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Abstract—Benefited from the rapid development of deep
learning, object detection in natural image has made great
improvements. However, since the size of the optical remote
sensing video is very large while the size of airplane is very
small, airplane detection in optical remote sensing video still
faces a lot of challenges. In this article, we aim at a novel
approach for airplane detection in optical remote sensing video.
The proposed approach utilizes spatial features from structured
forests edge detection and temporal features from neighboring
frames. It is capable of circumventing existing challenges and
running at a high speed for practical applications. To realize this
goal, edge detection results of optical remote sensing video frames
are obtained from structured forests edge detection method.
Afterwards, improved frames differencing method is utilized to
extract temporal features. Finally, airplane detection result is
generated by deep neural networks with extracted spatial and
temporal features. Our experiments demonstrate that our method
has a great breakthrough on the precision and recall of airplane
detection in optical remote sensing video.

Index Terms—airplane detection, optical remote sensing video,
structured forests edge detection, frames differencing

I. INTRODUCTION

Airplane detection in optical remote sensing video is crucial
in the aspect of military and civilian fields, such as air defense
and airport surveillance. It attracts more and more attention
[1]–[4]. With the increasing demand of airplane detection in
optical remote sensing images, lots of methods have been
proposed for airplane detection in recent years [5]–[7]. In these
methods, a large part of the literature has focused on deep
neural network (DNN), such as faster R-CNN [8], SSD [9]
and YOLO [10].

Yun Ren et al. [11] integrate deformable convolution into
the faster R-CNN [8]. Besides, they add 2D offsets to standard
convolution layer and adopt top-down and skip connections
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for object detection in optical remote sensing images. Zhong
Chen et al. [12] design an end-to-end deep learning method for
airplane detection using the SSD detection model [9]. Heng
Zhang et al. [13] use modified YOLO object detection model
[10], [14] and feature extraction model intergrated with a self-
designed layer named VaryBlock. These methods tap into the
advantages of DNN’s properties and become a promising trend
for airplane detection.

Although existing research for airplane detection in optical
remote sensing images has made promising progress, it is still
facing several technical challenges in optical remote sensing
video. The first technical challenge is that the resolution of
optical remote sensing video is 12000×5000 while the size of
airplane is less than 70×70. It results in a low contrast between
the background and the target. The second technical challenge
is that the spatial resolution of optical remote sensing video
is less than 1m, which results in poor motion features of
airplanes.

To cope with these technical challenges, we propose a
novel airplane detection method using spatial features from
structured forests edge detection [15] method and temporal
features from improved frames differencing, with the purpose
of achieving a reliable and efficient performance in optical
remote sensing video. Firstly, we utilize structured forests edge
detection method to obtain spatial features of optical remote
sensing video. Then, by taking the advantage of improved
frames differencing method, temporal features are generated
from adjacent frames. Finally, airplane detection result is
obtained by deep neural networks with extracted spatial and
temporal features.

The threefold contributions of our work can be outlined as
follows.

• Our proposed method focuses on the most significant and
unique structured forests edges in optical remote sensing
video to extract spatial features. Structured forests edges
can highlight the contrast between the airplane and the
background, so as to greatly solve the technical challenge
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that the contrast between the background and the target
is too low.

• Our proposed method extracts temporal features from
adjacent frames in optical remote sensing video. The
result of frames differencing can strengthen the motion
features of airplanes. It makes great contributions to
alleviate the disadvantage of poor motion features of
airplanes.

• We combine spatial features with temporal features by
creating deep neural network named as fusion network.
Extensive experiments are performed on the optiacl re-
mote sensing video dataset whih is made by ourselves.
Experimental results demonstrate that our method can
achieve 0.9692 precision and 0.9333 recall on our test
set, which is superior to the state-of-the-art methods.

II. METHODOLOGY

In this section, we present the methodology of the proposed
airplane detection in optical remote sensing video. As shown
in Figure 1, the framework of our method is made up of
three parts. The first part is structured forests edge detection,
which is aimed at obtaining spatial features of optical remote
sensing video. The second part is improved frames differenc-
ing method for the puropse of extracting temporal features
of optical remote sensing video. Afterwards, we concatenate
extracted spatial and temporal features and feed them into deep
neural networks. At last, airplane detection result in optical
remote sensing video is obtained.

A. Structured Forests Edge Detection

First of all, we cut the optical remote sensing video into
frames. Then, edge detection results of optical remote sensing
video are obtained by structured forests edge detection. Due to
the characteristic of optical remote sensing video, the edges of
edge detection result are very tight. As a result, non-maximum
suppression (NMS) algorithm is needed to improve it. The
NMS algorithm suppresses edge points that are not maximum
values and searches for local maximum values. It is a widely
used algorithm in visual tasks such as edge detection and
object detection. After NMS processing, the original edge
image can be changed to a relatively sparse edge image, which
is more conducive to subsequent operations.

Secondly, we utilize the grouping strategy. After grouping
operation, the original edge detection results become colorful
and discrete. Edge points are grouped into many short line
segments. It can be seen from the third picture of Figure 2
vividly. Our grouping strategy is to form an edge set by taking
edge points near the same line in the edge detection result as
members of the same group. The criterion is to keep finding
8 connected edge points until the sum of the difference in the
direction angle between each edge point is greater than π

2 .

B. Improved Frames Differencing

The traditional two-frame differencing method [16] is to
subtract the corresponding pixel of the n− 1th frame from the
nth frame. After the two-frame differencing image is obtained,

the absolute value of grayscale difference is determined.
When the absolute value is higher than a certain threshold,
it is determined to be the moving target. The three-frame
differencing method is a variant of the two-frame differencing
method. Obtain two difference images between three adjacent
frames at first. Then perform an AND operation on the pixels
at the same position of two difference images to obtain the
final three-frame differencing result.

For optical remote sensing video with very high resolu-
tion, the size of the target is small compared to the overall
scene. Besides, the relative position difference of the moving
target between adjacent frames is small, which leads to the
relative displacement of airplanes is small. If the two-frame
differencing method or its variant method is used, the frames
differencing result cannot extract sufficient temporal features.
Therefore, we need to improve the traditional frames differ-
encing method to extract better temporal features.

The steps of the improved frames differencing method are
as follows.

Algorithm 1: Improved frames differencing
Result: frames differencing result

1 cut the optical remote sensing video into N frames
denoted by F ;

2 perform spatial domain based image enhancement
operation;

3 extract frames every three frames and reconstitute them
into a sequence S with length M, where N = 3×M ;

4 i← 0;
5 while i < M do
6 subtract the corresponding pixels of F3i−1 from

F3i and denote the result as D ;
7 i← i+ 1;
8 end
9 threshold segmentation;

10 morphological expansion operation

As is shown in the first picture of Figure 3, this original
frame is extracted from the optical remote sensing video. It is
the 270th frame in the video. The second picture of Figure 3
is the result after spatial domain based image enhancement op-
eration. Then subtract the corresponding pixels of 269th from
270th. After subtraction, threshold segmentation is utilized to
obtain the third picture of Figure 3. The last picture of Figure
3 is the result after morphological expansion operation. The
size of morphological expansion operator in our work is 2×2.
The void phenomenon caused by frames differencing method
can be effectively suppressed by expansion operation.

C. Deep Neural Networks

1) Fusion Network: In the application of airplane detection
in optical remote sensing video, it is required to extract
features more efficiently by stronger generalization capability.
Therefore, we feed structured forests edge detection result and
improved frames differencing result into a convolutional neural
network (CNN) before airplane detection. We name this CNN
as fusion network. It is modified from VGG-13 [17]. The
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Fig. 1. Airplane detection in optical remote sensing video using spatial and temporal features
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Fig. 2. Structured forests edge detection: (a) original optical remote sensing
image (b) the result of structured forests edge detection (c) edge set after
using grouping strategy

fusion network is divided into two parts. The first part is made
up of 6 convolutional layers and 3 max pooling layers. The
second part consists of 4 convolutional layers and one max
pooling layer. The complete network is depicted in the Figure
1 in detail.

First of all, the results of structured forests edge detection
and improved frames differencing are resized to 6656 ×
6656 × 3. Then, they are fed into two subnetworks with 6
convolutional layers and 3 max pooling layers respectively.
When we obtain two 832 × 832 × 512 feature maps, we

(a) (b)

(c) (d)

Fig. 3. Improved frames differencing: (a) original frame in optical remote
sensing video (b) after spatial domain based image enhancement operation (c)
after subtraction operation and threshold segmentation (d) after morphological
expansion operation

concatenate these feature maps sequentially and achieve a
832 × 832 × 1024 feature map. Afterward, it is fed into the
second part of our fusion network.

In the second part of our fusion network, the max pooling
layer is different from the original one in VGG-13. We reduce
the dimension of feature maps in subsequent layers in order
to fit the input dimension of YOLO detection network.

2) Detection Network: Due to the outstanding performance
of YOLO, we choose it as our detection network. The ar-
chitecture of YOLO is shown in Figure 4. It is made up of



22 convolutional layers, 5 maximum pooling layers, and one
passthrough layer. The input of the network is 416× 416× 3.

i) The input image passes through the first convolutional
layer with a convolution kernel of 3 × 3, and then passes
through a max pooling layer to obtain 32 feature maps with a
size of 208× 208.

ii) It passes the second convolutional layer with 3 × 3
convolutional kernel size. After that, 64 feature maps with the
size of 104 × 104 are obtained through a max pooling layer.
128 feature maps with the size of 52 × 52 are obtained by
continuously passing through three convolutional kernel size
of 3× 3, 1× 1, 3× 3 and one max pooling layer.

iii) Three convolutional layers with 3×3, 1×1, 3×3 and one
max pooling layer are successively passed through to obtain
256 feature maps with a size of 26×26. 512 feature maps with
dimensions of 13 × 13 are obtained by continuously passing
through the five convolutional layers with sizes of 3×3, 1×1,
3× 3, 1× 1 and 3× 3 and one max pooling layer.

iv) Through seven convolutional layers with sizes of 3×3,
1× 1, 3× 3, 1× 1, 3× 3, 3× 3, and 3× 3, 512 feature maps
with sizes of 26× 26 are obtained.

v) Through the convolutional layer with convolution kernel
size of 1 × 1, the feature map is rearranged through the
passthrough layer. 256 feature maps with 13 × 13 size are
obtained. At last, through the convolution kernel sizes of 3×3
and 1× 1, a 13× 13× 30 feature map is obtained, which can
generate the final airplane detection result of optical remote
sensing video.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Extensive experiments are performed on the optiacl remote
sensing video dataset, which is made by ourselves to evaluate
the performance of the proposed airplane detection method.
Then we compare our proposed airplane detection method with
other advanced methods.

A. Dataset

Our dataset is based on the high-resolution optical remote
sensing videos provided by Jilin No. 1 satellite. The videos are
in AVI format and the resolution of videos are less than 1m.
The ground area covered by each video is 11km×4.5km. All
the videos have undergone geometric correction, radiometric
correction and image stabilization. The main targets in our
optical remote sensing videos are fixed-wing airplane. The
average length of each video is 30 seconds. Figure 5 shows
one of optical remote sensing video frames at Bogota’s airport.

Since the resolution of optical remote sensing videos is
12000 × 5000 including a lot of interference such as back-
ground clutter and moving cloud occlusion, we preprocess the
videos at first.

Firstly, we cut out the cloud covered fragments and only
keep the first 17 seconds of the video. Figure 6 shows the
first, 101th and 201th frame respectively.

Secondly, in order to make the video frames more suitable
for the structure of deep neural network, we extract 10 image
block samples from the part containing the airplane, which

are depicted in Figure 7. The number of airplanes contained
in each image ranges from 3 to 9, and the total number of
airplanes contained in our dataset is 680. In the test set of our
dataset, there are 20 video frames with 135 airplanes.

B. Improved Frames Differencing
Figure 8 depicts the results of frames differencing methods.

As can be seen from Figure 8, when using the traditional two-
frame differencing method to detect moving airplanes in high-
resolution optical remote sensing videos, only the contours of
the airplanes moving from left to right can be detected, which
results in void phenomenon. In addition, for smaller airplanes
moving from right to left, the detection results are less clear.
In conclusion, the temporal features extracted from traditional
two-frame differencing method can not satisfy real demands.

The proposed improved frames differencing method makes
inter-frame time interval selection more appropriate, which
effectively suppresses the void phenomenon. The airplane
moving from left to right in the fifth and sixth picture of
Figure 8 is almost completely detected and the smaller target
from right to left can be seen in shape and position. It
demonstrates that the proposed improved frames differencing
method is effective. What’s more, the proposed method has the
advantages of simple implementation, low design complexity
and high stability, which achieves very good performance in
high-resolution optical remote sensing videos.

C. Experimental Parameter Settings
In the improved frames differencing method, the block size

of the expansion operation is 2× 2. The frame interval of the
differential image is set to 3. In our deep neural networks, the
learning rate is set to 0.001, the size of each training batch
is set to 64, the maximum number of training iterations is
set to 30000, and the network weights is automatically saved
every 1000 epochs. The rates of saturation and exposure are
set to 1.5. The target detection probability threshold is set to
0.1, that is, the airplane is determined when the probability
exceeds 0.1.

D. Experiments
According to the set parameters, we train our deep neural

networks. Figure 9 shows the broken line graph of loss and
average IoU with iteration times. According to the results in
the Figure 9, after comprehensively considering the higher
average IoU and the lower loss, the weight parameter after the
19000th iteration is selected for verifying the performance of
our proposed airplane detection method.

We perform experiments on 20 video frames in test set.
Airplane detection results are depicted in Figure 10. The red
bounding boxes in Figure 10 are detected airplanes.

Our analysis of the experimental results is as follows.
Among 135 airplanes in the test set, 126 airplanes are success-
fully detected (True Positive) and 9 airplanes are missed(False
Negative). In addition, 4 non-targets are misidentified as air-
planes (False Positive). From this data, the detection precision,
recall and F-Measure of the proposed method can be calculated
according to the following formulas.
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Fig. 4. The architecture of YOLO

Fig. 5. One of optical remote sensing video frames at Bogota’s airport

(a) (b)

(c)

Fig. 6. Cropped video:(a) the first frame (b) the 101th frame (c) the 201th
frame

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F −Measure =
2× Precision×Recall

Precision+Recall
(3)

After calculation, the precision of the proposed method is
0.9692, the recall of the proposed method is 0.9333 and the
F-Measure of the proposed method is 0.9509.

According to the precision, recall and F-Measure, the
proposed airplane detection method has obtained excellent
performance, which is very competitive in high-resolution
optical remote sensing video for airplane detection.

The comparative experimental method chosen in this article
is R-CNN and BOVW [18]. Table 1 illustrates the comparison
results of different airplane detection methods on precision,
recall and F-Measure. As can be seen from Table 1, our
proposed method performs better than the other two methods,
which has a significant improvement. It is benefited from
extracted spatial and temporal features and powerful deep
neural networks.
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Fig. 7. 10 image block samples with airplanes

TABLE I
COMPARISON OF DIFFERENT AIRPLANE DETECTION METHODS

Method BOVW R-CNN Proposed
Precision 0.265 0.684 0.969

Recall 0.632 0.796 0.933
F-Measure 0.373 0.736 0.951

To sum up, our proposed method can effectively implement
airplane detection in high-resolution optical remote sensing
video.

IV. CONCLUSION

In this article, we develop a robust airplane detection method
via using spatial and temporal features. The proposed method
utilizes structured forests edge detection method to obtain
spatial features of optical remote sensing video. In addition,
by taking the advantage of improved frames differencing
method, temporal features are generated from adjacent frames.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. The results of frames differencing methods: (a) The 150th frame
in the optical remote sensing video, (b) The 270th frame in the optical
remote sensing video, (c) The result of the 150th frame using traditional two-
frame differencing method, (d) The result of the 270th frame using traditional
two-frame differencing method, (e) The result of the 150th frame using the
proposed improved frames differencing method, (f) The result of the 270th
frame using the proposed improved frames differencing method.

Fig. 9. Broken line graph of loss and average IoU with iteration times

Airplane detection result is obtained by deep neural networks
with extracted spatial and temporal features at last. Extensive
experiments are performed on the optiacl remote sensing video
dataset, which is made by ourselves. The results domonstrate
that the proposed method achieves 0.9509 F-Measure on our
test set, which obtains the state-of-the-art performance on
airplane detection in optical remote sensing video.

It is noteworthy that the quality and quantity of optical
remote sensing video datasets for airplane detection used in
academia are limited. In the future, we will devote our effort
to collecting more optical remote sensing video datasets for
airplane detection to support in-depth research.
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