
Multi-Agent Connected Autonomous Driving using
Deep Reinforcement Learning

Praveen Palanisamy
AI + Research

Microsoft
Redmond, U.S.A

praveen.palanisamy@{microsoft, outlook}.com

Abstract—The capability to learn and adapt to changes in
the driving environment is crucial for developing autonomous
driving systems that are scalable beyond geo-fenced operational
design domains. Deep Reinforcement Learning (RL) provides
a promising and scalable framework for developing adaptive
learning based solutions. Deep RL methods usually model the
problem as a (Partially Observable) Markov Decision Process
in which an agent acts in a stationary environment to learn
an optimal behavior policy. However, driving involves complex
interaction between multiple, intelligent (artificial or human)
agents in a highly non-stationary environment. In this paper, we
propose the use of Partially Observable Markov Games(POSG)
for formulating the connected autonomous driving problems with
realistic assumptions. We provide a taxonomy of multi-agent
learning environments based on the nature of tasks, nature of
agents and the nature of the environment to help in categorizing
various autonomous driving problems that can be addressed
under the proposed formulation. As our main contributions, we
provide MACAD-Gym, a Multi-Agent Connected, Autonomous
Driving agent learning platform for furthering research in this di-
rection. Our MACAD-Gym platform provides an extensible set of
Connected Autonomous Driving (CAD) simulation environments
that enable the research and development of Deep RL- based
integrated sensing, perception, planning and control algorithms
for CAD systems with unlimited operational design domain
under realistic, multi-agent settings. We also share the MACAD-
Agents that were trained successfully using the MACAD-Gym
platform to learn control policies for multiple vehicle agents
in a partially observable, stop-sign controlled, 3-way urban
intersection environment with raw (camera) sensor observations.

Index Terms—Aautonomous multi-agents, Multi-agent driving,
Deep RL environment

I. INTRODUCTION

Driving involves complex interactions between other agents
that is near-impossible to be exhaustively described through
code or rules. Autonomous driving systems for that reason
cannot be pre-programmed with exhaustive rules to cover
all possible interaction mechanisms and scenarios on the
road. Learning agents can potentially discover such complex
interactions automatically through exploration and evolve their
behaviors and actions to be more successful in driving based
on their experiences gathered through interactions with the
driving environment (over time and/or in simulation). The
Deep RL framework [1] [2] provides a scalable framework
for developing adaptive, learning-based solutions for such

§Code available at: https://github.com/praveen-palanisamy/macad-gym

problems. But, it is hard to apply RL algorithms to live
systems [3], especially robots and safety-critical systems like
autonomous cars and RL-based learning is not very sample
efficient [3] One way to overcome such limitations is by
using realistic simulation environments to train these agents
and transfer the learned policy to the actual car. High-fidelity
Autonomous driving simulators like CARLA [4] and AirSim
[5] provide a simulation platform for training Deep RL agents
in singe-agent driving scenarios.

In single-agent learning frameworks, the interaction between
other agents in the environment or even the existence of other
agents in the environment is often ignored. In Multi-Agent
learning frameworks, the interaction between other agents can
be explicitly modeled.

Connectivity among vehicles are becoming ubiquitous and
viable through decades of research in DSRC and other vehic-
ular communication methods. With the increasing deployment
of 5G infrastructure for connectivity and the increasing pen-
etration of autonomous vehicles with connectivity and higher
levels of autonomy [6], the need for the development of
methods and solutions that can utilize connectivity to enable
safe, efficient, scalable and economically viable Autonomous
Driving beyond Geo-fenced areas has become very important
to our transportation system.

Autonomous Driving problems involve autonomous vehi-
cles navigating safely and socially from their start location
to the desired goal location in complex environments which
involve multiple, intelligent actors whose intentions are not
known by other actors. Connected Autonomous Driving makes
use of connectivity between vehicles (V2V), between vehicles
and infrastructure (V2I), between vehicles and pedestrians
(V2P) and between other road-users.

CAD problems can be approached using homogeneous,
communicating multi-agent driving simulation environments
for research and development of learning based solutions.
In particular, such a learning-environment enables training
and testing of RL algorithms. To that end, in this paper, 1.
We propose the use of Partially Observable Markov Games
for formulating the connected autonomous driving problems
with realistic assumptions. 2. We provide a taxonomy of
multi-agent learning environments based on the nature of
tasks, nature of agents and the nature of the environment
to help in categorizing various autonomous driving problems

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

https://github.com/praveen-palanisamy/macad-gym

Fig. 1. Figure shows a heterogeneous multi-agent learning environment
created using MACAD-Gym. An overview of the scenario is shown in the left
image. The middle image shows the simulated scenario and the right image
shows tethered views of each agent’s observation

that can be addressed under the proposed formulation. 3.
We provide MACAD-Gym, a multi-agent learning platform
with an extensible set of Connected Autonomous Driving
(CAD) simulation environments that enable the research and
development of Deep RL based integrated sensing, percep-
tion, planning and control algorithms for CAD systems with
unlimited operational design domain under realistic, multi-
agent settings. 4. We also provide MACAD-Agents, a set of
baseline/starter agents to enable the community to conduct
learning experiments and train agents using the platform. The
results of multi-agent policy learning by one of the provided
baseline approach, trained in a partially observable, stop-
sign controlled, 3-way urban intersection environment with
raw, camera observations are summarized in V. experimental
results in a multi-agent settings with raw, simulated cam-
era/sensor observations to learn heterogeneous control policies
to pass through a signalized, 4-way, urban intersection in a
partially observable multi-agent, CAD environment with two
cars, a pedestrian and a motor cyclist where all the actors
are controlled by our MACAD-Agents. Figure 1 depicts an
overview of one of the MACAD environments released as a
part of the MACAD-Gym platform.

The rest of the paper is organized as follows: We discuss
how partially-observable markov games (POMG) can be used
to model connected autononomous driving problems in II.
We then provide an intuitive classification of the tasks and
problems in the CAD space in section III and discuss the
nomenclature of the MACAD-Gym environments in section
III-D. We provide a quick overview of multi-agent deep
RL algorithms in the context of CAD in section IV and
conclude with a brief discussion about the result obtained
using MACAD-Agents in a complex multi-agent driving en-
vironment.

II. CONNECTED AUTONOMOUS DRIVING AS PARTIALLY
OBSERVABLE MARKOV GAMES

In single-agent learning settings, the interaction between
the main agent and the environment is modeled as part of a
Markov Decision Process (MDP). Other agents (if) present are
and treated to be part of the environment irrespective of their
nature (cooperative, competitive), type (same/different as the
main agent) and sources of interactions with the main agent.
Failing to account for the presence of other intelligent/adaptive
agents in the environment leads to conditions that violate the
stationary and Markov assumptions of the underlying learning

framework. In particular, when other intelligent agents that are
capable of learning and adapting their policies are present, the
environment becomes non-stationary.

A. Formulation

One way to generalize the MDP to account for multiple
agents in multiple state configurations is using Markov Games
[7] which re defines the game- theoretic stochastic games [8]
formulation in the reinforcement learning context. In several
real-world multi-agent problem domains like autonomous driv-
ing, assuming that each agent can observe the complete state
of the environment without uncertainty is unrealistic, partly
due to the nature of the sensing capabilities present in the
vehicle (actor), the physical embodiment of the agent. Partially
Observable Stochastic Games (POSG) [9] extend stochastic
games to problems with partial observability. In the same
vein as Markov Games, we re-define POSG in the context of
reinforcement learning as Partially Observable Markov Games,
POMG in short, as a tuple 〈I,S,A,O, T ,R〉 in which,
I is a finite set of actors/agents
S is the finite set of states
A = ×i∈IAi is the set of joint actions where Ai is the set

of actions available to agent i.
O = ×i∈IOi is the set of join observations where Oi is the

set of observations for agent i.
T = P(s′,o|s,a) is the Markovian state transition and ob-

servation probability that taking a joint action a = 〈a1, ...an〉
in state s results in a transition to state s′ with a join
observation o = 〈o1, ...on〉
Ri : S ×A → R is the reward function for agent i
At each time step t, the environment emits a joint obser-

vation o = 〈o1, · · · , on〉 from which each agent i directly
observes its component oi ∈ Oi and takes action ai ∈ Ai
based on some policy πi : Oi × Ai → [0, 1] and receives a
reward ri based on the reward function Ri .

Note that, the above formulation is equivalent to a POMDP
when n = 1 (single-agent formulation).

While a POSG formulation of the autonomous driving
problem enables one to approach the problem with out making
unrealistic assumptions, it does not enable computationally
tractable methodologies to solve the problem except under
simplified, special structures and assumptions like two-player
zero-sum POSGs. In the next section, we discuss the practical
usage in the CAD domain.

B. Practical usage in Connected Autonomous Driving

The availability of a communication (whether through ex-
plicit communication semantics or implicitly through aug-
mented actions) channel between the agents (and/or the env) in
the CAD domain, enable the sharing/transaction of local infor-
mation (or private beliefs) that can provide information about
some (or whole) subset of the state which is locally observable
by other agents, make solutions computationally tractable even
as the size of the problem (eg: num agents) increases. We
realize that such a transaction of local information would give
rise to issue of integrity, trust and other factors. The interaction

between different agents and the nature of their interaction can
be explicitly modeled using a communication channel. In the
absence of an explicit communication channel, the incentives
for the agents to learn to cooperate or compete, depends on
their reward functions. The particular case in which all the
agents acting in a partially observable environment share the
same reward function, can be studied under the DEC- POMDP
[10] formulation. But not all problems in CAD have the agents
rewards completely aligned (or completely opposite).

We consider Multi-Agent Driving environments with n
actors, each controlled by an agent, indexed by i. At any given
time, t, the state of the agent i is defined to be the state of
the actor under its control and it is represented as si ∈ S
where S is the state space. The agent can choose an action
ai ∈ Ai , where Ai is the action space of agent i which,
could be different for different actors. While the environment
is non-Markov from each of the agent’s point of view, the
driving world as a whole is assumed to be Markov i.e, given
the configuration of all the n actors at time t : s = [s1, ...sn] ,
their actions a = [a1, ...an], and the state of the environment
E, the evolution of the system is completely determined
by the conditional transition probability T (s′,o, E′|s, E,a).
This assumption allows us to apply and scale distributed RL
algorithms that are developed for the single-agent MDPs to
the Multi-Agent setting.

The explicit separation of the join state of the agents si from
the state of the environment E at time t in the driving world,
facilitates agent implementations to learn explicit models for
the environment, in addition to learning models for other
agents or the world model as a whole.

Under the proposed formulation for multi-agent CAD, at
every time step t, each actor (and hence the agent) receives an
observation oi, based on its state si and the (partial) state of the
environment Ei and possibly, (partial) information I(s−i, E−i)
about the state of other agents s−i = [sj]j 6=i and the state of
the environment E−i that is not directly observable.

The observation oi can be seen as some degraded function
φ(si, E) of the full state of agent i . In reality, the nature and
the degree of degradation arises from the sensing modalities
and the type of sensors (camera, RADAR, LIDAR, GPS
etc.) available to the vehicle actors. Connectivity through
IEEE 802.11 based Dedicated Short-Range Communications
(DSRC) [11] or cellular modems based C-V2X [12] enables
the availability of the information I(s−n, E−i) about other
agents and non-observable parts of the environment through
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) or
Vehicle-to-Anything (V2X) communication.

The goal of each agent is to take actions ai for the
vehicle actor that is under its control based on its local state
[oi, I(s−i,E−i)] in order to maximize its long term cumulative
reward over a time horizon T with a discount factor of γ.

III. MULTI-AGENT CONNECTED AUTONOMOUS DRIVING
PLATFORM

The connected-autonomous driving domain poses several
problems which can be categorized into sensing, perception,

planning or control. Learning algorithms can be used to solve
the tasks in an integrated/end-to-end fashion [13] [14] or in
an isolated approach for each driving task like intersection-
driving [15] [16] and lane-changing [17].

Driving tasks falling under each of the above categories
can be further divided and approached, depending on the
combination of the nature of the tasks, the nature of the
environments and the nature of the agents. The following sub-
sections provide a brief discussion on such a classification of
multi-agent environments that are supported on the MACAD-
Gym platform, to enable the development of solutions for
various tasks in the the CAD domain.

A. Nature of tasks

The nature of the task in a driving environment is deter-
mined based on the desired direction of focus of the task
specified through the design of experiments.

a) Independent: Multi-agent driving environments in
which each actor is self-interested/selfish and has its own,
often unique objective, fall under this category. One way to
model such setup is by treating the environment to be similar
to a single-agent environment with all the actors apart from the
host actor are treated to be be part of the environment. Such
environments help in developing non-communicating agents
that doesn’t rely on explicit communication channels. Such
agents will benefit from agents modeling agents [18].

b) Cooperative: Cooperative CAD environments help in
developing agent algorithms that can learn near-globally opti-
mal policies for all the driving agents that act as a cooperative
unit. Such environments help in developing agents that learn to
communicate [19] and benefit from learning to cooperate [20].
This type of environments will enable development of efficient
fleet of vehicles that cooperate and communicate with each
other to reduce congestion, eliminate collisions and optimized
traffic flows.

c) Competitive: Competitive driving environments allow
the development of agents that can handle extreme driving
scenarios like road-rages. The special case of adversarial
driving can be formulated as a zero-sum stochastic game,
which can be cast as a MDP and solved which has useful
properties and properties and results including: value Iteration,
unique solution to Q*, independent computation of policies
and representation of policies using Q functions as discussed
in [21]. Agents developed in competitive environments can be
used for law enforcement and or other use cases including
the development of strong adversarial driving actors to help
improve handling capabilities of driving agents.

d) Mixed: Some tasks that are designed to be of a
particular nature may still end up facilitating approaches that
stretch the interaction to other types of tasks. For example,
an agent operating in an environment on a task which is
naturally (by design) an independent task can learn to use
mixed strategies of being cooperative at times and being
competitive at times in order to maximize it’s own rewards.
Emergence of such mixed strategies [22] is another interesting

research area supported in MACAD-Gym, that can lead to new
traffic flow behaviors.

B. Nature of agents/actors

a) Homogeneous: When all the road actors in the en-
vironment belong to one class of actors (eg. only cars or
only motor-cyclists), the action space of each actor can be
the same and the interactions are limited to be between a set
of homogeneous driving agents.

b) Heterogeneous: Depending on the level of detail
in the environment representation (a traffic light could be
represented as an intelligent actor), majority of autonomous
driving tasks involve interaction between a heterogeneous set
of road actors.

c) Communicating: Actors that are capable of commu-
nicating (through direct or indirect channels [23] with other
actors through Vehicle-to-Vehicle (V2V) communication chan-
nels can help to increase information availability in partially-
observable environments. Such communication capabilities
allow for training agents with data augmentation wherein the
communication acts as a virtual/shared/crowd-sourced sensor.
Note that, Pedestrian (human) agents can be modeled as com-
municating agents that use (hand and body) gestures transmit
information and can receive information using visual (external
display/signals on cars, Traffic signals etc) and auditory (horns,
etc).

d) Non-communicating: While the environment provides
or allows for a communication channel, if an agent is not
capable of communicating/making-use-of-the-communication
channel by virtue of the nature of the actor, it is grouped
under this category. Example include vehicle actors that have
no V2X communication capability.

C. Nature of environments

a) Full/partial observability: In order for an environment
to be fully observable, every agent in the environment should
be able to observe the complete state of the environment at
every point in time. Driving environments under realistic as-
sumptions are partially-observable environments. The presence
of connectivity (V2V, V2X/cloud) in CAD environments make
the problems in PO environments more tractable.

b) Synchronous/Asynchronous: In a synchronous envi-
ronment, all the actors are required to take an action in a time
synchronous manner. Whereas, in asynchronous environments,
different actors can act at different frequencies.

c) Adversarial: If there exists any environmental fac-
tor/condition that can stochastically impair the ability of the
agents in the environment to perform at their full poten-
tial, such cases are grouped under adversarial environments.
For example, the V2X communication medium can be per-
turbed/altered by the environment,which enables the study of
the robustness of agents under adversarial attacks. Bad weather
including snowy, rainy or icy conditions also can be modeled
and studied under adversarial environments. Injection of ”im-
pulse”/noise that are adversarial in nature help in validating
the reliability of agent algorithms.

D. MACAD-Gym Environment Naming Conventions

A naming convention that conveys the environment type,
nature of the agent, nature of the task, nature of the environ-
ment with version information is proposed. The naming con-
vention follows the widely used convention in the community
introduced in [24] but, has been extended to be more com-
prehensive and to accommodate more complex environment
types suitable for the autonomous driving domain.

The naming convention is illustrated below with Het-
eCommCoopPOUrbanMgoalMAUSID as the example:

{Hete,
Homo}
↑︷︸︸︷

Hete

{Comm,
Ncom}
↑︷ ︸︸ ︷

Comm︸ ︷︷ ︸
↓

Nature of agents

{Inde,
Coop,
Comp,
Mixd}
↑︷ ︸︸ ︷

Coop︸ ︷︷ ︸
↓

tasks

{PO,
FO}
↑︷︸︸︷

PO

{Bridg,
Freew,
Hiway,
Intrx,
Intst,
Rural,
Tunnl,
Urban}
↑︷ ︸︸ ︷

Urban

{,
Advrs,
Async,
Mgoal,
Synch,
...}
↑︷ ︸︸ ︷

Mgoal

{MA,
SA}
↑︷︸︸︷

MA︸ ︷︷ ︸
↓

environments

Unique
Scenario

ID
↑︷ ︸︸ ︷

USID - v0︸︷︷︸
↓

version

The above description summarizes the naming convention
to accommodate various types of driving environments with
an understanding that several scenarios and their variations
can be created by varying the traffic conditions, speed lim-
its and behaviors of other (human-driven, non-learning, etc)
actors/objects in each of the environments. The way these
variations are accommodated in the platform is by using
an Unique Scenario ID (USID) for each variation in the
scenario. The ”version” string allows versioning each scenario
variation when changes are made to the reward function and/or
observation and actions spaces.

IV. MULTI-AGENT DEEP REINFORCEMENT LEARNING
FOR CONNECTED AUTONOMOUS DRIVING

In the formulation presented in section II, formally, the goal
of each agent is to maximize the expected value of its long-
term future reward given by the following objective function:

Ji(πi,π−i) = Eπi,π−i [Ri] = Eπi,π−1
[

T∑
t=0

γtri(s, ai)] (1)

Where π−i =
∏
j πj(s, aj), j 6= i is the set of policies of

agents other than agent i. In contrast to the single-agent setting,
the objective function of an agent in the multi-agent setting
depends on the policies of the other agents.

A. Value Based Multi-Agent Deep Reinforcement Learning

V πi (s) =∑
a∈A

π(s,a)
∑
s′∈S

T (s, ai,a−i, s
′)[R(s, ai,a−i, s

′) + γV πi (s′)]

(2)

where, s = (St, Et), a = (ai,a−i), π(s,a) =
∏
j πj(s, aj)

Fig. 2. Centralized learner (left) and decentralized learner(right) architecture
for connected-autonomous driving

The optimal policy is a best response dependent on the other
agent’s policies,

π∗i (s, ai,π−i) = argmax
πi

V
(πi,π−i)
i (s) (3)

= argmax
πi

∑
a∈A

πi(s, ai)π−i(s,a−i)
∑
s′∈S
T (s, ai,a−i, s′)

[R(s, ai,a−i, s
′) + γV

(πi,π−i)
i (s′)]

(4)

Computing the optimal policy under this method requires
T , the transition model of the environment to be known.

B. Policy Gradients

If θ = {θ1, θ2, ..., θN} represents the parameters of the
policy π = {πi, π2, ..., πN}, The gradient of the objective
function (equation 1) w.r.t the policy parameters can be written
as:

∇θiJi(πi,π−i) = ESt,Et∼pπ (5)

C. Decoupled Actor - Learner architectures

For a given CAD situation with N homogeneous driving
agents, the globally optimal solution is the policy that maxi-
mizes the following objective:

Eπ[
N∑
i=1

Ri] =

N∑
i=1

Eπi,π−i [Ri] (6)

The straight-forward approach to optimize for the global
objective (equation 6) amounts to finding the globally optimal
policy:

πg
∗
= argmax

π

N∑
i=1

Ji(πi,π−i) (7)

However, this approach requires access to policies of all the
agents in the environment.

a) Centralized Learners: Figure 2 (left) depicts decou-
pled actor-learner architecture with a centralized learner which
can be used to learn a globally-optimal driving policy πg

∗
.

b) Decentralized Learners: In the most general case
of CAD, each driving agent follows it’s own policy that is
independent of the other agent’s driving policy. Note that this
case can be extended to cover those situations where some
proportion of the vehicles are driven by humans who have
their own intentions and policies.

Each agent can independently learn, to find policies that
optimize their local objective function (equation 1). One such
architecture for CAD is shown in figure 2 (right).

c) Shared Parameters: With connectivity as in CAD,
some are all the parameters of each agent’s policy can be
shared with one another. Such parameter sharing between
driving agents can be implemented with both centralized and
decentralized learner architectures.

d) Shared Observations: Sharing observations from the
environment with other agents via communication medium,
reduces the gap between the observation oi and the true
state 〈si, E〉 and can drive the degradation function φ(si, E)
(discussed in section II-B) to Identity (no degradation).

e) Shared Experiences: This enables collective experi-
ence replay which can theoretically lead to gains in a way
similar to distributed experience replay [25] in single-agent
setting.

f) Shared policy: If all the vehicles follow the same
policy πl, it follows from equation 1 that the learning objective
for each of the agents can be simplified, resulting in an
identical and equal definition:

J(πl) = Eπl [

T∑
t=0

γtri(S
t, Et, ati)] (8)

In this setting, challenges due to the non-stationarity of the
environment is subsided due to the perfect knowledge about
other agent’s policies. In practice this case is of use in
autonomous fleet operations in controlled environments where
all the autonomous driving agents can be designed to follow
the same policy

V. EXPERIMENTS

We trained MACAD-Agents in the
HomoNcomIndePOIntrxMASS3CTWN3-v0 environment,
which follows the naming convention discussed in section
III-D and refers to a homogeneous, non-communicating,
independent, partially-observable multi-agent, intersection
environment with stop-sign controlled intersection scenario in
Town3. The SUID is ” (empty string) and the version number
is ‘v0‘.

The start state of the environment is depicted in the left-
most column of Figure 3 along with the cumulative mean and
max rewards obtained by the agents in other two columns.
This environment has 3 car actors namely car1, car2 and
car3. The goal of actor car3 (maroon sedan) is to successfully
cross the intersection by going straight. The goal of actor car1
(Red cola van) is to successfully cross the intersection by
taking a left turn. The goal of actor car2 (blue minivan) is
to successfully cross the intersection by going straight. For all
the agents, successfully crossing the intersection amounts to

Fig. 3. Figure shows a start state in the
HomoNcomIndePOIntrxMASS3CTWN3-v0 environment (left) and the
cumulative mean episode rewards (middle) and the cumulative max episode
rewards (right) obtained by the 3-agent system.

Action [Steer, Throttle, Brake] Description
0 [0.0, 1.0, 0.0] Accelerate
1 [0.0, 0.0, 1.0] Brake
2 [0.5, 0.0, 0.0] Turn Right
3 [-0.5, 0.0, 0.0] Turn Left
4 [0.25, 0.5, 0.0] Accelerate right
5 [-0.25, 0.5, 0.0] Accelerate Left
6 [0.25, 0.0, 0.5] Brake Right
7 [-0.25, 0.0, 0.5] Brake Left
8 [0.0, 0.0, 0.0] Coast

TABLE I
MAPPING BETWEEN A DISCRETE ACTION SPACE AND THE CONTINUOUS

VEHICLE CONTROL COMMANDS REPRESENTED USING THE NORMALIZED
STEERING ANGLE (STEER:[-1,1]), THE NORMALIZED THROTTLE VALUES

(THROTTLE:[0,1]) AND THE BRAKE VALUES (BRAKE:[0, 1]) FOR
TRAINING VEHICLE CONTROL POLICIES

avoiding collisions or any road infractions and reaching the
goal state within the time-limit of one episode.

The observation for each agent is a 168x168x3 RGB image
captured from the camera mounted on the respective actor
that the agent is controlling. The action space is Discrete(9).
The mapping between the discrete actions and the vehicle
control commands (steering, throttle and brake) are provided in
table V. Each agent receives a reward given by ri(St, Et, ati).
Where the dependence on Et, the environment state is used
to signify that the reward function is also conditioned on the
stochastic nature of the driving environment which includes
weather, noisy communication channels etc.

Similar to [4] we set the reward function to be a weighted
sum of five terms: 1. distance traveled towards the goal D in
km, speed V in km/h, collision damage C, intersection with
sidewalk SW ∈ [0, 1], and intersection with opposing lane
OL ∈ [0, 1]

ri = 1000 (Dt − 1−Dt) + 0.05 (Vt − Vt−1)− 0.00002

(Ct − Ct−1)− 2 (SWt − SWt−1)− 2 (OLtOLt−1)

+α+ β
(9)

Where, optionally, α is used to encourage/discourage co-
operation/competitiveness among the agents and β is used to
shape the rewards under stochastic changes in the world state
Et .

The MACAD-Agents implementation used for this experi-
ment is based on the IMPALA [26] architecture. The agents
use a standard deep CNN with the following filter configura-
tion: [[32, [8, 8], 4], [64, [4, 4], 2], [64, [3, 3], 1]] followed

Fig. 4. Figure shows the cumulative mean episodic rewards (legend:mean)
and mean episodic rewards of car1 (red cola van), car2 (blue minivan) and
car3 (maroon sedan). The blue vertical lines and the image at the top row
indicate the states sampled during the corresponding training iteration (1.1M
and 4.6M) .

by a fully-connected layer for their policy networks. In the
shared-weights configuration, the agents share the weights of
a 128-dimensional fully-connected layer that precedes the final
action-logits layer.

The individual agent performance of the multi-agent system
is shown in Figure 4. The actors car1, car2, car3 learn a reason-
ably good driving policy to completely cross the intersection
without colliding and within the time-limit imposed by the
environment in 9.25 M steps.

VI. CONCLUSION AND FUTURE WORK

To conclude, we described a POSG formulation and dis-
cussed how CAD problems can be studied under such a
formulation for various categories of tasks. We presented the
opensource MACAD-Gym platform and the starter MACAD-
Agents to help researchers to explore the CAD domain using
deep RL algorithms We also provided preliminary experiment
results that validated the MACAD-Gym platform by conduct-
ing a starter experiment with the MACAD-Agents in a multi-
agent driving environment and discussed the results showing
the ability of the agents to learn independent vehicle control
policies from high-dimensional raw sensory (camera) data in a
partially-observed, multi-agent simulated driving environment.
The MACAD-Gym platform enables training driving agents
for several challenging autonomous driving problems. As a
future work, we will develop a benchmark with a standard
set of environments that can serve as a test-bed for evaluating
machine-learning-based CAD driving agent algorithms.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” arXiv e-prints, p. arXiv:1312.5602, Dec 2013.

[2] A. El Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep Reinforce-
ment Learning framework for Autonomous Driving,” arXiv e-prints, p.
arXiv:1704.02532, Apr 2017.

[3] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of Real-
World Reinforcement Learning,” arXiv e-prints, p. arXiv:1904.12901,
Apr 2019.

[4] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” arXiv e-prints, p.
arXiv:1711.03938, Nov 2017.

[5] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles,” arXiv e-
prints, p. arXiv:1705.05065, May 2017.

[6] SAE, “Taxonomy and Definitions for Terms Related to Driving Au-
tomation Systems for On-Road Motor Vehicles,” Society of Automotive
Engineers, Standard, Jun. 2018.

[7] M. L. Littman, Markov Games As a Framework for Multi-
agent Reinforcement Learning, ser. ICML’94. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1994. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3091574.3091594

[8] L. S. Shapley, “Stochastic games,” Proceedings of the National
Academy of Sciences, vol. 39, no. 10, pp. 1095–1100, 1953. [Online].
Available: https://www.pnas.org/content/39/10/1095

[9] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun,
“Approximate solutions for partially observable stochastic games
with common payoffs,” in Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems
- Volume 1, ser. AAMAS ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 136–143. [Online]. Available: http:
//dx.doi.org/10.1109/AAMAS.2004.67

[10] F. A. Oliehoek, “Decentralized pomdps,” in Reinforcement Learning.
Springer, 2012, pp. 471–503.

[11] J. B. Kenney, “Dedicated short-range communications (dsrc) standards
in the united states,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–
1182, July 2011.

[12] Wikipedia, “Cellular v2x,” Jul 2019. [Online]. Available: https:
//en.wikipedia.org/wiki/Cellular V2X

[13] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D.
Lam, A. Bewley, and A. Shah, “Learning to Drive in a Day,” arXiv
e-prints, p. arXiv:1807.00412, Jul 2018.

[14] Y. Chen, P. Palanisamy, P. Mudalige, K. Muelling, and J. M. Dolan,
“Learning On-Road Visual Control for Self-Driving Vehicles with Aux-
iliary Tasks,” arXiv e-prints, p. arXiv:1812.07760, Dec 2018.

[15] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating Occluded Intersections with Autonomous Vehicles using
Deep Reinforcement Learning,” arXiv e-prints, p. arXiv:1705.01196,
May 2017.

[16] Z. Qiao, K. Muelling, J. Dolan, P. Palanisamy, and P. Mudalige, “Pomdp
and hierarchical options mdp with continuous actions for autonomous
driving at intersections,” in 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), Nov 2018, pp. 2377–2382.

[17] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A Reinforcement Learning
Based Approach for Automated Lane Change Maneuvers,” arXiv e-
prints, p. arXiv:1804.07871, Apr 2018.

[18] S. V. Albrecht and P. Stone, “Autonomous Agents Modelling Other
Agents: A Comprehensive Survey and Open Problems,” arXiv e-prints,
p. arXiv:1709.08071, Sep 2017.

[19] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to
Communicate with Deep Multi-Agent Reinforcement Learning,” arXiv
e-prints, p. arXiv:1605.06676, May 2016.

[20] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent Cooperation and Competition with
Deep Reinforcement Learning,” arXiv e-prints, p. arXiv:1511.08779,
Nov 2015.

[21] Udacity, “Zero sum stochastic games two - georgia tech - machine
learning,” Feb 2015. [Online]. Available: https://www.youtube.com/
watch?v=hsfEJEnNpJY

[22] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
Agent Actor-Critic for Mixed Cooperative-Competitive Environments,”
arXiv e-prints, p. arXiv:1706.02275, Jun 2017.

[23] L. Panait and S. Luke, “Cooperative multi-agent learning: The
state of the art,” Autonomous Agents and Multi-Agent Systems,
vol. 11, no. 3, pp. 387–434, Nov. 2005. [Online]. Available:
http://dx.doi.org/10.1007/s10458-005-2631-2

[24] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv e-prints, p.
arXiv:1606.01540, Jun 2016.

[25] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van
Hasselt, and D. Silver, “Distributed Prioritized Experience Replay,”
arXiv e-prints, p. arXiv:1803.00933, Mar 2018.

[26] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu,
“IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures,” arXiv e-prints, p. arXiv:1802.01561, Feb
2018.

[27] E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox, K. Goldberg, J. E.
Gonzalez, M. I. Jordan, and I. Stoica, “RLlib: Abstractions for Dis-
tributed Reinforcement Learning,” arXiv e-prints, p. arXiv:1712.09381,
Dec 2017.

http://dl.acm.org/citation.cfm?id=3091574.3091594
https://www.pnas.org/content/39/10/1095
http://dx.doi.org/10.1109/AAMAS.2004.67
http://dx.doi.org/10.1109/AAMAS.2004.67
https://en.wikipedia.org/wiki/Cellular_V2X
https://en.wikipedia.org/wiki/Cellular_V2X
https://www.youtube.com/watch?v=hsfEJEnNpJY
https://www.youtube.com/watch?v=hsfEJEnNpJY
http://dx.doi.org/10.1007/s10458-005-2631-2

