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Abstract—Learning semantically coherent location embeddings
can benefit downstream applications such as human mobility
prediction. However, the conflation of geographic and semantic
attributes of a location can harm such coherence, especially when
semantic labels are not provided for the learning. To resolve this
problem, in this paper, we present a novel unsupervised method
for learning location embeddings from human trajectories. Our
method advances traditional transition-based techniques in two
ways: 1) we alleviate the disturbance of geographic attributes
on the semantics by disentangling the two spaces; and 2)
we incorporate spatio-temporal attributes and regular visiting
patterns of trajectories to capture the semantics more accurately.
Moreover, we present the first quantitative evaluation on location
embeddings by introducing an original query-based metric, and
we apply the metric in experiments on two Foursquare datasets,
which demonstrate the improvement our model achieves on
semantic coherence. We further apply the learned embeddings
to two downstream applications, namely next point-of-interest
recommendation and trajectory verification. Empirical results
demonstrate the advantages of the disentangled embeddings over
four state-of-the-art unsupervised location embedding methods.

Index Terms—Representation Learning, Point of Interest

I. INTRODUCTION

The increasing availability of smart devices enables or-
ganizations and ISPs to collect massive amounts of human
trajectory data, which can support a variety of location-based
services, such as point-of-interest (POI) recommendation and
mobility prediction. To support such services, one needs to
model the locations traversed by users with an appropriate rep-
resentation (i.e., embedding) in order to facilitate subsequent
algorithmic computations. Appropriate location embeddings
can achieve broad generalizability and thus benefit multiple
downstream applications [1, 2, 3, 4]. Constructing generaliz-
able location embeddings in practice, however, is a challenging
problem due to the following reasons:

1) Limited semantic labels. The semantics of a location
closely correlate with the function of the location. For
example, users go to restaurants for food, their offices for
work, and their residences for rest, where food, work, and
rest can be regarded as the semantics of the respective
locations. Location semantics are indispensable in many
applications such as mobility prediction, as they indicate
the intentions of users. Therefore, location embeddings
lacking such semantics limit generalizability to downstream
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Fig. 1: Illustration of the semantic and geographic attributes
of locations (a) and an entangled embedding space (b). See
Section III-A for more details.

applications. Nonetheless, in many situations, these seman-
tics are not provided when trajectory data are collected
(e.g., see Shokri et al. [5]), and manually labeling the
functions of locations is highly expensive due to the mas-
sive number of locations traversed by users. This limitation
prevents the use of supervised embedding techniques that
require a large amount of semantic labels.

2) Discrepancy between semantic and geographic spaces.
A location exhibitsboth semantic and geographic attributes.
Taking Figure 1(a) as an example, location l1 and l2
are semantically similar (i.e., both are restaurants), but
geographically distant from each other. This would induce a
discrepancy between the semantic space and the geographic
space of the corresponding location representations. Ex-
isting studies have failed to account for this discrepancy
between the two spaces and instead use a conflated vector
to embed both attributes of the location. However, this
inevitably results in an entangled hidden space since the
geographic attributes disturb the semantic attributes of the
embedding, which can mislead downstream applications
about user intentions and thereby reduce their effectiveness.

To resolve the challenges described above, in this pa-
per we present a novel unsupervised learning model called
Disentangled Skip-Gram (DXG) to construct disentangled
location embeddings. Our main goal is to improve semantic
coherence in learning location embeddings in an unsupervised
setting, to provide better generalizability for downstream ap-
plications. Note that even though we are unable to identify



the explicit semantics (i.e., labels) due to the unsupervised
nature of the learning, the coherence of the semantic space
already reflects the latent semantics: Embeddings with similar
semantics are close to each other and are far apart otherwise.

More specifically, we present three intuitions that we exploit
in the design of DXG, which are derived from the analysis
of real-world check-in sequences. The intuitions uncover the
underlying mechanism for how geographic factors disturb
semantic attributes. To resolve such disturbance, we model
the semantic part separately from the geographic part of the
location representation to untangle the two subspaces. For the
semantic part, we exploit regular visit patterns as a proxy
for the explicit semantics of a location. For the geographic
part, we employ a manifold-learning scheme to retain the local
structure of the Euclidean space of locations in the embedded
geographic space. Moreover, we leverage sequential mobility
information to unite the two parts, from which we are able
to formulate an accurate transition likelihood with spatio-
temporal attributes incorporated.

In addition, we present an original query-based metric
in order to quantify the semantic coherence of the learned
embeddings by measuring the local purity. Using this metric,
we compare our model with several state-of-the-art methods
for learning location representations, including PRME [6],
GE [7], POI2Vec [8], and the naive Skip-Gram, based on
two open datasets from Foursquare namely NYC and TKY.
Empirical results demonstrate that our embedding mechanism
outperforms the baselines in preserving semantic coherence.
To validate the effectiveness of learned embeddings in down-
stream tasks, we present results from two additional case
studies involving the traditional next POI recommendation task
and a novel task regarding trajectory verification. Experimen-
tal results demonstrate that embeddings generated by DXG
consistently outperform other baselines.

Our key contributions are summarized as follows:

• We present Disentangled Skip-Gram, a novel unsuper-
vised learning model that captures latent location seman-
tics in the embedding space by structurally modeling
the spatio-temporal transitions between locations within
human trajectories, and by disentangling the semantic
and geographic subspaces. Disentanglement provides a
further benefit in that downstream tasks can adjust the
weights on the geographic and semantic information
when needed.

• We present the first quantitative investigation of the em-
bedding space of location representations across multiple
embedding methods using an original query-based metric
that provides a systematic tool for evaluating the quality
of the learned location embeddings.

• We evaluate the learned embeddings on two downstream
location-based applications using two open trajectory
datasets. Empirical results demonstrate the efficacy and
superiority of our model.

II. PRELIMINARIES

A. Notation

Let L = {l1, l1 . . . , lN} be the set of locations in some
area of interest and Traj be a set of trajectories, where each
Traj ∈ Traj is a sequence {(l1, τ1, yl1), . . . , (lm, τm, ylm)}.
Each tuple (l, τ, yl) denotes a visit at time τ on a location
l with the semantic label yl. Given a specific time τ , we
discretize it into the corresponding hour of the day t ∈ T ,
where T is the set of all hour-wise time intervals.

B. Skip-Gram

Given a sequence of items (e.g., words or locations), Skip-
Gram [9] employs a sliding window containing a current item
and some context items to construct representations. The core
intuition of Skip-Gram is to reconstruct the transitional rela-
tionships between items according to the similarities between
their respective representations. The objective of Skip-Gram
is to maximize the transition likelihood that the current item
l predicts its context items lc, which can be modeled as

OSkip−Gram = max
∏

(l,τ,yl)∼Traj

∏
lc∼context(l)

p(lc|l) (1)

where the conditional likelihood p(lc|l) is defined as
p(lc|l) = e<vl,vlc>/Z, with the normalization term Z =∑
vl′∈V

e<vl′ ,vl>. v denoting a vector representation, and
< ., . > denoting vector inner product.

III. METHOD

A. Intuitions

(1) Spatio-Temporal Skip-Gram. Following other works in the
literature [7, 8, 2], we apply the Skip-Gram model to learn
embeddings according to the transitional patterns between
locations. The rationale can be drawn from the analogy be-
tween sentences in natural language and trajectories in human
mobility: just as a word can be inferred from its context [9],
a location can be recognized by the locations from which
users arrive and to which they depart. However, different
from related works, we enhance the basic Skip-Gram model
by considering two spatio-temporal attributes that are specific
in trajectory transitions: the time interval and the geographic
distance. The intuition is that generally a transition is more
likely to happen in the near future and to nearby places rather
than to distant places or after a long time interval. To describe
the transition likelihood more accurately, we incorporate this
intuition to reformulate the objective function in Equation 1.
(2) Regular Visiting Patterns. People usually perform regular
visiting patterns across different days. For example, restaurants
are mainly visited at lunchtime and clubs at night, regardless of
the date. To confirm these patterns in real data, we conducted
the quantitative analysis of the Foursquare dataset [10] pre-
sented in Figure 2. It can be seen that locations with different
semantics induce very distinct visiting patterns, which implies
a strong correlation between the explicit semantics and the
visiting pattern of a location. Such correlations enable us to use
the visiting pattern as a proxy for the actual location semantics,
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Fig. 2: Visiting distributions averaged over different days at
locations with different semantics.

providing extra information to enhance the coherence of the
semantic spaces when semantic labels are not available.
(3) Entangled Semantic Space and the Travel Hub Prob-
lem. Using a conflated embedding as in traditional methods
can provoke an entangled embedding space, especially in
unsupervised settings. Using transition-based models such as
Skip-Gram might mitigate such discrepancies to some extent,
as the training procedure of Skip-Gram actually performs
information propagation between items. That is, the transitions
between neighbor items provide paths for direct “message
passing”. As contextual items also connect with their own
related contextual items, the message could pass even further
to distant items. Assuming the set of training trajectories
is ideally large, then distant locations could have a chance
(though small) to be connected via an information path (though
weak), such as l1 and l2 in fig:1. However, this assumption is
generally impractical, for two reasons: 1) the large number of
locations and cost to collect a large trajectory dataset; and 2)
users’ tendency to travel locally [10] (e.g., in fig:1 users tend
to travel within the bottom right region but not to the distant
l1). This results in a phenomenon called a travel hub.

To confirm the travel hub problem, we analyzed the TKY
and NYC datasets from Foursquare [10]. Specifically, we first
formulated travel hubs as the isolated connected components
from the global transition graph. Then we constructed a
location-location transition graph G = (L, E) according to the
check-in sequences, where E is the set of edges between loca-
tions. For any consecutive check-in pair {(li, τi), (lj , τj)|τi <
τj} in a check-in trajectory, if the interval δ = (τj−τi) < ∆T
for a predefined threshold ∆T , we consider it to be a valid
pair and add an edge ei,j between nodes li and lj . The edge
weight ei,j is the number of times li and lj are observed
as a valid check-in pair. Given a constructed graph G, we
computed the corresponding connected components. Table I
presents the results of this analysis, with ∆T set to 6 hours.

Component Cardinality 1 2 3 4 5 6 29992 47987
# Components (NYC) 7520 345 32 6 1 1 1 0
# Components (TKY) 12933 413 31 1 3 0 0 1

TABLE I: Transition graph analysis with Foursquare data.
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Fig. 3: The structure of our model.

Table I shows that transition graphs from both datasets are
not fully connected, and thus many isolated components can
be observed. The existence of these isolated components thus
confirms the existence of travel hubs.

Take fig:1 as an example. If we simply apply the Skip-Gram
scheme, the embedding vl2 will be trained to be close to vl3
and vl4 since a sequence can be observed among l2, l3 and
l4. However, as shown in Figure 1(b), vl2 will be separated
from vl1 , since there exists no observed sequence between l1
and the hub region, even though l1 has semantics similar to
l2’s. Thus the information from the hub area cannot propagate
to l1 during training. As a result, this would undermine the
semantic coherence of the learned embeddings.

Overall, the geographic attributes of a location influence
the semantic purity of its embedding. Therefore, we aim
to alleviate such geographic disturbance by partitioning the
embedding space into semantic and geographic subspaces, in
order to achieve better semantic coherence.

B. The DXG Model

Our model architecture consists of three training objectives,
as depicted in Figure 3. According to our third intuition
described above, we first split each embedding vl ∈ RL into
two parts, vsl and vgl , where the first s entries encode the
semantic information of location l and the last g = L − s
entries encode the geographic information.

1) Semantic Part: For the semantic part vs, we assume it
can be approximately learned through the regular visiting pat-
tern based on our second intuition. Given a visit tuple (l, τ ), we
convert τ to its respective hour slot t and formulate the prob-
ability that l is visited at time τ as p(τ |l) = e<vt,v

s
l >∑

t′∈T e
<v
t′ ,v

s
l
> ,

where vt ∈ RL is the vector representation at the t-th time
slot. The semantic objective function is then defined as

Osemantic = max
∏
τ,l

p(τ |l), (2)

which models the correlation between the locations and the
corresponding visiting time.

2) Geographic Part: For the geographic part, we aim to
learn embeddings that preserve the local structure of locations
in the Euclidean space. One way is to simply use the Cartesian
coordinates as the embedding, but that approach has two major
problems: 1) the vector is hardcoded instead of learnable,
which can induce inconsistency in the model; and 2) more
importantly, we aim to use a consistent arithmetic operation
for computing the distances between vectors (i.e., the cosine
similarities). We therefore use a trainable vector in each



embedding to correlate the Euclidean distances eud(., .) of
locations in the geographic space with their cosine similarities
cos(., .) in the embedding space, such that the inner product
< vli , vlj > can encode the geographic closeness between
location li and lj . To achieve this, we design the following
geographic objective function:

Ogeographic = min
∑
i,j

D[fcos(v
g
li
, vglj ), feud(li, lj)]. (3)

Ogeographic represents the cost of aligning the two spaces
(Euclidean distance space and Cosine similarity space), with
a divergence function D measuring the distance between
pairwise correlations in the two spaces. In order to bridge the
two spaces effectively, we require three common properties
of fcos and feud, namely that they should have 1) the same
output space (which can be either similarity or distance), 2)
the same range, and 3) the same monotonicity.

As the distance between two locations usually exhibits a
long-tail distribution [11, 12], we use the reciprocal of the
exponential function in feud to perform normalization, with a
coefficient φG to adjust its slope:

feud = e−φG(li,lj) (4)

Note that feud computes Euclidean similarity due to the
reciprocal form. We then formulate fcos as

fcos =
1

2
(1 + cos(vglj , v

g
lj

)), (5)

which satisfies the three properties mentioned above. By
using feud and fcos, we normalize both cosine and Euclidean
similarity to the range [0, 1], effectively making them the
probability that two points are neighbors in their respective
spaces. To measure the distance between the distributional
manifolds formed by feud and fcos, we use cross entropy as
the divergence function D and reformulate Equation 3 as

Ogeographic = min
∑
i,j

−feud(li, lj) log fcos(v
g
li
, vglj )

− (1− feud(li, lj)) log(1− fcos(vgli , v
g
lj

)). (6)

KL-Divergence [13] is an alternative for D, differing from
cross entropy with only an additive constant, but in this work
we use cross entropy for simplicity.

3) The United Embedding: In a human trajectory, a location
is visited due to both of its semantic attributes and geographic
attributes. Therefore, we need to combine vsl and vgl to form a
comprehensive representation of the respective location vl =
[vsl ; v

g
l ], and to accurately formulate the transition likelihood

in trajectories. As per our first intuition, we define the spatio-
temporal Skip-Gram likelihood function as follows:

Otransition = max
∏

l∈Traj

∏
lc∈context(l)

p(lc|l)w∆ , (7)

where the exponential decay factor w∆ = e−φ∆||τlc−τl||1

indicates that the larger the time interval between two vis-
its, the less likely the current visit is able to predict the

context visit. φ∆ is the temperature term that controls the
sensitivity of the time interval. Note that the temporal impact
is accounted for by w∆, while the spatial impact has been
considered by design into the transition likelihood. Recall that
p(lc|l) = e<vl,vlc>/Z. Since

< vl, vlc >=< vsl , v
s
lc > + < vgl , v

g
lc
> (8)

where the inner product < vgl , v
g
lc

> is determined by
the geographic distance between l and lc according to the
objective function (6), the resulting transition likelihood is also
determined by this geographic distance.

So far we have incorporated all three intuitions into DXG,
a comprehensive spatio-temporal model that disentangles the
semantic and geographic subspaces. Recall l1 and l2 in fig:1.
Since we model the semantic and geographic parts separately,
vl1 will remain distant from vl2 because vgl1 and vgl2 are distant,
while vsl1 and vsl2 can remain close since they share the similar
semantics and exhibit similar regular visiting patterns.

4) Optimization: We jointly optimize the three objectives
of DXG, with Ogeographic plus the logarithms of Osemantic

and Otransition . The overall training objective is defined as:

V = arg max
V

{logOsemantic −Ogeographic + logOtransition}

= arg max
V

{
∑
τ,l

log p(τ |l)

−
∑
i,j

D[fcos(v
g
li
, vglj ), feud(li, lj)]

+
∑
l∈Traj

∑
c∈context(l)

w∆ log p(lc|l)}

(9)
where V = {VL,VT } denotes the set of all location embed-
dings plus all time slot embeddings.

Note that directly computing the normalization term Z
in eq:skipgram is very expensive due to the large cardinality of
the set of locations to be normalized. Therefore, we replace the
regular softmax function with the sampled softmax proposed
by Jean et al. [14] to accelerate the training process. We
choose a negative sample size Nneg = 64 << N for negative
sampling in all experiments. During the training procedure, we
use the gradient descent optimizer Adam [15] to search the
optimal embeddings and renormalize the embedding vector
to be a unit vector to further boost training speed. Our
pseudocode is provided in the supplementary materials1.

IV. EVALUATION

In this section, we present a novel query-based metric to
quantify semantic coherence in the semantic space, and an
empirical evaluation of the metric on embeddings learned by
DXG and several baselines. We then present results from case
studies on a traditional task (next POI recommendation) and a
novel task (trajectory verification) to evaluate the learned em-
beddings under both non-parametric and parametric scenarios.

1https://www.dropbox.com/s/towfdwhjdkdhyeo/supplementary.pdf



A. Query-Based Metric

Existing works [16, 1] use visualization tools such as t-
SNE [13] to judge learned location embeddings via eyeballing,
which is imprecise and subjective. To improve objectivity,
traditional metrics for objective evaluation of the quality of
unsupervised embeddings can be used. These metrics usu-
ally involve a clustering task using off-the-shelf clustering
algorithms to examine the purity of the formed clusters with
respect to given ground-truth labels [17]. However, the results
can be biased by the clustering algorithms, since different
algorithms favor different geometric structures of the data. We
therefore designed a novel query-based metric that provides a
quantitative measure of the coherence in the semantic space by
examining the local purity of the neighbors of the embeddings.

Given some set of location queries Q = {l0, . . . , lM}, we
first project each query location l into the semantic space vl
and then compute the cosine similarity s(l, lj) between l and
all other embeddings lj : s(l, lj) =

<vl,vlj>

|vl||vlj |
, ∀lj ∈ L\l.

We rank lj according to the cosine similarity scores and
select the Top-K locations, which form the level-K Nearest
Neighbor set of l, NN@K(l). Given ground truth semantic
labels {yl|l ∈ L}, we can treat this as a Top-K ranking
task [18], which allows us to compute the aggregate scores
Accuracy@K , Recall@K , Precision@K , and F1score@K
on NN@K(l), for each query location l and a given K level.
The aggregate scores are computed as follows:

Accuracy@K =
1

M

∑
li∈Q

|1{yli ∈ {ylj |lj ∈ NN@K(l)}}|

Precision@K =
1

M

∑
li∈Q

|1{yli = ylj}|lj ∈ NN@K(l)|
K

Recall@K =
1

M

∑
li∈Q

|1{yli = ylj}|lj ∈ NN@K(l)|
|1{yli = ylj}|lj ∈ L|

F1score@K = 2× Precision@K × Recall@K

Precision@K + Recall@K

(10)

The aggregate scores over all queries reflect the local closeness
of embeddings having similar semantics, and thus can be
used as a tool to evaluate the semantic coherence of the
learned embedding space. We use M=N in our experiments
to evaluate embeddings of all locations.

B. Model Selection

Model selection (i.e., validation) in unsupervised settings is
an important yet challenging task. In DXG, the key hyper-
parameters are the sizes of the semantic part s and the
geographic part g. Typical selection methods requiring ground
truth labels (e.g., AIC, BIC, and cross-validation) are not suit-
able for our unsupervised setting. We therefore heuristically
treat the learning of the semantic embedding as an implicit
clustering process. After performing preliminary studies2, we
employ the average closeness of the K-nearest neighbors
across all points as the hyperparameter selection criterion.

2Due to space limitations, please refer to the supplementary materials (see
footnote 1) for more detail.

C. Experimental Settings

1) Dataset: We conducted our experiments with two pub-
licly available datasets, which contain check-ins in New York
City (NYC) and Tokyo (TKY) collected from Foursquare [10].
Each data record contains a user ID, POI ID, check-in times-
tamp, GPS coordinates of the POI and semantic label (e.g.,
“park”). We consider locations with more than five check-in
records as valid entities and label the remaining locations as
“UNK”. We also remove trajectories of length less than two.
From this preprocessed data (see Table II for statistics), we use

Dataset #Users #POIs #Semantic
Categories

#POIs per
category

NYC 1071 5342 249 112.28
TKY 2242 9541 240 190.29

TABLE II: Statistics of the preprocessed datasets.

the first 80% of the trajectories of each user as the training
set and the remaining 20% as the test set. Since our target
is unsupervised learning for location embeddings, we ignore
the semantic labels in the training set and use this set to train
location embeddings and the parametric model in the trajectory
verification task. The test set with semantic labels is used for
the query-based metric for evaluation of semantic coherence
and for the application case studies.

2) Hyperparameters: We set the embedding dimension to
L = 100 for all models. As per the model selection criterion
of Section IV-B, we set the dimension of the semantic part in
DXG to be s = 75 and the geographic part to be g = 25 for
the NYC dataset, and s = 50 and g = 50 for the TKY dataset.
The temperature terms are set as φ∆ = 0.001 and φG = 50.
To guarantee convergence, we train all models for 40 epochs
with batch size 256. The learning rate is set to 0.001.

3) Baseline Models: We use the following four unsu-
pervised models as strong baselines for our evaluation. We
experimented with various hyperparameter settings for the
baselines and then used the optimal settings for the baselines.

• Skip-Gram. Due to its simplicity and popularity in NLP,
many recent studies [1, 4, 19] directly use the embeddings
learned from the Skip-Gram model.

• PRME-G. PRME-G [6] stands for the Personalized Ranking
Metric, and it considers the embeddings in both the transi-
tion space and the user ranking space. It also considers the
temporal impacts within a temporal threshold. However, it
does not consider geographic impacts.

• GE. GE [7] is a graph embedding method that is an
extension of LINE [20]. It constructs POI-POI, POI-region,
POI-time slot and POI-word graphs and applies the network
embedding scheme as LINE does. Since our focus is on
unsupervised learning, we discard the POI-word graphs
while keeping the others.

• POI2Vec. POI2Vec [8] incorporates geographic distances
between POIs into the hierarchical softmax function of the
classic CBOW [9] model by dividing POIs into sub-regions.
No temporal effects are considered.
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Fig. 4: Semantic coherence measured by the query-based
metric. We report only the accuracy and F1-score due to space
limitations. All graph share the same legend.

Acc.@100 Prec.@100 Rec.@100 F1@100
DXG\geo 0.79 0.83 7.41 7.34 1.49 1.24 2.49 2.13
DXG\sem 0.78 0.81 6.00 6.47 1.37 1.15 2.23 1.96
DXG\tran 0.73 0.79 5.46 6.12 0.85 0.77 1.47 1.36
DXG\w∆ 0.79 0.83 7.55 7.35 1.54 1.25 2.55 2.13
DXG 0.79 0.83 7.81 7.46 1.55 1.25 2.58 2.15

TABLE III: The ablation experiment results. Results of NYC
are reported on the left and TKY on the right in each column.
The precision, recall, and F1 score values are times 10−2.

In order to understand the semantics captured by different
parts of the embeddings, we also compare three variants of
the trained embeddings: DXG-full uses the whole embedding
vector; DXG-sem uses only the semantic part from DXG-full;
and DXG-geo uses only the geographic part from DXG-full.

D. Semantic Coherence

1) Model Comparison: Figure 4 depicts the accuracy and
F1 score from applying the query-based metric to all models.
Accuracy is similar among all models since it is a coarse-
grain metric. However, for the F1 score, DXG-sem achieves
the highest among all models. For instance, for F1 score@100,
it outperforms GE, POI2Vec, PRME-G, DXG-full, DXG-geo
and Skip-Gram by 15%, 73%, 47%, 0.1%, 99%, 21%, respec-
tively, on the NYC dataset and by 18%, 70%, 31%, 5.8%, 41%,
18%, respectively, on the TKY dataset. As would be expected,
DXG-geo performs the worst, since it captures geographic
information only and no semantics. Notice that despite its
simplicity, Skip-Gram performs close to or even outperforms
the other baselines, demonstrating that the transitions between
visits does reveal the intrinsic semantics of the locations.

2) Variant Comparison: In order to understand the impact
of different components of DXG, we conducted ablation exper-
iments. We use DXG\geo, DXG\sem, DXG\tran, DXG\w∆

to indicate the deprivation of geographic loss, semantic loss,
transition loss and temporal decay, respectively. We measured
the performance by evaluating the semantic part only. The
results in Table III demonstrate that the model with full setting
learns the best semantic space, which confirms our intuition

Acc.@100 Prec.@100 Rec.@100 F1@100
STSG-1 0.69 0.75 2.86 2.81 0.51 0.34 0.86 0.61
STSG-25 0.79 0.82 6.99 7.46 1.25 1.22 2.13 2.10
STSG-50 0.77 0.83 7.38 7.46 1.36 1.25 2.29 2.15
STSG-75 0.79 0.82 7.81 6.91 1.55 1.21 2.58 2.06
STSG-100 0.77 0.82 7.61 6.78 1.52. 1.19 2.53 2.02

TABLE IV: The dimension sensitivity experiment results.
NYC results are presented to the left and TKY to the right
in each column, and the precision, recall and F1-score values
are times 10−2.

that a proper location embedding model should incorporate all
three of our intuitions. Of all the components, the deprivation
of the transition loss degrades the performance the most,
followed by the semantic loss. The time decay factor w∆ plays
the least role in the model.

3) Effects of dimensions s versus g: To understand the
trade-off between dimensions of the geographic part and
semantic part of the embedding, we set different sizes for
s to [1, 25, 50, 75, 100] and set g = 100 − s. When s = 1,
the model learns mostly from the geographic information, and
when s = 100 there is no geographic influence on the model.
The results in Table IV demonstrate that to achieve the best
performance, we need to maintain a relative trade-off between
the effect of the semantic part and the geographic part. The
main reason why different dataset favors different settings is
that the geographic structure of Tokyo and New York City are
different, including the scale of their urban areas and density
of their POI distributions. Elements such as cultural factors are
possible additional factors that influence the mobility patterns
of people, which also impacts the observed transition patterns.

V. CASE STUDIES

A. Next POI Recommandation

1) Description: This case study examines the learned lo-
cation embeddings under a non-parametric setting. We follow
a recommendation protocol similar to that of [7] to evaluate
the effectiveness of learned embeddings in the next POI
recommendation task. Given a visit history up to time τ , Xie
et al. model the user preference −→uτ as a weighted average of
the visited locations up to τ , where the weight is computed
using an exponential decay according to the time difference
between a previous visit τi and τ . Formally,

−→uτ =
∑

{i:τi<τ}

e−(τ−τi) · −→vlui , (11)

where lui denotes a visit of user u at location l and time τi.
Given a query q = (lu, τ), we first convert τ to its

corresponding time slot t. Then the likelihood s that the user
will visit a specific location l is computed as:

sl(q) = −→uτ · vl + vgluτ
· vgl + vt · vsl . (12)

Once we obtain the likelihood scores over all candidate
locations S = {sl|∀l ∈ L}, we sort the scores from largest
to smallest and then recommend the top-K locations. We
conducted experiments on the test sets of Section IV-C and
used accuracy as the evaluation metric.



2) Evaluation: The accuracy results reported in Figure 5
demonstrate that DXG outperforms all baselines. For instance,
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Fig. 5: Result from the next POI recommendation case study.

at K=20 on the NYC dataset, DXG outperforms Skip-Gram,
POI2Vec, PRME and GE by by 18%, 67%, 75% and 106%,
respectively. Note that at K=1, the accuracies of all models
are just too low to be informative (similar to random), which
can be attributed to the simple form of the non-parametric
protocol. But results with larger K (5 to 20) demonstrate that
embeddings generated by DXG significantly outperform those
of the other baseline models.

B. Trajectory Verification

1) Description: The task of trajectory verification is to
determine whether two trajectories traja and trajb were
produced by the same person. We formalize this as a clas-
sification problem, where the aim is to train a binary classifier
fθ(traja, trajb) ∈ {0, 1} that takes as input a pair of trajecto-
ries and outputs 1 if the pair is genuine (i.e., generated by the
same person) and 0 otherwise. In privacy research, this task
is used to evaluate the anonymity afforded by a synthesized
trajectory trajb based on an actual trajectory traja.

For this task, we adopt the Siamese architecture widely
used for face recognition [21] (see fig:Siamese). Specifically,
given a trajectory traj = {l0, l1, . . . , lt}, we first project the
associated locations to the vector space using the learned em-
beddings from our model and other baselines, and then encode
the whole trajectory using a neural network-based encoder.
We finally compute the probability of having a genuine pair
from the distance between the trajectory’s latent codes. To
concretely relate the performance of the verification model to
the quality of the learned embeddings, we fix the embedding
vectors and use a simple model architecture containing a one-
layer RNN with 100 hidden units, which is a small number
compared to the massive amount of data. Better embeddings
that capture more useful features would, therefore, outperform
others after the convergence of the training process.

2) Evaluation: For data preparation, we follow a scheme
similar to that of Cho et al. [22].3 For evaluation,
in tb:verification we report both average accuracy and F1-
score for five runs with different initializations. It can be seen
that our DXG models outperform the others. For instance, for
the F1-score, our models relatively outperform Skip-Gram,
PRME, GE and POI2Vec by 6.5%, 37.3%, 21%, and 8%,
respectively, on the NYC dataset and 11.3%, 22.9%, 22.9%,

3See the supplementary materials (see footnote 1) for details.
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Fig. 6: The Siamese architecture. Two trajectories are encoded
to hidden features by the RNN encoders sharing the same
weights θ. The model computes the distance between the
latent codes and projects the distance to a probability using
the output weight vector W and the sigmoid function σ. A
threshold of 0.5 is applied to map the probability to a binary
decision. We applied the Gated Recurrent Unit (GRU) [22] as
the basic unit for the RNN to achieve better performance.

NYC TKY
Accuracy F1 score Accuracy F1 score

Skip-Gram 0.95 0.76 0.86 0.53
PRME-G 0.91 0.59 0.85 0.48
GE 0.93 0.67 0.84 0.48
POI2Vec 0.95 0.75 0.87 0.49
DXG-full 0.96 0.81 0.88 0.55
DXG-sem 0.94 0.75 0.90 0.59

TABLE V: Results from the trajectory verification case study.

and 20.4% respectively, on the TKY dataset. An important by-
product of our disentanglement is that it allows the parametric
model to weight the semantic and geographic information
differently, which is why the best models in these experiments
are different.

VI. RELATED WORK

In recent years, researchers have applied location embed-
ding techniques in the development of various location-based
systems [4, 23, 24], because a location embedding is a compre-
hensive representation capturing location semantics, allowing
the models to capture human intentions.

Despite the widespread use of location embedding, only a
limited number of works specifically focus on the embedding
mechanism itself. Feng et al. [6] introduced metric embedding,
which learns embeddings by exploiting transitional patterns
and location-user relationships. Liu et al. [2] and Zhao
et al. [25] considered the temporal cyclic effects of check-
ins and further introduced the latent vectors for time slots
to assist the learning of location embeddings. Feng et al. [8]
proposed POI2Vec, which adopts the word2vec mechanism
by incorporating geographic closeness between POIs into the
learning objective. Xie et al. [7] extended the graph embedding
introduced by Tang et al. [20] to heterogeneous graph settings,
which consists of a POI-POI graph, POI-word graph, etc.
Wang and Li [26] advanced the graph embedding method by



introducing time-specific location embeddings, which inher-
ently increases the number of parameters to learn.

The main limitation of the related works is that they only
consider a part of the spatio-temporal effects, but fail to
capture all in a consistent, comprehensive way. In addition,
none of them analyzes the resulting embedding space in the
unsupervised setting, and they fail to address the problem
of entanglement. Our work addresses these weaknesses in a
systematic manner by incorporating spatio-temporal attributes
and visiting patterns into the model, with improved semantic
coherence achieved through disentanglement.

VII. CONCLUSION

Semantics is the key for learning embeddings. With this in
mind, we have presented the Disentangled Skip-Gram (DXG)
model, which disentangles the geographic subspace from the
semantic subspace and thus is able to improve semantic
coherence in the embedding space. Using our query-based
metric, we show that our method outperforms four baselines by
39% and 34.25% on average on the NYC and TKY datasets,
respectively, at F1@100. By applying the learned embeddings
to two case studies, our model outperforms the baselines by
66.5% (for the next POI recommendation task) and 25% (for
the trajectory verification task) on average.

In the future, we plan to apply our technique to more
location-based services to further study the capabilities of our
method. We also can extend our method to semi-supervised
learning settings when a small number of labels are available.
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