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Abstract—The last decade has witnessed the proliferation of
Deep Learning models in many applications, achieving unrivaled
levels of predictive performance. Unfortunately, the black-box
nature of Deep Learning models has posed unanswered questions
about what they learn from data. Certain application scenarios
have highlighted the importance of assessing the bounds under
which Deep Learning models operate, a problem addressed by
using assorted approaches aimed at audiences from different
domains. However, as the focus of the application is placed
more on non-expert users, it results mandatory to provide
the means for him/her to trust the model, just like a human
gets familiar with a system or process: by understanding the
hypothetical circumstances under which it fails. This is indeed the
angular stone for this research work: to undertake an adversarial
analysis of a Deep Learning model. The proposed framework
constructs counterfactual examples by ensuring their plausibility,
e.g. there is a reasonable probability that a human could generate
them without resorting to a computer program. Therefore, this
work must be regarded as valuable auditing exercise of the
usable bounds a certain model is constrained within, thereby
allowing for a much greater understanding of the capabilities
and pitfalls of a model used in a real application. To this end,
a Generative Adversarial Network (GAN) and multi-objective
heuristics are used to furnish a plausible attack to the audited
model, efficiently trading between the confusion of this model,
the intensity and plausibility of the generated counterfactual.
Its utility is showcased within a human face classification task,
unveiling the enormous potential of the proposed framework.

Index Terms—Explainable Artificial Intelligence, Deep Learn-
ing, Counterfactuals, Generative Adversarial Networks, Multi-
objective Optimization, Meta-heuristics

I. INTRODUCTION

The ever-growing achievements of complex models relying
on powerful learning algorithms, such as those utilized in Deep
Learning, have lately started to go beyond their academic
boundaries towards their massive deployment in a manifold
of application scenarios. This advent has been particularly
notable in agriculture [1], Transportation [2], Industry 4.0 [3],
and a myriad of mobile applications to help users with their
daily lives [4]–[6]. However, the design of these modeling
techniques is often driven by its performance (let the model
perform to its best for the task at hand), thereby overlooking
the context in which the model, once trained, will be in use
(correspondingly, let the model be usable and understand-
able by its user). To overcome this issue, quantifying and
communicating the possibilities, limitations and caveats of
Deep Learning models should be made compulsory for its

practicality in real application environments. Unfortunately,
the user receiving information on the model might not be an
expert on Artificial Intelligence, which ultimately gives rise to
a lack of trustworthiness, and his/her eventual reluctance to
adopt the designed model in complex application niches.

In this context, current approaches for quantifying the
performance of Deep Learning models clashes with the notions
an overall user could appraise. For this reason, strategies and
methods aimed to bridge the gap between these two realms
of knowledge have been profusely explored in recent times.
Among them, there are studies that inspect the robustness
of Deep Learning models by means of adversarial attacks
[7], [8]. However, the output of these studies is still far
from being user-friendly, since their practical implications
when done for certain applications cannot be inferred. The
estimation of the output confidence of the model has been also
addressed in several works [9]–[11]. Once again, the result
may not be understandable for users without a background
in Statistics. Further methods for explaining Deep learning
models include the visualization of the internal representation
of the model [12], [13], the measurement of the amount of
attention placed by the model to each of the inputs [14] for
a certain test sample, and many more covered in recently
contributed prospective overviews [15].

The work presented in this manuscript joins this vibrant
research area aimed at making Deep Learning models more
interpretable and ultimately, more usable in practice. To this
end, we propose an adversarial strategy to produce clear
counterfactual explanations of the limits of a Deep Learning
classifier. However, we further impose that the generated
adversarial samples are plausible, i.e., changes made on the
input to the model have an appearance of credibility and
believability without any computer intervention. To ensure
plausibility, the proposed method makes use of GANs (Gen-
erative Adversarial Networks) in order to learn the underlying
probability distribution of each of the features needed to create
examples of an objective distribution (e.g. realistic human
faces, which serves as an exemplifying use case throughout
the paper). In parallel, a Deep Learning convolutional network
separates two unknown classes (probability distributions) that
are pertaining to the prior distribution (correspondingly, male
and female faces). Our method allows for a search among
samples of the first distribution to find realistic counterfactuals
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close to a given test sample that could be misclassified by
the model (namely, a face of a male being classified as a
female). As a result, our framework makes the user of the
model assess its limits with an adversarial analysis of the
probability distribution learned by the model, yet maintaining a
sufficient level of plausibility for the analysis to be understood
by a non-expert user.

The rest of the paper is organized as follows: Section 2
brings an analysis of the background literature for the tech-
niques used in our study, whereas Section 3 presents materials
and methods embedded in the proposed framework. Section
4 presents and discusses experimental results and, finally,
Section 5 ends the work with several concluding remarks and
a prospect of future research lines rooted on our findings.

II. BACKGROUND

As anticipated in the introduction, the proposed frame-
work resorts to GANs for producing a realistic counterfactual
analysis of image classification models that rely on CNNs
(Convolutional Neural Networks). Since the ultimate goal is to
favor the understanding of the model classification boundaries
by an average user, the framework falls within the XAI
(Explainable Artificial Intelligence) umbrella. Consequently,
in this section we briefly contextualize and revisit the state of
the art of such research areas.

Generative adversarial networks were first introduced by
Goodfellow in [7], bringing the possibility of using neural
networks (function approximators) to become generators of a
desired distribution. Since their inception, GANs have pro-
gressively achieved photo-realistic levels of resolution and
quality when synthesizing images of human faces. In general,
a GAN architecture consists of two data-based models, which
are trained in a mini-max game: one of the players (models)
minimizes its error (loss), whereas the other maximizes its
gain. In such a setup, multiple models have flourished to
date, each governed by its strengths and vulnerabilities [16].
Interestingly for the scope of this paper, some of these were
conceived with the intention of finding the pitfalls of a certain
model and the ways to hack it [7], [8]. Other GAN approaches
aim at generating samples of incredibly complex distributions
like photo-realistic human faces [17], [18]. The framework
proposed here hybridizes these two approaches by extending
what was introduced by [19], to include the idea of performing
an adversarial analysis of a third model.

As for the modeling choice, we adopt the powerful ca-
pabilities of CNN [20], [21] to capture spatial correlations
from image data. Convolutional layers upon which CNNs are
built allow for a space-wise abstraction of the input that,
when trained via gradient back-propagation methods, give rise
to image classification models of the highest performance.
Although CNNs have been under the spotlight for a long time,
the availability of huge loads of data and the capability of pro-
cessing them efficiently has given rise to stacked convolutional
architectures that perform incredibly well, at the cost of more
complex, less understandable model structures [22]. The more
complex the model is, the harder is to pinpoint the reasons

for its failures, which motivates studies as the one presented
in what follows.

The third technological pillar on which this contribution
resides is the recent trend around model explainability, collec-
tively referred to as XAI. In fact, XAI has recently become
mainstream in the realm of Artificial Intelligence, unchaining
a flurry of different approaches. The recent survey in [15]
provides an extensive review of the current state of the art on
this matter, from which we extract [14], [23] as the ones most
closely related to the framework proposed in this paper. First,
the LIME tool introduced in [23] allows for a linearization
of a certain model’s internal activations when faced with a
specific test sample. This attempts to close the gap between
the complexity of a model to predict the output and what
users can understand to assess their inner functioning. Under
this same scope, LRP (Layer-wise Relevance Propagation)
implemented in SHAP [24] helps a user discern where, in the
input image, the model focuses towards making its prediction.
Once again, the target is to show, in understandable terms
(an image overlaid by a heatmap) the reasons why the model
outputs its decision. More recently, in [25] a similar GAN
architecture to the one later explained is used to generate
images by optimizing for the failure of the discriminator when
freezing a couple of target variables. This allows them to study
the representativeness of those classes within the dataset that
has fed the model. However, a core difference with respect to
this work is that the scheme in [25] does not present a user
with the plausible changes he/she may undertake to produce
an effective counterexample, nor does it explain under what
circumstances the user should impose their criterion over that
of the model.

III. MATERIALS AND METHODS

This section describes the data and methods comprised in
the proposed counterfactual generation architecture. To this
end, first data and its variations will be explained, followed
by a statement of the mini-max problem under consideration,
as well as the methods devised for solving it efficiently.

A. Materials

Although the proposed framework could be extrapolated
to any image classification task, explanations and experi-
ments discussed throughout this work consider the so-called
Celebrity dataset [26], which consists of 200·103 celebrity face
images with annotated facial attributes. This dataset is built
by considering forty different facial attributes, from which
thirteen are chosen to feed the GAN: Bald, Bangs, Black
Hair, Blonde Hair, Brown Hair, Bushy Eyebrows,
Eyeglasses, Gender, Mouth Open, Moustache, No
Beard, Pale Skin and Age. For the sake of computational
efficiency, the images in high definition contained in this
dataset have been downsized to (128, 128, 3), in which the
first two numbers refer to the height and width in pixels of
the scaled image, and the third number denotes the number of
color channels. The downsizing procedure has been carried out
by means of Tensorflow’s built-in bicubic resampling method.



We adopt the original train, validation and test partitions es-
tablished in [26], with sizes 182, 000, 637 and 17, 363 images,
respectively. Further information on how these partitions have
been made can be found in this reference.

B. Problem Statement and Methods

The counterfactual generation framework proposed in this
paper relies on a similar GAN architecture to the one in-
troduced in [7]. As shown in Figure 1, this architecture is
composed by two models: one attempts to generate instances
following certain characteristics (generator), whereas the other
determines whether the generated instance belongs to a distri-
bution of interest (discriminator). Originally the generator was
fed with noise. More recently, other contributions [27], [28]
have replaced the generator model with an encoder-decoder
structure to allow for a semi-supervised training, by which
the generated content will pertain to the distribution of the
input rather than noise.

Several modifications have been imprinted to the conven-
tional GAN structure to produce plausible counterfactuals of
a third classification model. To begin with, following [19] we
have added an extra input vector b to the decoder towards
biasing the output of the generator. This new vector b can
target a manifold of purposes; however, for the task at hand
(human face recognition), the vector permits to tailor what at-
tributes the generator changes in the input face in order to fool
the discriminator. By devising and introducing an additional
loss term L(b, b̂′) to the overall loss of the encoder-decoder
GAN (with b̂′ denoting the estimated vector of attributes of the
reconstructed image by the decoder), we force the generator
to maintain its input label at its output image, while changing
certain facial attributes of the human face as per b. Our
addition to this architecture is non-intrusive: we include the
classifier to be audited in parallel to the discriminator, yielding
an additional loss term that quantifies the confidence of this
classifier when producing its decision.

At this point it is important to emphasize that the audited
model is left aside the overall training process of the GAN for
several reasons. To begin with, we assume that for practicality,
the access to the audited model must be kept at its minimum
(black-box analysis). Therefore, we only exploit the logits of
the audited model, with no further information on its inner
structure whatsoever. Furthermore, the goal of the discrimi-
nator is to decide whether the generated image follows the
distribution of the training set, which must be regarded as a
plausibility check. The task undertaken by the audited model
can be assorted, for instance, to discriminate among male
and female, old and young or any other classification
problem alike. Therefore, the attribute vector b must balance
between two objectives: 1) to maintain plausibility as per the
discriminator, and 2) to confuse the audited model. A third
objective can be also considered to account for the intensity
of the changes inserted in the image as per b: the subtler such
changes are, the more unnoticed they will be in practice.

The above three goals can be formulated as a multi-objective
optimization looking for a set of attribute vectors that produce,

through the encoder-decoder of the GAN, images that achieve
a Pareto-optimal balance between such goals. To recapitulate,
one that determines if the discriminator is being fooled (reality
check), another one that establishes whether the target fails to
classify correctly the output of the GAN, and a third one that
measures the intensity of attribute changes made to confuse
the target model to be audited.
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Genc(·) Gdec(·)
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fadv(·)
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Fig. 1. Block diagram of the proposed system comprising an AttGAN model
and a multi-objective optimization model that infers the attribute modifications
needed to produce plausible counterfactuals for target model T (·).

To mathematically state this problem, let xa ∼ PX(x)
be an image on which the counterfactual analysis is to be
made, which follows distribution PX(x) and has attributes
a. We denote the generator as G(xa,b), which is embodied
by an encoder Genc(x

a) and a decoder Gdec(z,b), the latter
receiving as its argument the compressed representation of
the input image z = Genc(x

a), and an attribute vector
b. The image output by the generator is given by xb′ =
Gdec(Genc(x

a),b). Ideally, xa′ ≈ xa, i.e. the reconstructed
image xa′ = Gdec(Genc(x

a),a) should resemble xa itself.
A discriminator D(x′) is placed next in the pipeline to

determine i) whether the synthesized image x′ is visually
realistic, and ii) whether the attributes of the generated images
correspond to those reflected in b. To this end, we learn an
attribute classifier C(x) from the annotated training image
subset in order to compute an estimation b̂′ of the attribute
vector contained in its input image.

With all these ingredients being defined, and following [19],
we can define the overall loss function that drives the learning
algorithm of the encoder, decoder, discriminator and attribute
classifier as a linear combination of the reconstruction and
Wasserstein GAN losses, along with a loss reflecting that
attributes b should be present in the reconstructed image.
The training objective for encoder Genc(x

a) and decoder
Gdec(z,b) are given by:

min
Genc,Gdec

λ1Lrec(x
a,xa′) + λ2LG

att(b, b̂
′) + LG

adv(x
b′), (1)

where

Lrec(x
a,xa′) = Exa∼PX(x)

[
||xa − xb′||1

]
, (2)

LG
att(b, b̂

′) = Exa∼PX(x),b∼PB(b)

N=|b|∑
n=1

H(bn, b̂n
′
)

 , (3)

LG
adv(x

b′) = −Exa∼PX(x),PB(b)

[
D(xb′)

]
, (4)



where E[·] denotes expectation; PB(b) indicates the dis-
tribution of possible attribute vectors in the range R[0, 1];
H(bn, b̂n

′
) is the cross-entropy of binary distributions given by

bn and b̂′n ∈ b̂′ = C(xb′
); and D(xb′) = 0 if xb′ is predicted

to be a fake. When placing the focus on the discriminator D(·)
and the classifier C(·), the training goal is given by

min
D,C

λ3LC
att(x

a,a) + LD
adv(x

a,b), (5)

with

LC
att(x

a,a) = Exa∼PX(x)

 |a|∑
n=1

H(an, ân
′)

 , (6)

LD
adv(x

a,b)

= −Exa∼PX(x) [D(xa)] + Exa∼PX(x),PB(b)

[
D(xb′)

]
, (7)

where ân
′ ∈ C(xa), and coefficients {λi}3i=1 permit to

balance the importance of the above losses during the training
of the GAN architecture.

Once the GAN has been trained via back-propagation to
meet the objectives in (1) and (5), we exploit this trained gen-
erative architecture to find counterfactual examples for a given
test sample xa,⊕ and the model being audited, which we here-
after refer to as T (x), with classes {label1, . . . ,labelL}.
Specifically, we seek a minimum perturbation to the attribute
vector a (i.e. b = a+δ, with δ ∈ RN ) that, through Genc and
Gdec, yields a plausible image xb′ that succeeds at confusing
the target model T (·). The conflicting interplay between ad-
versarial success, plausibility and intensity of the perturbation
from which the counterfactual example is produced can be
casted as a multi-objective optimization problem. Specifically,

min
δ∈RN

fgan(x
a,⊕, δ;G,D), fadv(x

a,⊕, δ;G,T ), fatt(δ), (8)

where:
• fgan(x

a,⊕, δ;G,D) quantifies the no-plausibility (unlike-
liness) of the generated counterfactual through G, which
is given by the difference between the soft-max output
of the discriminator D()̇ corresponding to xa,⊕ and xb′

(Wasserstein distance). The more negative this difference is,
the more confident the discriminator is about the plausibility
of the generated counterfactual xb′;

• fadv(x
a,⊕, δ;G,T ) is the probability that the generated

counterfactual does not confuse the target model T (·), which
is quantified by the negative value of the cross-entropy of
the soft-max output of target model when queried with
counterfactual xb′; and

• fatt(δ) gauges the intensity of adversarial changes made to
the input image xa,⊕, which is given by ||δ||2.
To efficiently find a set of attribute perturbations {δ}

balancing among the above three objectives in a Pareto-
optimal fashion, we resort to multi-objective meta-heuristic
optimization algorithms. Algorithm 1 summarizes the process
of generating counterfactuals for target model T (·), compris-
ing both the training phase of the GAN architecture and the
meta-heuristic search for counterfactuals subject to the three
conflicting objectives stated above.

Algorithm 1: Generation of plausible counterfactuals
Input: Target model to be audited T (x); GAN

architecture (G,D); attribute classifier C(x);
annotated training set {xa}; test image xa,⊕

for producing the plausible counterfactual;
weights {λi}3i=1

Output: Set of plausible counterfactuals optimally
balancing among fgan(·), fadv(·) and fatt(·)

1 Train GAN architecture via back-propagation with the
annotated training set and loss functions (1) and (5)

2 Initialize a population of perturbation vectors δ ∈ RN

3 while stopping criterion not met do
4 Apply search operators to the population to yield

new perturbation vectors
5 Evaluate their fgan(·) (plausibility), fadv(·)

(adversarial success) and fatt(·) (intensity)
6 Rank them in terms of Pareto optimality
7 Retain the best perturbations in the population
8 end
9 Select non-dominated perturbations from population

10 Produce counterfactual images by querying the GAN
with xa,⊕ and each selected perturbation vector

IV. RESULTS AND DISCUSSION

As has been mentioned previously, we exemplify the ap-
plication of our proposed plausible counterfactual genera-
tion framework by designing an experimental setup on the
Celebrity dataset. Specifically, we aim at auditing a target
classifier T (·) trained with this dataset to distinguish among
classes {label1,label2} = {male,female} (N = 2),
which is to be done by fabricating perturbations δ of the
attribute vector a of the test image xa,⊕ that maintain the
plausibility of the produced counterfactual image xb′. Two
different experiments have been designed, in which we alter
the data to train the classifier:
1) We use the entire training set to create a classifier that

discriminates between Male and Female (i.e. the target
variable is Gender).

2) We remove female examples with attribute Blonde hair
from the training dataset, for reasons later disclosed
throughout the discussion of the results.

For the process of finding counterfactual examples in the
above experiments, we employ the recently contributed jMet-
alPy framework for multi-objective optimization with meta-
heuristic search algorithms [29]. This framework eases the
process of defining custom multi-criteria optimization prob-
lems, and provides off-the-shelf optimization algorithms for
efficiently discovering approximation of the Pareto front of
the defined problems. In order to select the best perform-
ing algorithm, we have performed a benchmark comparison
of three of them: NSGAII (Non-dominated Sorting Genetic
Algorithm, [30]), GDE3 (Generalized Differential Evolution,
[31]) and SMPSO (Speed-constrained Multi-objective Parti-
cle Swarm Optimization, [32]). Hyper-parameters of these



meta-heuristics have been tuned by means of an exhaustive
search over a fine-grained grid of possible values, from where
the best configuration was selected to be that yielding the
best average hypervolume indicator value over 10 runs of
every algorithm for 5 images drawn at random from the
test set. The reference point for the hypervolume was set
to (fgan, fadv, fatt) = (0,−3, 0). This benchmark concluded
that the best algorithm is SMPSO with a swarm size equal to
100 particles, polynomial mutation with probability Pm = 0.1
and archive size equal to 100 individuals. Further information
on this comparison study is not disclosed for a better focus of
forthcoming explanations.

The target classifier T (·) consists of a deep convolutional
network that combines five sequential convolutional layers
with batch normalization and leaky ReLu activations (rectified
linear units with a 0.1 value under zero). This stacked set
of convolutional layers end in a dense layer with a ReLu
activation, followed by a second dense layer of a single unite
activated by a sigmoid function that outputs the probability of
being of the target class. This model has been trained sepa-
rately, and added to the overall architecture once the weights
are loaded from the solution published in [19], namely, a fully-
functional, pre-trained attribute-based GAN able to generate
facial attributes as desired. Some modifications have been
made to the architecture and the loss functions to incorporate
the target classifier to be audited. Therefore, the GAN training
step of Algorithm 1 (line 1) has not been needed to produce
the results discussed in the following subsections.

A. Experiment 1: Target Classifier trained with Entire Data

Figures 2 and 3 summarize the results obtained from the
first experiment. On the one hand, Figure 2.a depicts the
Pareto front achieved for test images corresponding to male
and female images, whereas Figure 2.b shows the progression
of the probability from the target classifier T (·) corresponding
to the male class, overlaid by the values of the fgan(·) and
fatt(·) of every point in the estimated Pareto front of Figure
2.a. Counterfactuals are arranged in decreasing (male images)
and decreasing order (female images) of the probability of
class male output by T (·).

We comment on this first plot before proceeding further.
To begin with, the intensity of changes to audit model T (·)
when the test image xa,⊕ corresponds to a female human are
in general more intense (i.e. higher value of fatt(·)). It is also
interesting to see that, for both genders, a crossing point can be
noted in Figure 2.b between P (male) and fgan(·). As shown
next, this point determines the best plausible counterfactual
corresponding to each test image.

We proceed with the discussion of the results of the first ex-
periment by inspecting Figure 3 (next page), which illustrates
the generated images xb′ from the perturbation vectors of the
Pareto front depicted in Figure 2.a. For the sake of space,
only every tenth of the counterfactuals sorted as per Figure
2.b are shown, thereby unfolding a representative excerpt of
the diversity of images synthesized by our proposed frame-
work. It is surprisingly accurate and recurrently happening

over many examples in the test set that the aforementioned
crossing point between P (male) and fgan(·) corresponds to
the most plausible counterfactual, as can be verified by simple
visual inspection. Furthermore, a similar exploration of the
counterfactuals produced by many other images unveils that
blonde hair is recurrently added to male images so as to
make them be classified as female by T (·), and vice versa:
darkened hair color is imprinted to female images to make
them be predicted as male.
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Fig. 2. (a) Estimated Pareto front for the first experiment, discriminating
among counterfactuals corresponding to Male ( ) and Female ( ) test
image; (b) probability of being classified as male by T (·) ( ), value of
fgan(·) ( ) and fatt(·) ( ) for the whole set of counterfactuals contained
in the estimated Pareto front of (a).

B. Experiment 2: Target Classifier trained with Skewed Data

The previous experiment elucidates that the optimization
process tends to turn the hair of female images to black, and
the hair of male images to blond. There lies the rationale for
devising a second experiment, where all images of female
faces with blonde hair are removed from the training dataset
of the target model. Figure 4 shows two produced series
of counterfactuals for this second experiment. In the case
of the original male image (upper pair of plots), blonde
haired counterfactuals are eventually produced, yet P (male)
plummets even if the hair is not blonde. A similar effect is
perceived in the other depicted case, where the conversion of
a female to a male realistically is attained by modifying other
image attributes that are not necessarily related to the color of
the hair (e.g. lower bang, higher Age) to increase P (male).
Although the color of the hair appears to still influence the
production of counterfactuals for the female case, it is not as
evident as in the case of Experiment 1. This corroborates the
potential of our framework for discovering hidden sources of
bias in classification problems that are not properly detected
nor removed during the modeling phase.
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Fig. 3. Two illustrative examples of Experiment 1: the original image xa,⊕ (leftmost image), followed by counterfactuals belonging to the estimated Pareto
front, thus balancing differently among plausibility, intensity and adversarial success. In the case of the male image, the insertion of blonde hair is decisive
to confuse the audit classifier T (·), which rises suspicion about a potential bias of T (·) to concentrate on the hair color to produce its prediction.

V. CONCLUSIONS AND FUTURE RESEARCH LINES

This work has elaborated on adversarial learning framework
oriented towards the multi-objective synthesis of adversarial
samples aimed at explaining the performance limits of Deep
Learning classification problems. Unlike other adversarial
learning studies wherein the goal is to produce subtle modifica-
tions to the input of the model, we aim at imprinting plausible
changes that the user of the image could realistically imprint
in the input to the model, so that plausibility is enforced to
the produced counterfactual. To this end, we have focused on
image classification, and hybridized an attribute GAN model
[19] with a multi-objective meta-heuristic search engine to
achieve counterfactuals for a given image that balance between
three objectives related to the explainability of the classifier:
plausibility, adversarial success and intensity of the attribute
perturbation. Two experiments have elicited interesting conclu-
sions that go beyond the initially targeted goal of this study.
Specifically, we have proven that the proposed framework may
serve well to check underlying biasing phenomena present
in a model and/or a dataset. Indeed, a subtle bias of the
dataset (more blond women) was shown to be crucial for
the adversarial success of male and female counterfactuals,
informing the user about the risk of not tackling it (i.e. a simple
change of color hair could eventually make a test image be
classified wrongly by the audited model).

In light of the global concern with the accountability of
Artificial Intelligence methods, we plan to invest further ef-
forts along several research directions rooted on the findings
reported in this work. To cite a few, a closer look will be
taken at how the counterfactual information generated by our
framework can be fed back to the audited model and increase
its robustness against adversarial or, alternatively, counteract
the presence of bias in the training data. From the algorithmic

side, Reinforcement Learning algorithms will be explored
as an efficient alternative to multi-objective meta-heuristics,
capable of learning the relationship between attribute changes
and multi-criteria effect on the test image under consideration.
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