategy. Fig. 4

is the derived architecture of the NASBV5 strategy after the

searching stage.

IV. EXPERIMENTAL RESULTS ON IMAGENET DATASET

We applied our proposed NASB strategy for the binarization

of ResNet [1], trained and evaluated on the ILSVRC2012

classification dataset [39]. ResNet is one of the most popular

and advanced CNNs.

A. Implementation details

During the searching stage, we train model Ms on CIFAR-

10. Half of the CIFAR-10 training data is used as a validation

set. The Relu layer is not added in the searching stage. We

train model Ms for 100 epochs with batch size 64. We use

momentum SGD and Adam to optimize the model weights

and architecture parameters. The experiments are performed

on one GPU. In NASB ResNet18 and NASB ResNet34, all

NASB-convolutional cells adopt four nodes and they use three
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Fig. 4. Architecture of NASB-convolutional cells in NASBV5 ResNet18. Nconv cell refers to NASB-convolutional cell. conv and bconv refer to full precision
and binary convolutional layer, respectively.

TABLE IV
COMPARISONS WITH SINGLE BINARY CNNS

Model Full BNN XNOR Bi-Real NASB

ResNet18
Top-1 69.7% 42.2% 51.2% 56.4% 60.5%
Top-5 89.4% 67.1% 73.2% 79.5% 82.2%

ResNet34
Top-1 73.2% − − 62.2% 64.0%
Top-5 91.4% − − 83.9% 84.7%

ResNet50
Top-1 76.0% − − 62.6% 65.7%
Top-5 92.9% − − 83.9% 85.8%

TABLE V
COMPARISONS OF RESNET18 WITH FIXED-POINT QUANTIZATION

METHODS.

Model W A Top-1 Top-5

Full precision 32 32 69.7% 89.4%
Dorefa-Net 2 2 62.6% 84.4%
SYQ 1 8 62.9% 84.6%
Lq-Net 2 2 64.9% 85.9%
NASBV4 1 1 65.3% 85.9%

nodes for NASB ResNet50. Due to memory limitations, we

remove convolutions and dilated convolutions with kernel size

three and five for NASB ResNet50 during this stage.

During the pretraining stage, we train model Mp obtained

from the last searching stage on the ILSVRC2012 classifica-

tion dataset. A 224× 224 crop is randomly sampled from an

image or its horizontal flip, with the per-pixel mean subtracted.

We do not apply any more sophisticated data augmentation

to the training data. We use standard single-crop testing for

evaluation. We insert the Relu layer and use the layer order

as Conv→Relu→BN, and the tanh function is applied to

activation after the Batch Normalization layer.

During the finetuning stage, we binarize and train the pre-

trained model Mp from the pretraining stage into model Mf .

The weights and activations are binarized using the method

described in Section III-A0a. We keep 1×1 convolution to full-

precision in this stage. We adopt Adam as the optimizer and

set weight decay to 0 since the binarization can be recognized

as a kind of regularization.

B. Experimental results of NASB variants

The accuracy of different variants is compared in Table II.

The accuracy of NASBV1 ResNet18 is almost the same as

that of NASB ResNet18. We conjecture that 28/36 of the

total edges in NASBV1 ResNet18 are removed rather than

6/10 of the total edges in NASB ResNet18, which will change

model Ms too much and remedy the benefits of a larger search

space. For other variants of the NASB strategy, we observe the

increased operations of NASB-convolutional cell results in a

Top-1 accuracy improvement by up to 6.0%. It is expected

that with more operations retained, NASB variants can achieve

higher accuracy. We present the finalized architecture of four

NASB-convolutional cells in NASBV5 ResNet18, as shown



TABLE VI
MEMORY USAGE AND FLOPS CALCULATION OF BI-REAL NET, GROUP-NET, NASB NET, AND FULL PRECISION MODELS

Model Memory usage Memory saving Flops Speedup

Bi-Real ResNet18 33.6Mbit 11.14 × 1.63× 108 11.06 ×

NASB ResNet18 33.8Mbit 11.07 × 1.71× 108 10.60 ×

ResNet18 374.1Mbit − 1.81× 109 −

Bi-Real ResNet34 43.7Mbit 15.97 × 1.93× 108 18.99 ×

NASB ResNet34 44.0Mbit 15.86 × 2.01× 108 18.26 ×

ResNet34 697.3Mbit − 3.66× 109 −

Bi-Real ResNet50 176.8Mbit 4.62 × 5.45× 108 7.08 ×

NASB ResNet50 178.1Mbit 4.60 × 6.18× 108 6.26 ×

ResNet50 817.8Mbit − 3.86× 109 −

ABC-Net (M = 5, N = 5) ResNet18 72.3Mbit 5.17 × 6.74× 108 2.70 ×

Group-Net (4 bases) ResNet18 62.1Mbit 6.03 × 2.62× 108 6.90 ×

Group-Net** (4 bases) ResNet18 83.9Mbit 4.46 × 3.38× 108 5.35 ×

NASBV4 ResNet18 70.7Mbit 5.30 × 2.81× 108 6.45 ×

NASBV5 ResNet18 88.3Mbit 4.24 × 3.52× 108 5.15 ×

ResNet18 374.1Mbit − 1.81× 109 −

in Fig. 4, which is derived from Fig. 2(a) after the searching

stage. In this figure, we retain eight operations for the output

node and six operations for the other nodes of every NASB-

convolutional cell.

C. Comparisons with the state-of-the-art quantized CNNs

As shown in Table IV, Table III, and Table V, we com-

pare our NASB strategy with single binary CNNs, multiple

parallel binary CNNs, and fixed-point CNNs using different

quantization methods, respectively. All the comparison results

are directly cited from the corresponding papers.

As shown in Table IV, Bi-Real Net [9] is the state-of-the-

art single binary CNNs. Compared with Bi-Real ResNet with

varying layers from 18 to 50, our proposed NASB ResNet

shows consistent accuracy improvement by 4.1%, 1.8%, and

3.1% Top-1 accuracy, respectively.

As shown in Table III, we compare our NASB strategy with

ABC-Net and Group-Net, which is a multiple binary CNN and

can be implemented in a parallel way. Both NASBV4 and

NASBV5 achieve higher accuray than ABC-Net. NASBV4

and NASBV5 show better accuracy performance than Group-

Net and Group-Net** by 1.1% and 0.3%, respectively.

Table V shows Lq-Net is the current best-performing fixed-

point method. Multiple binary CNNs with K binary branches

are preferable to fixed-point CNNs with
√
K bit-width con-

sidering the computational complexity and memory bandwidth

[15]. Thus, NASBV4 with four operations retained per node

has less overhead while still achieving better accuracy.

D. Computational complexity analysis

To analyze the computational complexity of our proposed

NASB strategy, we compare with Bi-Real Net, Group-Net,

and full precision models in terms of memory usage and

computation speedup as shown in Table VI.

The memory usage is computed as the summation of the

number of real-valued parameters times thirty two bit and

the number of binary parameters times one bit. We use Flops

to measure the computation and assume that bitwise XNOR

and popcount operations can be calculated as 64-way parallel

operations on current CPUs. Thus, the Flops is calculated as

the sum of the number of real-valued operations plus 1/64
of the number of bitwise operations. Following the suggestion

from [8], [9], [15], we keep the first convolutional layer, the

last fully connected layer, and the downsampling layer as full

precision.

Bi-Real Net [9] can be seen as a suboptimal binary CNN

architecture of our NASB Net, where one edge connected to its

last node is retained for every node and one identity operation

remains for every edge. The finalized NAS-convolutional cells

in NASB ResNet18 includes twelve max pooling and four

identity operations, and they are composed of 20 max pooling

and twelve identity operations in NASB ResNet34. In NASB

Res50, the NAS-convolutional cells consist of 41 max pooling,

six identity, and one 1x1 dilated convolution operations. Com-

pared to Bi-Real Net, the increased computational complexity

is mainly due to max pooling. The Flops or the number of

bitwise operations of a 3x3 max pooling is less than that

of a 3x3 convolution, and the additional number of trainable

parameters introduced by Batch Normalization of max pooling

operation is 2Cout.

As shown in Table VI, both the additional memory usage

and Flops of NASB ResNet of varying depths are negligible

compared to Bi-Real Net. ABC-Net requires significantly more

Flops than Group-Net and NASB variants. The increased

memory usage and Flops of NASBV5 and NASBV4 ResNet18

are insignificant compared to Group-Net** and Group-Net.

V. CONCLUSION

In this paper, we proposed NASB, a strategy to find an

accurate architecture for binary CNNs. Specifically, the NASB

strategy uses the NAS technique to identify an optimized

architecture in a large search space, which is suitable for

binarizing CNNs. We use the ImageNet classification dataset

to prove the effectiveness of our proposed approach. With

insignificant overhead increases, the NASB strategy and its

variants achieve up to 4.0% and 1.0% Top-1 accuracy im-

provement compared with the state-of-the-art single and mul-

tiple binary CNNs, respectively, providing a better trade-off



between accuracy and efficiency. It is worth to clarify that we

can easily extend our proposed NASB strategy to fixed-point

quantized convolutional neural networks and other models for

computer vision tasks beyond image classification, which can

be explored further.
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