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Abstract—Weather radar images provide critical informa-
tion for mesoscale weather nowcasting which plays significant
roles in a range of fields including civil aviation and navigation.
Differed from traditional radar exploration methods, this paper
presents a novel prediction model based on a deep recurrent
neural network (DeepRNN). The approach converts the task
of nowcasting to a task of image series prediction. We first
design a new loss function that pays more attention to the
changes of images in the input sequence. In the mean while, an
image discriminator is incorporated into the model to improve
the visual quality of predicted images. Furthermore, optical
flow is explored to preserve the the motion information. The
prediction results are evaluated based on widely used statistic
scores. The experimental results show that the proposed model
leads to significant improvement in tasks of 2 hours forecasting
of radar echo.

Index Terms—Recurrent Neural Network (RNN), Nowcast-
ing, Image Prediction

I. Introduction
Weather nowcasting usually refers to the next six hours

weather forecast [1] and it has become a useful tool
for releasing sever-impact weather warnings ahead. Its’
accuracy and lead time are important aspects in practi-
cal applications. Flood prevention,airport traffic control,
agricultural activities, and personal outdoor activities are
closely linked to nowcasts. One hour or less ahead-forecasts
of severe local-scale precipitation have great importance
and practical interest.

Unlike long-term precipitation forecast which is based
on atmospheric numerical weather prediction (NWP)
models [2], precipitation nowcasting mainly relies on the
extrapolation of radar images or neural network models
with NWP models’ outputs. Radar image extrapolation for
rainfall forecast has been a research hotspot since 1960s [3].
At the early stage, simple linear methods were used to
extrapolate radar images and failed to predict the motion
and intensity change of rainfall band [4].

Then optical flow algorithms [5]–[9] were proposed after
great efforts done in improving the precipitation nowcast-
ing over several decades. The basic idea is estimating the
rainfall band evolution according to the wind directions

and magnitude calculated from a continuous radar images.
These algorithms usually cost high running time and
can’t capture the rainfall intensity change well. It is
hard to have a significant improvement of nowcasting
accuracy via optical flow because of the atmospheric
chaotic movement. Another technique for radar-based
precipitation nowcasting is ensemble nowcasting. This
idea was proposed by Andersson and Ivarsson [10] and
they tried to provide the probability of precipitation
forecasts. Statistical outcome can be obtained from the
ensemble simulations by adopting small perturbation in
the initial conditions. Many work has been studied [11]–
[14]. Although NWP models have developed vigorously,
its ability to nowcast strong convective weather events
is still very limited [15]. Because for convective weather,
its coverage is small and its growth rate is rapid and
the current understanding of physics processes is not
enough [16]. According to Zhang et al. [17], the accurate
rate of short-range precipitation forecasting in Shenzhen
(one of city in China) is only around 40% for the first
hour and 15% for the second hour.

Besides this traditional meteorological schemes, with
the development of computer science, machine learning is
beginning to be used in the extrapolation of radars. At the
early stage, artificial neural networks were used to do the
predictions. French [18] used simulated precipitation field
to train a single layer neural network and then predicted
the 1-hour-later precipitation field. Random forests and
logistic regression were also used to nowcast rainfall [19],
[20]. Bhattacharjee et al. [?] overcome multiple close-by
objects at different scales move in random directions with
variable speeds by modeling the scene as a space-time
graph with intermediate features from the pixels (or a local
region) as vertices and the relationships among them as
edges. Keren et al. [21] proposed a model to enhance the
feature extraction process for the case of sequential data by
inputting patches of data into a recurrent neural network
and using the outputs or hidden states of the recurrent
unit to calculate the extracted features. Today deep
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Fig. 1: The architecture of our model for the K frames prediction task with a T frames input sequence.

learning algorithms, the state-of-the-art machine learning,
are applied in many areas. Some of the well known deep
learning models are convolution neural networks(CNN),
recurrent neural networks(RNN) and long short term
memory(LSTM). From the view of deep learning point,
precipitation prediction is similar to semantic segmen-
tation situation, in which the input is a multichannel
image and the output is assigned to every pixel. In recent
years, convolutional neural networks have been the state-
of the-art solution for semantic segmentation [22], so it
is make sense to apply the similar neural networks for
precipitation prediction. Zahraei [23] trained a CNN model
by radar reflectivity images to predict rainfall filed. The
result shows that deep learning algorithms perform better
than traditional radar extrapolation methods. However,
compared to traditional optical flow prediction methods,
due to algorithmic reasons, machine learning methods are
not as accurate as traditional optical flow prediction in
very close steps. Moreover, when using the above method
to predict, the realistic of the predicted images is not
enough to produce convincing results.

The objective of this study is to implement a practical
and refined neural network model got by deep learning for
precipitation nowcasting based on radar imagery. Based on
ConvLSTM, multi layer LSTM framework was adopted.
we add two discriminator to ensure continuity of video and
realistic of photo. In order to achieve better training effect
and faster convergence speed, we improved the traditional
MSE loss by using adaMSE loss.

This paper is organized as follows: Section 3 describes
the tasks of our work. Section 4 give a detailed description
the neural network model used in this study. Section 5
describes the training details of our experiment. Section

6 presents the results by using the new method on
movingMNIST and nowcast. Conclution and discussion
are showed in Section 7.

II. Prior Work

Shi et al. [24] proposed the Convolutional Long Short-
Term Memory(ConvLSTM) model, which extends the
LSTM by adding convolutional structures in transitions,
changing LSTM from one-dimensional to two-dimensional.
It makes LSTM more suitable for image sequence. Later,
they proposed the trajectory GRU model [25] that can
actively learn the location-variant structure for recurrent
connections, which improved the results of the ConvL-
STM. Wang et al. [26] proposed a new gradient highway
structure and a new ST-LSTM, which made great im-
provement in weather prediction.

Generative adversarial networks is an excellent network
for solving the image prediction quality problem. Based
on GAN, conditional GAN [27] and others have proposed
the classic structure of condition GAN. Nowadays, most
varieties GAN are similar to it. CycleGAN [28] uses Two
pairs of generators and discriminators to construct a ring-
shaped network structure, which implements unsupervised
ConditionGAN. MDGAN uses 3D convolution in the
generator for video generation, two generators are used
to ensure the clarity of the picture and the picture.
MocoGAN [29] uses a dual discriminator method to
simultaneously identify continuity and authenticity, which
improves the quality of video generation. In order to solve
the problem of video prediction, Wang added GAN to
predRNN to solve the image generation of the LSTM
network to a certain extent quality issue.



III. Proposed Method
A. Task Description

From the computer vision point of view, the nowcasting
task can be converted to a task of K frames image series
prediction given the historical T frames image series as
input. We let XT = {I1, I2, ..., IT } be a sequence of input
series with T frames, X̂K = {ÎT+1, ÎT+2, ..., ÎT+K} be the
following K frames target future series prediction, and
let XK = {IT+1, IT+2, ..., IT+K} be the corresponding
ground truth of the prediction.

Besides, our method uses the prediction of traditional
optical flow algorithm [30] as prior knowledge, we denote
ÎKOF = {ÎOF1

, ÎOF2
, ..., ÎOFK

} as the predicted sequence of
the optical flow algorithms as part of our system input.

In the following subsections, we will present our new
model for the nowcasting task described before. A new
Multi-Layer LSTM structure tailored the this task will be
introduced followed by some training details.

B. System Overview
Generally the proposed system follows encoder-decoder

architecture as demonstrated in Fig. 1. In the encoder
part, T frames of historical images XT is feed into the
the model, and the model propagates hidden variable
through two direction: vertically and horizontally. Verti-
cally, the pyramid-like hidden variables mainly represent
the abstraction of the input images, propagating from the
bottom to the top with each channel of 128, 64 and 32
respectively. Horizontally, the model encodes the motion
information through time.

The decoder of our model, on contrary with encoder,
transmit the information in a top-down manner vertically.
At each step, the input of the decoder is the output frame
of the optical flow extrapolation method at this step,
combined with the output frame of the decoder from the
previous step. In the end, the results of the model are
monitored by two discriminators to ensure the realistic of
the prediction results.

C. Training Detail
The traditional optical stream extrapolation

method [30] performs reasonably in the prediction
effect of adjacent frames, we add its results as part of the
input of decoder. The other part of the decoder input is
the prediction of the previous frame. The decode input is
the weighted sum of them as shown in Eq. 1.

F (Ît−1, IOFt
) = wt ∗ Ît−1 + (1− wt) ∗ IOFt

(1)

wt = min{1.0, 0.5 + 0.5 ∗ t/K} (2)

Ît−1 is the previous predicted frame. Sequence result
ÎOFt

is the result of optical flow extrapolation method in
this step. Weight wt is a ratio that increases linearly with
steps ranging within [0, 1].

Standard mean square error (MSE) loss is not suitable
for the task of nowcasting since it equally penalizes each
pixel regardless its intensity value. For example, zero or
low intensity pixels, such as those belongs to the image
background of both ground truth and the prediction, will
reduce the gradient, which makes training difficult. We
propose an adaptive MSE loss (adaMSE) to reduce the
influence of zero value pixels which can be formulated as:

adaMSE =

∑
∀i,j(Ît(i, j)− It(i, j))

N − Countzero + log(Countzero)
, (3)

N represents the total number of pixels in a image.
Countzero means the number of target image pixel with
the values that close to 0 or the position where prediction
is very similar to ground truth. When we calculate the
adaMSE, We use the log of these counts as denominator.
By reducing the background proportion, we try to let the
model focus on prediction error region to speed up the
model convergence.

To ensure the realistic of the output, the conditional
image discriminator(DisI) is added to model. We also add
the conditional video discriminator(DisV) to ensure the
continuity of model prediction.

IV. Experiment
A. Evaluation Protocol

We chose HSS, average CSI, CORR, POD and FAR [25]
as our evaluation indicators. Different from the evaluation
matrics in [25], we used the mean of non-zero value of
Ground truth as the threshold to avoid the extreme low
score when the image intensity is small. At first we binarize
the values of the predicted image and ground truth pixels
with a threshold, and then calculated the TP, FN, FP
and TN. The formulas for the evaluation metrics is shown
below:

CSI =
TP

TP + FN + FP
(4)

POD =
TP

TP + FN
(5)

FAR =
FP

TP + FP
(6)

HSS =
TP × TN − FN × FP

(TP + FN)(FN + TN) + (TP + FP )(FP + TN)
.

(7)
In addition, we used image correlation as an evaluation

indicator:

CORR =

∑
i,j(Pixelpredictioni,j ∗ PixelgroundTruth

i,j )√∑
i,j Pixelpredictioni,j

2
×
∑

i,j Pixelpredictioni,j

2
.

(8)



TABLE I: Quantitative Result of the MovingMNIST
Ablation Experiments.

DisI adaMSEHSS CSI CORR POD FAR
✓ 0.60 0.51 0.58 0.57 0.20

✓ 0.81 0.72 0.75 0.84 0.14
✓ ✓ 0.85 0.77 0.79 0.84 0.12

B. MovingMNIST
We firstly performed three sets of controlled exper-

iments on the MovingMNIST ( [24], [31]) dataset to
evaluate the effect of discriminator, adaMSE as well as
to estimate the best depth of the model. Three models
are trained for the experiment: full model, model without
adding discriminator (DisI) and model without adaMSE.

Dataset: The MovingMNIST dataset is divided into a
series of continuous image sequences. The first T = 10
frames of images in each sequence is used as input, the
following K = 10 frames are the ground truth of the
expected prediction output. To facilitate the observation
of experimental phenomena, each image of the MovingM-
NIST dataset that we used has only one moving hand-
writing digit. The hand-writing digit in each group of
data is given random initial position, movement direction,
and moving speed. The edge of a frame is considered as
a virtual ‘wall’ so that the digit will change the moving
direction when it hits the ‘wall’. Over the 2000 generated
sequences, training, verification and testing split is 8 : 1 : 1

Quantitative Results: Table. I shows the scores of
three models on the test set. The model without image
discriminator (DisI) has the worst results, with a CSI of
only 0.51, and a HSS of 0.6, indicating the model generate
the image with worst handwriting digit image structure.
The model with DisI but without adaMSE has a CSI of
0.72, and a HSS of 0.81, which is a great improvement.
When AdaMSE was added, the model’s CSI and HSS
reached the highest 0.77 and 0.85. Similar trends appear
in the other three evaluation scores, which indicates a
positive effect of the DisI module and adaMSE loss. The
qualitative result are shown in Fig. 2. The following part
of this section will discuss the qualitative result of the
model without DisI module or adaMSE loss.

DisI: In the predicted images from the model without
DisI in Fig. 2, the shape of the digit deforms fast and
significantly, while in the predicted image from the full
model the digit looks more realistic. Moreover, the atten-
uation of the digit gray-scale intensity of the prediction
is reduced on the model with DisI, meaning that the DisI
will force the model to generate a more certain result.

To evaluate the influence of the discriminator to the
model training, we hope to evaluate the quality of a series
of intermediate models under different epochs. The quality
of the intermediate prediction models can be reflected
by the realistic level of the image sequences produced by
the models. Therefore we used the trained discriminator
from the DisI module as an image realistic regressor, and

Fig. 2: Experimental results under different models con-
figurations on the same MovingMNIST ( [24], [31]) input
sequence. We can see that, the model without adaMSE
and the model without DisI generate blurry and deformed
images.

Fig. 3: The images realistic level (y-axis) from different
models from different epochs(x-axis). The score of the
model trained without DisI fluctuates through epochs and
end up with low saturation point, whilst the full model
can reach higher realistic level and stabler.

evaluate the checkpoints of the two groups of models: one
trained with DisI, and the other one trained without DisI.

The resulting score is plotted in Fig. 3. From the figure,
it can be seen that the score curve of model without
DisI rises with strong fluctuation, and end up with a
final saturation score of 0.36. The realistic score curve
of model with DisI increases stably, and end up with the
realistic level of 0.41 or above. The figure could lead to
the conclusion that DisI module ensures the fidelity of
prediction. It make the training more cautious, thereby
prevent the model from dropping into a local minima or
mode collapse.

Adaptive MSE (adaMSE) Loss: The main characteristic
of our datasets is the presents of a large number of
zero-value pixels in the images background. In Fig. 2,
the prediction with traditional MSE loss become blur
especially in the last several prediction steps, indicating
that the original model cannot effectively converge under



Fig. 4: The GDL loss during training for models using
adaMSE and original MSE. The adaMSE could allow a
final saturated loss to be about 0.07 compared to that
uses original MSE of 0.2.

our scenario. Our full model with adaMSE, on the other
hand, could produce clearer hand-writing digit shape.
The adaMSE suppress the loss from background with
zero intensity values therefore enhance the generation of
foreground part. Fig. 4 shows the Gradient Difference
Loss (GDL) [32] in models trained with original MSE and
adaMSE. The adaMSE leads to a faster convergence as
well as a lower saturation loss.

Layers Number Tuning: In order to verify the effect
of different layers on this multilayer LSTM structure, we
perform a series of experiments and record the system
performance. To simplify the experimental environment,
we fix the channel shape to a size of 64×64. The layer size
has seven possible values nLayer ∈ {1, 2, 3, 4, 6, 8, 10}.
After 600 epoch, the model was tested on the test set, and
the results are shown in Fig. 5.

From the figure, it can be seen that the minimum layer
number for an acceptable result is nLayer = 3. When
the LSTM layer is chosen to be 1 or 2, the prediction
result decays quickly and become unrecognizable at the
end, indicating that the shadow-layer LSTM structure is
easy to lose information.

We consider nLayer = 3 to be a most suitable model
depth since it is deep enough to describe the sequence
and reduce the risk of over-fitting under a limited size
of dataset. Moreover, the radar image dataset has a
larger image size, it is computational expensive to build
a prediction model with unnecessary additional layers.

C. Nowcasting
In the nowcasting task, the input sequence is radar echo

gray scale image of T = 10 frames, and the expected
output is a sequence of K frames future frames prediction.

The rest of this subsection will introduce our nowcasting
dataset, and the experimental result compared to the
baseline system in [24] and [25] as well as traditional
optical flow algorithm in [30]. Note that since the baseline
system [24], [25] could only predict 10 future frames, the
comparison with them will base on a 10 steps prediction

Fig. 5: MovingMNIST Prediction results of model with
different layers. We consider nLayer = 3 to be the
minimum acceptable model depth.

TABLE II: Quantitative Result of ConvLSTM, TrajGRU
and Our Model on the nowcasting dataset.

Model HSS CSI FAR POD CORR
ConvLSTM 0.52 0.41 0.32 0.52 0.68
TrajGRU 0.55 0.46 0.34 0.61 0.72
OurModel 0.61 0.55 0.29 0.69 0.75

task, and compare to the optical flow algorithm on a 20
steps prediction task. Each step represents a 6 minutes
time step.

Dataset: The radar data is provided by China East-
ern Region Air Traffic Management Bureau (ECATMB),
which covers a region of 250km centered in Shang Hai
Hong Qiao Airport on a 2 years duration from 2017 to
2019. The data is converted to the CAPPI (Constant
Altitude Plan Position Indicator) format which consists
of 40 layers representing different altitudes. To simplify
the demonstration, we only select the bottom layer as the
representative in this section, if other layers results are
of interested, please contact the corresponding author via
email. The raw CAPPI data is converted to images format
with a resolution of 720 × 720, the radar echo intensity,
in the unit of dBZ within the range of [−32, 95.5], is
linearly mapping to the range of [0, 255] gray scale by the
mapping equation of Igray = (IdBZ +32) ∗ 2. The CAPPI
data is processed by quality control methods including
noise removal and interpolation.

Evaluation Results: Table II shows the evaluation result
of the baseline [24], [25] and that of our system. Generally,
the CSI index of our model is the highest among all the
candidate models.

The qualitative result of nowcasting compared to the
baseline was showed in Fig. 6, in which gray scale images
are converted to heat map for a clearer visualization
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Fig. 6: Experimental results of different models in the 1 hours (10 steps) radar image prediction task. The time
difference between each consecutive step is 6 minutes. It is clearly demonstrated that, the state-of-the-art systems
produce blurry result even under the task of only 1-hour prediction, whilst our model produce certain and more
realistic prediction.

(a) Ground Truth (b) ConvLSTM

(c) TrajGRU (d) Our Model

Fig. 7: Comparison of the step-9 frame generated by three
models. It can be seen that the intensity decay and the
texture loss of baseline systems in Fig. 6 is mainly due
to the blurry of predictions. Our model produces images
that are closer to the the real radar echo image.

purpose. The warmer color represent stronger radar echo

and cooler color represents the weaker radar echo which
is less of interested.

In the result of the ConvLSTM model, the intensity
quickly decay from the very first frame compared to the
ground truth. The yellow area which represents higher
echo intensity disappears from the first frame. Moreover,
the median intensity parts (green color) are losing their
texture, and merging to a group of textureless area
through time. Finally, the overall colored area is shrink-
ing quickly representing a falsely prediction of intensity
reduction. The intensity decay, detail missing and area
shrinking reflect the weakness of the prediction model
to generate a clear sequence of images with rich local
details. We can see the detail of the step-9 frame in
the enlarged gray scale images in Fig. 7, the baselines
produce blurry result which leads to the false predictions
mentioned before.

The prediction of TrajGRU [25] is better than ConvL-
STM [24], it preserves more high intensity areas and more
local details as shown in Fig. 6, however, the intensity
decay as well as blurry prediction can still be found in
Fig. 6 and Fig. 7.

In our model, the high intensity areas in yellow are
well preserved in terms of their size and texture details in
Fig. 6. The gray scale image in Fig. 7 illustrates that our
model is capable to produce images with rich local detail
which is closer to the ground truth.

We also compare our model with the optical flow
extrapolation method [30] on the task of predicting 20
frames with 10 input frames. Fig. 8 shows the experimental
results, we only show the odd number steps to save room.
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Fig. 8: Experimental results of our model and the traditional well-accepted optical flow method for the task of 2 hours
(20 steps radar image prediction task. We only show the odd number steps so the time difference between two frames
is 12 minutes. Optical flow algorithm could not predict the intensity change through time, whilst our method provide
the prediction that is close to the ground truth in terms of intensity, structure and location.

For traditional optical flow, because there is no additional
information added, the existing image is extrapolated
only by optical flow. Although the performance will be
good during the first few frames, after around 5 frames,
which is equivalent to 30 minutes time, distortion and
tearing become obvious in the images. Our model generate
reasonable image content even in the final steps.

V. Conclusion
In this paper, we discussed a deep recurrent neural

network model for predicting image sequences of weather
radars. We designed image discriminators to ensure con-
tinuity of sequences and visual quality of images. A
new adaptive loss was proposed to train the new model,
which accelerated the convergence rate during training
and improved the performance of the model. The optical
extrapolation method was used to capture the motion
information of sequential images, and it was fed into the
DeepRNN model. The experimental results substantiated
that the new model outperformed the conventional optical
flow method and the deep learning-based ConvLSTM and
TrajGRU methods. Future research may be directed to
the exploration of additional meteorological elements to
make the prediction model more accurate.
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