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Abstract—Bucket-filling is a repetitive task in earth-moving
operations with wheel-loaders, which needs to be automated
to enable efficient remote control and autonomous operation.
Ideally, an automated bucket-filling solution should work for
different machine-pile environments, with a minimum of manual
retraining. It has been shown that for a given machine-pile
environment, a time-delay neural network can efficiently fill
the bucket after imitation-based learning from 100 examples
by one expert operator. Can such a bucket-filling network be
automatically adapted to different machine-pile environments
without further imitation learning by optimization of a utility or
reward function? This paper investigates the use of a determin-
istic actor-critic reinforcement learning algorithm for automatic
adaptation of a neural network in a new pile environment. The
algorithm is used to automatically adapt a bucket-filling network
for medium coarse gravel to a cobble-gravel pile environment.
The experiments presented are performed with a Volvo L180H
wheel-loader in a real-world setting. We found that the bucket-
weights in the novel pile environment can improve by five to
ten percent within one hour of reinforcement learning with
less than 40 bucket-filling trials. This result was obtained after
investigating two different reward functions motivated by domain
knowledge.

Index Terms—reinforcement learning, imitation learning,
bucket filling, wheel loader, automation, construction.

I. INTRODUCTION

Bucket filling is a repetitive task for wheel-loader and
excavator operators, making it suitable for automation. In
particular, bucket-filling automation is required for efficient
remote control, for example in hazardous environments, and
for the development of fully autonomous solutions. There
is no general automatic bucket-filling solution for different
machine-pile environments. Caterpillar and Komatsu provide
semi-autonomous loading functions, but only for limited ap-
plications (soil and medium fine gravel) with loose material.
These solutions are not robust and frequently fail in different
conditions [1]. Wheel-loaders are versatile machines often
used as multi-purpose machines at production sites [2]. A
bucket-filling solution that functions in different environments
and scenarios, with changing machine and material properties,
is therefore desired. This paper investigates an algorithm
capable of adapting a bucket-filling model for a wheel-loader
to a different environment, with a limited amount of data.

This work is funded by the program “Fordonsstrategisk Forskning och
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Our main contribution is the demonstration of an imitation
and reinforcement based learning approach for training and
adaptation of a bucket-filling neural network, with realistic
experiments where the network operates in closed loop.

The automatic bucket-filling problem is challenging, which
is evident from the fact that there are no fully autonomous
solutions [3] for different machine-pile environments. Previous
approaches to automate bucket-filling can be summarized into
three categories: 1) trajectory based, 2) compliance control
and 3) rule based logic. The trajectory based approaches [4]–
[6] aim to study and reproduce efficient bucket trajectories
of expert operators. The compliance control approach aims to
sense the interaction forces between the pile and machine [7]
and act dynamically to either adjust a preplanned trajectory
[8], [9] or regulate a target force on pistons [10]. The rule
based approaches [11], [12] have employed fuzzy logic to
condense expert operator data into simpler rules for producing
primitive bucket motion commands.

The previous approaches have demonstrated successful re-
sults to varying degrees. However, these results have being
shown in specific machine-pile environments. For example, the
admittance control based autonomous bucket-filling algorithm
presented in [10], [13] is developed for load-haul-dump ma-
chines and cannot be easily used for wheel-loaders, which are
more common. The previous solutions to automate this task
do not generalize to different machines and pile environments.
Therefore, there is a need of a generic automatic bucket-filling
solution that can be easily adapted to different scenarios.

Reinforcement learning (RL) is a framework for the most
general type of learning, where an RL-agent learns to max-
imize expected cumulative rewards by interacting with its
environment, without explicit programming [14]. In recent
breakthroughs in RL, deep RL, i.e., the use of neural networks
in RL, is shown to play Atari games [15], [16], chess and Go
[17] at or above human performance.

Kober et al. [18] reviews the use of RL in robotics and
highlights the problems with using RL for real-time control
and presents different ways to mitigate them. Given the curse
of dimensionality problem in RL, function approximation
becomes inevitable for continuous domain problems [18].
Policy gradient algorithms are widely used in problems with
continuous actions. Silver et al. [19] presents a deterministic
actor-critic algorithm based on policy gradient similar to
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Fig. 1. Volvo L180H wheel-loader in manual operation.

NFQCA (Neural Fitted Q Iteration with Continuous Actions)
[20]. Similar to our work, a real-world application of RL is
driving in a lane [21], which uses DDPG (Deep Deterministic
Policy Gradient) [22], which is also an adaptation of the
deterministic actor-critic algorithm.

We employ the deterministic policy gradient (DPG) actor-
critic algorithm from [19] to adapt and improve a baseline
imitation learning based bucket-filling model, proposed in
[23]. The core of the imitation model is a time-delayed neural
network which predicts lift and tilt joysticks actions during
the bucket-filling. The imitation learning model is successful
in bucket-filling after an initial period of supervised training
with 100 examples from an expert operator, without using any
information about the material or the pile.

The imitation learning bucket-filling solution is developed
in a specific environment. This solution is trained, tested and
validated on one material which is medium coarse gravel (fine
particles up to 64 mm in size) and one machine, a Volvo
L180H wheel-loader, see Fig. 1. Although this method does
not assume any information from the machine or the pile
environment, the performance of this model tuned in one
specific setting cannot be guaranteed with changes in operating
conditions. For example, a bucket-filling model fine tuned for
performance on a machine may under-perform if the same
machine is operated with a different bucket. Similarly, changes
in the properties of piles, like the size distribution and wetness
may lead to under-performance of the bucket-filling algorithm.

One possibility to adapt the imitation model for different
conditions is to retrain the underlining time-delayed neural
network model. This will require to collect new data for
notable changes in operating conditions. Although collecting
100 bucket-filling examples takes only an hour of operation,
this can still be too costly for a company in production. If
operating conditions are constantly changing, retraining the
model for each different condition may be infeasible. Another
method is to use transfer learning [24], in which a model
trained for a specific condition can be used for a different
condition by retraining only the layers closer to the output
with a much smaller dataset.

In this paper, we propose an RL based approach to adapt
imitation based bucket-filling models for changing conditions.
In this approach, the model (an RL agent) receives reward (a

reinforcement signal), at every time step until the end of the
bucket-filling. The goal of the RL-agent is to maximize the
expected sum of rewards. In a traditional RL setup, the agent
starts from blank taking random actions in its environment. In
a complex task such as the bucket-filling, it can be assumed
that taking random actions (lift and tilt joystick actuations)
cannot produce a successful bucket-fill. Here, the RL-agent
starts from an imitation based bucket-filling model trained and
validated in an old setting. We examine the adaption of the
model from medium coarse gravel (upto 64 mm particles in
size), which is the old setting to a gravel-cobble pile (upto 200
mm particles in size), the new setting.

We present results with the deterministic actor-critic algo-
rithm adapting an imitation model trained in medium coarse
gravel to a cobble-gravel pile. The experiments presented in
this paper are performed using the same experimental machine,
a Volvo L180H wheel-loader. The employed RL algorithm
is model-free and on-policy, and configured with a goal to
increase productivity of the bucket-filling task. Experiments
show an improvement in productivity of bucket-fillings in less
than 40 examples.

II. BACKGROUND

A. Imitation learning based bucket-filling algorithm

Imitation learning is a sequential process where a machine
learning model is trained to predict the actions of an expert
operator that successfully fills the bucket in a particular pile
environment, such that the resulting model can mimic the
operator with good performance. The analysis of the wheel-
loader data shows that the loading process can be divided
in four phases, as shown in Fig. 2. In the first phase, the
operator maintains a constant speed of the machine when
approaching the pile. The onset of the second phase is defined
by a sharp increase in the lift joystick signal, which increases
the pressure on the front tires in order to avoid wheel-spin
resulting in increased wear and maintenance costs [25]. In the
third phase, the operator modulates the lift, tilt and throttle
actions simultaneously to navigate the bucket through the pile
and obtain a high bucket-weight in a short period of time.
The fourth phase indicates the finishing part of the bucket-
filling process and involves tilting the bucket until breakout,
i.e., when the bucket exits the pile.

Phase 1 : Approach

         Phase 3 : Bucket filling 

Phase 2 : Lift

Phase 4 : Exit the pile

Fig. 2. Different phases of the loading process implemented in the imitation
learning based automatic bucket filling algorithm.
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During each phase, the imitation based bucket-filling algo-
rithm uses different constant values for the throttle. In phase
three, the imitation model predicts joystick control commands
for the lift and tilt actions based on signals that are easily
acquired from the machine. A hardware interface to the engine
control units (ECUs) of the experimental machine, a Volvo
L180, is used to access machine data (such as the lift and tilt
angle, and angular velocities and drive axle speed) and also to
automatically control the machine. The bucket linkage diagram
of the Volvo L180 in Fig. 3 illustrates the lift and tilt cylinders,
and the definitions of the lift and tilt angles. Additionally,
the experimental wheel-loader is instrumented with pressure
transducers at each end of the lift and tilt cylinders, which are
used to measure the forces applied on the lift and tilt pistons.
The imitation learning model uses forces on the lift and tilt
pistons, lift and tilt angles, angular velocities and the speed of
the drive axle as input features for prediction of the lift and
tilt joystick commands.

1) Time delayed neural network model: Previous works
[26], [27] motivate the use of non-linear models to auto-
mate bucket-filling. A time-delayed neural network, originally
proposed in [28], incorporates a finite memory of previous
inputs using a transparent feed-forward architecture. The time-
delayed neural network model for bucket-filling (shown in Fig.
4) is proposed in [29] and the corresponding solution is tested
and validated in [23] on medium coarse gravel. The time-
delayed neural network model for automatic bucket-filling via
imitation learning is a three layer network that uses current and
past values of features at the input layer. Instead of a regular
hidden layer, the middle layer performs action classification
to improve the performance and correspondence between the
regression model output and the actions performed by an
expert operator.

2) Regression by classification: The middle layer in the
time-delayed neural network in Fig. 4 is connected to dis-
cretized values of the operator’s lift and tilt joystick actions,
divided into six classes. The class output layer has a softmax
output unit and consequently produces a probability distribu-
tion over six actuation levels. This design is motivated by the
fact that operator actions appear to cluster at different levels
[27]. The output layer then combines the probability outputs of

the middle layer to produce continuous actions in a regression
by classification sense, introduced in [30]. The output layer
has a rectified linear activation that only allows positive action
values, which is motivated by the fact that bucket-filling in
medium coarse gravel only requires unidirectional joystick
actions (curling-in and lifting-up of the bucket).

B. Reinforcement learning

Reinforcement learning (RL) is a branch of machine learn-
ing which deals with learning from interactions with an
environment. Sutton and Barto [31] introduces RL in a Markov
Decision Problem (MDP) framework, which consists of an
agent exploring a state-space (the RL agent’s environment) via
taking actions and obtaining rewards for intended behavior.

The main elements of an MDP are a state-space S, an
action-space A, a transition probability distribution p : S ×
A → P(S) and a reward signal r : S × A → R. The agent
interacts with its environment using a policy which can be
stochastic πθ : S → P(A) or deterministic πθ : S → A.
These interactions generate trajectories of states, actions and
reward (s1, a1, r1), (s2, a2, r2), ..... (sT , aT , rT ), until one of
the terminal states is reached. A discount factor γ ε [0, 1]
defines a trade-off between current rewards and future rewards.
The return Rγt is the total discounted reward from time t
onwards, Rγt =

∑T
k=t γ

k−tr(sk, ak). This implies that, if
γ = 0 the return is the current reward, in contrast to γ = 1
which results in a return that is the total sum of rewards from
time-step t. The state-value function V π(s) is the expected
return after starting from a state s and following a policy π,
V π(s) = E[Rγ1 |s, π], while the action-value function Qπ(s, a)
is defined as the expected return after staring from a state
s, taking an action a, and following a policy π thereafter,
Qπ(s, a) = E[Rγ1 |s, a, π].

The goal of the reinforcement learning process is to learn
from experiences to obtain a policy that maximizes the cu-
mulative discounted reward from the starting state, i.e. the
performance objective J(π) = E[Rγ1 |π]. In model based RL
the aim is to estimate the transition probability distribution,
which is then used in planning to update the value function or
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Fig. 4. A time-delayed neural network model used to perform automatic
bucket-filling. The input layer uses time-delayed values of features with a
delay step of 80 ms and a total delay time of 640 ms. The class output
layer has 12 neurons, six each for the lift and tilt categorical predictions.
The final output layer combines softmax activations of the previous layer into
continuous predictions for the lift and tilt joystick actions.



policy. In model-free RL the value or policy is updated directly
without the need of model. The Bellman equations are used
to decompose the value functions in a recurrent form. The
Bellman equation for the action-value function is

Qπ(st, at) = E[r(st, at) + γQπ(st+1, at+1)]. (1)

The error of the Bellman equation is called the temporal
difference (TD) error. TD learning, which aims to minimize
the TD error, is a central concept in reinforcement learning
[31].

Value iteration and policy iteration are two different ap-
proaches in model-free reinforcement learning. The value
iteration approach aims to solve the Bellman equation to obtain
an optimal value function Q∗(s, a) and derive a policy directly
from the optimized value function. Value iteration methods
suffer significantly more from the curse of dimensionality
compared to policy iteration methods and therefore are difficult
to use in practical applications. The majority of model-free
RL algorithms are however based on policy iteration that
interleave policy evaluation and policy improvement steps
[31]. Policy iteration methods may not have an explicitly
parameterized value function. Policy iteration can be subdi-
vided into on-policy and off-policy algorithms. On-policy RL
algorithms generate experiences from the same policy which
is under improvement, as opposed to off-policy algorithms
that uses several different policies called “behavior policies”
to generate experiences, while the target policy remains under
improvement. Furthermore, RL algorithms can be classified as
online or batch algorithms. In online RL algorithms, the policy
and/or value function are updated at each new experience,
while a whole batch of experiences are used to make an update
in batch algorithms.

Policy and value iteration methods can be combined in
different ways, resulting in a class of actor-critic methods [32].
An actor-critic method has both a parameterized policy (i.e.
the actor) and a parameterized value function (i.e. the critic).
In these methods, the gradient of the critic is used to update
the actor.

C. Deterministic actor-critic policy gradient algorithm

A stochastic policy is often required to explore the complete
state-space [19]. The policy gradient theorem [31] shows how
the gradients of a policy can be written using approximate
value functions. However, computing the stochastic policy gra-
dient is cumbersome as the policy gradient iterates over both
state- and action-spaces. Silver et al. [19] derives gradients of
a deterministic policy which needs integration only over the
state-space and is therefore faster for learning complex tasks

∇θJ(πθ) = Es[∇θπθ(s)∇aQπ(s, a)|a=πθ(s)]. (2)

The deterministic policy may introduce a bias to the solu-
tion, and to compensate for that off-policy methods can be
employed to ensure satisfactory exploration. However, an on-
policy deterministic policy gradient algorithm may still be
used if the experiment itself provides sufficient noise [19].

Silver et al. [19] also presents both on-policy and off-policy
deterministic actor-critic algorithms.

Instead of online learning, which is known to be unstable
with deep neural-networks, batch learning using experience
reply are successfully employed in DQN [15] and DDPG
algorithms [22]. The TD loss for the complete batch of
experiences can be written using the mean-squared-error over
k time-steps in the batch

δL =
1

k

∑
i

(ri + γQw(si+1, ai+1)−Qw(si, ai))
2, (3)

where Qw(s, a) ≈ Qπ(s, a), is a differential substitute of the
true action-value function. Using the loss δL, the critic update
(4w) and actor update (4θ) for the deterministic actor-critic
algorithm as presented in [19] are

4w = αwδL∇wQw(st, at), (4)

4θ = αθ∇θµθ(st)∇aQw(st, at)|a=µθ(s), (5)

where αw, αθ are learning rates and µθ(s) is the deterministic
policy to be learned.

III. EXPERIMENTS

Previously proposed methods to automate bucket-filling did
not result in industrial solutions because of difficulties in
adapting these solution with changing conditions encountered
in the construction and mining industry. We argue that an
imitation learning based bucket-filling solution equipped with
an RL algorithm is well suited to adapt and learn in changing
operating conditions. To test this theory, the imitation learning
based automatic bucket-filling solution trained with data from
medium coarse gravel, see Fig. 5 (left), was adapted to a
gravel-cobble pile (right) using the deterministic actor-critic
algorithm with two different reward mechanisms.

It was observed that the baseline imitation model trained
for medium coarse gravel successfully fills the bucket in a
gravel-cobble pile with satisfactory performance measured by
the productivity (tons/sec). The aim of reinforcement learning
experiments is now to examine if the performance in the
gravel-cobble pile can be improved further.

Fig. 5. Medium coarse gravel (left) and gravel-cobble material (right).
Medium coarse gravel contains fine particles up to 64 mm, while gravel cobble
material contains fine particles up to 200 mm.



A. Setup

We adapt the deterministic actor-critic algorithm proposed
in [19] to the autonomous bucket-filling problem. The dif-
ferences between computer simulation applications and our
experiments with a 20-tonne machine force us to make practi-
cal choices regarding the experiment. Given the time and cost
constraints, the experiment cannot be run for millions of time-
steps. Thus, the experiment is run on-policy, without explicit
exploration noise and in a batch mode (five bucket-fillings
at a time), which limits the exploration-space but provides
necessary constraints. The stochastic nature of the bucket-
pile interaction introduces noise in the experiment. Thus, we
decided to avoid the complexity of exploration noise.

The representation of the problem, i.e., the state- and action-
space, is the same as for the imitation based learning method.
The features [FL θL θ̇L FT θT θ̇T ωDA] and their time-
delayed values constitute the state. These features are scaled
so that they are in similar ranges of ∼ [−2 2]. The actions are
the lift and tilt joystick values [jL jT ]. Bidirectional joystick
movements produce 0 to 5 volt outputs (where 0.7 to 2.3 V
correspond to extension, 2.7 to 4.3 V correspond to retraction
and the rest is deadzone), which is converted into velocity
demand by the hydraulics. The useful part of the joystick
action space for bucket-filling is the extension zone of 0.7 to
2.3 volts, which is transformed into a [0 1] range, where one
indicates maximum velocity demand. The state–action space is
discrete due to the underlying 16-bit variables of the hardware
interface, but it is not further discretized in our model.

The goal of a bucket-filling process is to fill the bucket
with a specified amount (such as 75, 100 or 110%) in a
minimum amount of time with minimum fuel consumption
and without wheel-spin. However, there is a trade-off between
complexity of the goal and complexity of the learning problem
[18]. We assume that the bucket-filling problem is complex
and motivates a simplification of the complex goal specified
above.

A simpler goal for the RL-agent is to maximize the bucket-
weight, which is known at the end of each bucket filling.
As the agent expects a reward at every time-step of the
bucket-filling process, the goal needs to be decomposed into a
reward signal; this is known as the temporal credit assign-
ment problem [33]. Reinforcement learning maximizes the
cumulative sum of discounted rewards. In the bucket-filling
context, the bucket-weight can be decomposed as a sum of
productivity over the bucket-filling time. Thus, one option is
to give productivity as the constant reward for all time-steps of
the bucket-filling process and let the learning algorithm figure
out the temporal relation between actions and reward. Since
the experiment is implemented in batch mode, the productivity
for each bucket-filling can be computed afterwards and used
to generate the reward signal value.

In classical RL-setups, either the agents receives zero reward
at each time-step and a high reward when the goal is achieved,
or a small negative reward at each time-step and a high reward
when the goal is achieved [31]. Taking inspiration from the
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Fig. 6. Linear regression fit between higher lift impulse and final bucket-
weight. The weak positive correlation (R2 = 0.35) show that a high value of
lift impulse is an indicator of high bucket weight. Thus, an RL reward based
on the instantaneous value of the lift force was investigated.

general practices, we subtract a constant value of one from
the productivity values to make these values negative. The
negative rewards motivate the agent to finish the episodes
(bucket-fillings) as quickly as possible as opposed to positive
reward which might motivate the agent to never terminate the
episodes. The results with constant productivity based reward
are presented in sec. III-B.

In order to obtain a reasonable solution for a reinforcement
learning problem, it is often needed to give intermediate
reward in the reward signal; a process known as reward
shaping [34]. Reward shaping is a way to incorporate domain
knowledge into the setup so that the RL-agent is guided faster
towards the goals [35]. To maximize bucket weights, both the
domain knowledge and intuitions points towards increasing
the force applied to the pile. Thus, we investigate the relation
between the lift impulse and the final bucket weight for an old
dataset generated by an expert operator, see Fig. 6. It appears
that the impulse generated by high values of the lift force
shows a weak positive correlation (R2 = 0.35) with the final
bucket weight. Consequently, we formulated a second reward
signal rt = FL−1. Again, a constant is subtracted to make the
rewards negative, thus punishing the model when long times
are spent in the bucket-filling process. An example of a reward
signal, FL− 1, is shown in Fig. 7, and sec. III-C presents the
corresponding experimental results.

Similar to the imitation learning setup, we use time-delayed
neural networks to implement both the actor and the critic.
The actor network, see Fig. 4, has 12 units in the middle
layer with softmax activation that are connected to class-based
joystick outputs. The output layer of the actor network has
two neurons, one each for lift and tilt predictions. The critic
network, see Fig. 8, has 12 neurons in the hidden layer and one
neuron in the output layer. Both the hidden and output layer
of the critic network implement a tangent hyperbolic (tanh)
activation function.

The original DQN [15] and the DDPG [22] algorithms
use random mini-batches of experiences (st, at, rt, st+1) from
experience replay to do online training of the actor and critic
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Fig. 8. The architecture of the critic network. The input layer, similar to
the actor network, uses time-delayed value of features; the middle layer is
a hidden layer with 12 neurons while the output layer has a single neuron,
which predicts the action-value function.

networks. This is done to minimize the correlation between
samples, which tends to slow down the learning process.
Since we use a batch RL implementation, we randomize the
complete batch experiences before the actor and critic update
steps. The learning rates of both actor and critic network were
10−4 and the discount factor is kept constant at 0.9.

We use the tensorflow library [36] to implement and train
our deterministic actor critic networks. The training of the
actor and critic networks is done on a laptop. After each
update the new parameters of the actor/critic are uploaded into
a Simulink model which runs in a real-time PC connected to
the wheel-loader ECUs. The base model in the real-time PC
runs at 1 kHz, while the bucket-filling model runs at 50 Hz.

B. Productivity based reward signal

The experiment procedure with productivity reward signal in
Fig. 9 depict that the actor is initialized the imitation learning
model while the critic network is randomly initialized. In each
cycle, data from n = 5 bucket-fillings is collected, arranged
and reshuffled in an experience reply; the critic is updated
using the TD loss from the Bellman equation and the actor is
updated using critic’s and its own gradients. We call each of
this cycle as one DPG update.

The results following eight DPG updates for productivity
reward signal in Fig. 10 show that the indented behavior is
not obtained as the bucket-weights decrease and bucket-filling
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Fig. 9. Experiment procedure for the productivity reward signal. The actor
is initialized with imitation learning model while the critic is randomly
initialized.
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Fig. 10. Performance of deterministic actor-critic algorithm with productivity
based reward signal. In first eight DPG iterations, the average weight of five
test trails has decreased while bucket-filling time has increased which implies
that the average productivity has decreased.

time increase during the limited duration of the experiment.
We reason that (1) the productivity reward signal being con-
stant in each bucket-filling has insufficient information for
learning the critic and the actor, and (2) the critic network
should initially be stabilized with more than five bucket-filling
examples before the actor parameters are modified. Based on
the preceding reasoning, the reward signal and the experiment
procedure is modified.

C. Lift force based reward signal

In this experiment, we use a smooth reward signal FL − 1
based on the reasoning that high values of lift force are
positively correlated with final bucket weights and negative
rewards motivate RL-agents to finish the episodes, implicitly
incorporating an importance to shorter bucket-filling times.
The experimental procedure using the lift force based reward
signal described in Fig. 11 shows the initial (zero) iteration
that was introduced to pretrain the critic network with m = 13
bucket-filling examples. In the zero iteration, the actor was not
updated.

The results of this experiment in Fig. 12 show that the
bucket-weights increase with DPG updates as compared to the
imitation learning model (DPG = 0). The bucket-weights also
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based reward signal. The weights increase from an average of <8 tons (n =
5) with the imitation model to >8.5 tons, already with four DPG updates.
The productivity plot follows the increments in bucket weights. A decrease
of the bucket-filling time can be noticed for some DPG updates compared
to the imitation based model, but this trend is not clear. The total episode
reward plots mirror the bucket-filling time plot, as negative rewards implies
that longer episode times result in lower cumulative rewards. Five bucket-
filling operations were performed by the network in each DPG update.

exhibit saturation after four DPG updates indicating a local
performance maxima. The bucket-filling times does not have
a clear trend except for DPG updates = 1, 2, 5 and 6, which
have significantly lower (p<0.05, Welch t-test [37]) bucket-
filling times compared to the imitation learning model. Fig.
12 also shows the progress of productivity and total episode
rewards with the DPG updates. It can be observed that the
productivity increase follows the increase in bucket-weights
while the total cumulative rewards reflect the bucket-filling
time plot.

The lift force based reward function combined with pre-
training of critic network has resulted in a fast learning
implementation of deterministic actor-critic algorithm for the
autonomous bucket-filling. The improvement in productivity
is obtained in less than 40 bucket-filling examples, which
corresponds to an hour of experiment time.

IV. DISCUSSION

The ultimate goal of the bucket-filling algorithm is to
consistently obtain a target bucket-weight in minimum time
without wheel-spin. Here we consider the related problem
to improve the imitation learning based bucket-filling model
developed in former work [23] in a specific way in a novel
pile environment using reinforcement learning. The type of
improvement desired is defined by a reward signal. The reward
signal plays an important role in reinforcement learning.
The RL-agent receives rewards from the environment or a
programmed reward function. Motivated by the observation
that the bucket weights obtained with the imitation based
model is low in novel pile environments, and the importance of
the bucket weight for high productivity, we shape the reward
signal to increase the bucket weight with minimum filling time.

We find that the use of a reward signal based on the
lift force, rather than the final bucket weight, speeds up
learning. This result is obtained by trial and error using domain
knowledge. In principle, the lift force based reward signal,
LF −1, aims to (1) increase the lift force and (2) decrease the
bucket-filling time. The resulting increase of bucket-weights
is an indirect effect of the trade off between a rewarding high
lift force and early task completion.

Ng et al. [38] show that a potential based reward shaping
signal γΦ(s′) − Φ(s), where Φ is some function over states,
do not change the fundamental learning problem and may
increase the learning speed in many cases. The magnitude of
the reward signal plays a role in training stability, as mentioned
in [39] where a factor of 0.1 for rewards increase stability for
the same experiments as those done in original DDPG paper
[22]. As shown in Fig. 7, the values of the reward are not too
big and training instability is avoided.

The discount factor, 0 ≤ γ < 1, balances between
immediate and future rewards. If γ is zero, the learning is
completely biased towards maximizing the immediate reward;
however, typical values of γ are between 0.9 and 0.99. Here
we set γ = 0.9, which apparently speeds up learning of
the action-value function based on immediate rewards. This
is desirable to decrease the number of experiments required
to establish proof of concept of specific improvement of the
imitation learning based bucket-filling model. Typically, the
discount factor is kept constant; however François-Lavet et al.
[40] shows that a gradually increasing discount factor, in
combination with a gradually decreasing learning rate speeds
up the learning of some Atari game playing models compared
to the results in the original DQN paper [16].

The training of the critic with one batch of training ex-
amples likely plays a role for the results obtained with our
lift force based reward signal. The experiments could for



TABLE I
TD LOSS PRIOR TO EACH CRITIC UPDATE ITERATION.

DPG update 0 1 2 3 4 5 6 7
TD-loss (δL) 0.617 0.121 0.116 0.120 0.119 0.120 0.125 0.140

practical reasons only be carried out with sufficiently fast
learning of the critic network. The critic network aims to learn
Q(s, a) =

∑T
i=k γ

i−kLFi − 1, which is a discounted sum of
lift force minus a constant. The lift force and some of its past
values are included in the state, s, and thus is an input to
the critic network. This makes it feasible to quickly learn a
reasonable action-value function, Q(s, a).

The value predicted by the critic in the training phase can
be compared with true returns, as done in [22], to monitor the
progress of critic network learning. Due to the use of a tanh
activation function, which limits the output range to (−1, 1) in
our critic network, this direct comparison is unfortunately not
possible. However, Table I show that the critic has converged
already after the first update, as the TD-loss does not improve
significantly after the first update. The TD loss corresponding
to DPG–0 is the loss of a randomly initialized critic network.
The decrease of the TD loss from DPG–0 to DPG–1 indicates
that the critic network responds to training, while the nearly
constant TD losses for subsequent DPG updates show that
the critic network does not benefited from more training. The
slight increase of the TD loss for DPG–7 is likely due to novel
states appearing.

The last DPG update took longer time, as seen in Fig. 12,
and the critic network has a higher TD-loss in the last DPG
iteration, see Table I. The reason for this behavior could
could be that the experimental machine is already operating
at its maximum lift capacity, so that additional bucket weight
increases lifting time and as a result produces novel data that
is different from that in previous iterations, thus increasing the
TD-loss. Alternatively, this can be explained by a changed and
different shape of the pile, resulting in longer bucket-filling
time and worse action-value estimates, thereby increasing the
TD-loss.

In RL, inadequate exploration is associated with learning
processes that get stuck in local minima, thus resulting in
sub-optimal solutions. In the case of autonomous bucket-
filling with real-world pile environments, we assume that the
experiment itself contains enough variation. Thus, exploration
noise is not introduced in the model considered here, which
enables further simplification of the implementation. There are
no light-weight simulation models for bucket-pile interactions
suitable for closed-loop control. However, simulations based
on the discrete element method (DEM) for bucket-filling exist
[41], [42] and could be used in future work for learning and
optimization of polices using exploration noise.

Unlike the related work on autonomous driving with RL
[21], we do not use end-to-end camera based learning. In addi-
tion to vision, wheel-loader operators also interpret vestibular
feedback and sound from the environment to perform efficient
bucket-filling. Thus, for this type of learning it is not clear

whether the addition of machine vision is motivated. There-
fore, we consider a state representation including current and
time-delayed values of standard machine signals, including
forces on the lift and tilt pistons.

To our best knowledge, this is the first successful demon-
stration of a reinforcement learning algorithm on a full-size
construction machine. The presented solution can potentially
be scaled to a fleet of wheel-loaders with each machine
initially configured with the same imitation model adapts to
itself (geometry, engine, tires, bucket etc.) and its pile.

V. CONCLUSION AND FUTURE WORK

This paper demonstrates how reinforcement learning can
be applied for adaptation of a wheel-loader automatic bucket-
filling neural network pretrained with a few hours (100 exam-
ples) of imitation learning. This study contributes knowledge
needed to automate the repetitive task of bucket-filling in
earth-moving operation with front-end loaders. The results
show that an automated bucket-filling model can be adapted
to a different machine-pile environment using reinforcement
learning, thereby avoiding the need for further imitation learn-
ing and retraining in the new environment.

The reinforcement learning architecture is based on a de-
terministic actor-critic algorithm [19]. Both the actor and the
critic are implemented as time-delay neural networks, similar
to the imitation learning based network. The experiment is run
on-policy in batch mode with two different reward signals.
The productivity based reward signal, which is constant for
all time-steps of a bucket-filling operation, fails to improve
the productivity during the experiment of about one hour. The
proposed reward signal based on lift force varies continuously,
and with pretraining of the critic network the bucket weights
and productivity are observed to increase after only five up-
dates of the deterministic policy gradient algorithm, requiring
less than 40 bucket fillings.

Further work is required to verify that the bucket-filling
model can be reliably adapted in different machine-pile en-
vironments using reinforcement learning. In particular, more
work is needed to deal with more challenging materials
such as clay and blasted rock. Furthermore, the bucket-filling
reinforcement learning solution should be able to target a
particular value of the bucket weight, while simultaneously
learning to avoid wheel-spin. Reward signals that enable fast
learning should be explored to address these complex goals.
There is also a tradeoff between reliability and learning speed,
which remains to be investigated in future work.
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