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Abstract—Knowledge-guided conversation models, whose in-
puts are current input sentence with its background knowledge,
make the generation of responses more informative and meaning-
ful. Existing methods assume that words in responses come from
the vocabulary of the whole corpus. However, for specific input
and knowledge, only a small vocabulary is useful in prediction
and other words lead to uncorrelated noise. In this paper,
we propose a Dynamic Vocabulary based Knowledge-guided
Conversation Model (DVKCM). Inspired by dynamic vocabulary
mechanism, DVKCM adopts the vocabulary construction module
to allocate the sentence-level vocabulary which relates to the
input sentence and background knowledge, and then only uses
the small vocabulary to execute the decoding part. Through the
sentence-level vocabulary mechanism, we reduce the generation
of noise effectively. Experiments on both automatic and human
evaluation verify the performance of our model compared with
previous models. Moreover, we find that dynamic vocabulary
can be applied to other conversation models to improve their
performance.

I. INTRODUCTION

Conversation task aims to generate corresponding responses

for each input sentence. End-to-end generative networks [1],

[2], as methods to solve the conversation task, have attracted

more and more attention. A disadvantage of these models is

that they are easy to generate responses that lack information,

such as “I don’t know” and “Yes”. To solve the problem

of lacking information, researchers [3]–[5] consider adding

additional knowledge to each input sentence of the conversa-

tion model, so the conversation model can generate responses

with background knowledge and enhance the informativeness

of the responses. However, to ensure the coverage of target

words in the response generation, these models predict the

response words on a very large vocabulary, which guarantees

the coverage of target words but increases the probability of

generating incorrect words.

For example, in Tab. I, although the “ancestral home” for

“Dingdang” is “Shandong Yantai”, the response’s “ancestral

home” is “Canada Toronto”, which is another people’s “an-

cestral home”. Such a mistake can be avoided if “Canada

Toronto” is removed from the target vocabulary when the

model generates the response.

Previously, some natural language generation tasks [6], [7]

have contributed to reducing the size of the vocabulary by

removing some words which are likely to be wrong before
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TABLE I
CASE DEMONSTRATION OF ERRORS PREDICTED BY THE MODEL BASED ON

THE WHOLE VOCABULARY.

Background Knowledge Response
“Dingdang”,
“Ancestral Home”,
“Shandong Yantai”

The film’s star is Dingdang, I like
him very much. His ancestral home
is Canada Toronto.

“Kate.Balaude”,
“Ancestral Home”,
“Canada Toronto”

Yes, Kate·Balaude come from
Canada Toronto.

predicting. Each prediction is no longer based on the large

vocabulary, which can reduce the probability of predicting

wrong words. This method is called dynamic vocabulary.

However, there is no exploration of how to apply dynamic

vocabulary to knowledge-guided conversation generation.

To solve the above issues, we propose a dynamic vocabulary

based knowledge-guided conversation model (DVKCM). For

each input sentence, we adopt the vocabulary construction

module to generate the corresponding sentence-level vocab-

ulary, which is very small compared with the full target vo-

cabulary but related to the input sentence and the background

knowledge. For each sentence-level vocabulary, to get a fluent

response, we extract the top N words in the frequency of the

whole corpus. To get a knowledge-related response, we extract

all the words of the current knowledge. To make the response

relevant to the input sentence, we extract all the words of

the input sentence. In the training, the vocabulary of the gold

response is used. By utilizing the above words to construct a

sentence-level vocabulary, for each input sentence, the target

vocabulary size is reduced by removing unnecessary words.

We adopt sentence-level vocabulary in the decoding module

to generate the response.

Experiments are performed on LIC [8] and PER-

SONACHAT [9] datasets. We use automatic evaluation and

human evaluation metrics and find that our method achieves

significant and consistent improvement as compared to other

baselines. Ablation experiments are used to verify the validity

of dynamic vocabulary. We also find that our approach can

be applied to other knowledge-guided conversation models

to improve their performance. Our contributions are listed as

follows:

• We propose the DVKCM model and apply the dynamic

vocabulary to the knowledge-guided conversation. We
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construct sentence-level dynamic vocabulary for each

input sentence and reduce the probability of irrelevant

words generation.

• Our model and baseline models are compared on LIC and

PERSONACHAT datasets. We find that our model has

improved by 1.4% and 5.4% on F1 metric, 1.6% and 4.5%

on BLEU-1, respectively. We also find that applying the

dynamic vocabulary to some existing models can improve

their performance.

II. RELATED WORK

The conversation model is based on the wide application

of the Seq2Seq (sequence to sequence) model, and it predicts

the response based on the input sentence. [10] uses machine

translation’s method by regarding sentences and responses

as the source language and the target language respectively.

[11] uses Seq2Seq with attention on this task. [12] presents

a maximum mutual information objective function. [13] in-

troduces attention models to generate long responses. [14]

proposes hierarchical recurrent encoder-decoder networks to

better represent the conversation context. As a shortcoming

of these models, they don’t use any external knowledge to

guide the generation of responses, which may generate boring

responses like “I don’t know”.

Adding external knowledge to the conversational models

[15], [16], these models are able to generate more semantic

responses. [17] uses the Memory Network to store external

knowledge which generates the response that related to the

knowledge, because the input sentence can interact with

knowledge. [18] uses string matching to extract relevant facts

to the current dialogue from a knowledge base. [19] extends

Pointer-Generator Networks by allowing the decoder to hierar-

chically attend and copy from external knowledge in addition

to the conversation context. [4] uses the posterior knowledge

distribution to facilitate conversation generation. [20] obtains

knowledge from unstructured texts using a convolutional neu-

ral network.

As a disadvantage of the above models, they assume that

the words in responses come from the vocabulary of the whole

corpus. However, for specific input and knowledge, only a

small vocabulary is useful in prediction and other words lead to

uncorrelated noise. [6] applies dynamic vocabulary to machine

translation, and it uses ambiguity words, source words to

construct dynamic vocabulary. [7] uses only one layer of the

neural network to predict words in the dynamic vocabulary.

For these two methods of dynamic vocabulary, good results

have been achieved in their fields.

III. MODEL

In this section, we formalize the problem and then describe

how to construct our model in detail.

A. Problem Formalization

Given a source sentence X = x1 x2 ...xn , where xt is the

t th word in X and n is the length of X , with a collection

of knowledge {K1 ,K2 ...Km} (each Ki can be a unstructured

text or a structured triple), the goal of the conversation model

is to predict the response Y = y1y2 ...yl , where yi is the ith
word in the response and l is the length of Y .

B. Architecture Overview

As Fig. 1 shows, we introduce our model from the following

components:

• Sentence and Knowledge Encoder: The sentence en-

coder encodes the input sentence into a vector x . The

knowledge encoder encodes each knowledge Ki into a

vector ki. If the target Y is available (at training step),

it is also encoded into a vector y to guide knowledge

selecting.

• Knowledge Selecting: With the representation of sen-

tence x and knowledge {k1 , k2 ...km}, we compute a

similarity between x and {k1 , k2 ...km}. Then we get the

knowledge ks with the highest similarity score and send

it to the decoder.

• Dynamic Vocabulary Construction: We construct the

dynamic vocabulary Vdy for current input sentence as the

target vocabulary for predicting the response words.

• Decoder: With the knowledge ks obtained from Knowl-
edge Selecting, the encoded input sentence x and the

target vocabulary Vdy , the decoder generates the corre-

sponding response.

C. Sentence and Knowledge Encoder

Given the input sentence and knowledge (with target re-

sponse at the training step), we use a bidirectional RNN

with a gated recurrent unit (Bi-GRU) [21] to encode the

X = x1 x2 ...xn . The left-to-right gated recurrent unit (GRU)

encodes the sentence from left to right, and obtains
−→
hi for

each xi to record the information from its left side. Similarly,

the right-to-left GRU encodes the information from its right

side to get the
←−
hi . These two hidden states are concatenated

to get the hidden state hi of each xi :

hi = [
−→
hi ;

←−
hi ] = [GRU(xi,

−→
h i−1);GRU(xi,

←−
h i+1)], (1)

where [; ] represents concatenation of vectors. We concatenate

the last left-to-right GRU hidden state
−→
hn and last right-to-

left GRU hidden state
←−
h1 to represent the sentence, which is

defined by x = [
−→
hn;

←−
h1]. x is used to select the most correlative

knowledge at the Knowledge Selecting step.

Same as the sentence encoder, the knowledge encoder

encodes each knowledge Ki by Bi-GRU, but it doesn’t share

the same parameters with the sentence encoder. We use the

last hidden state of each direction to get the knowledge

representation ki . At the training step, the target response

is used to guide the knowledge selecting. We encode the

response Y into a vector y by using the same Bi-GRU with

the knowledge encoder.

D. Knowledge Selecting

In this section, we aim to select the most relevant knowledge

ks which is most relevant to the input sentence , and use the
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Fig. 1. The overall framework of DVKCM model and it shows the process of generating dynamic vocabulary. The model’s inputs are the sentence and
knowledge. At the training step, we also add the target response to the inputs. The right half part shows the structure of dynamic vocabulary, and each Vocab
represents the words for themselves over the large vocabulary, then these Vocabs are combined to get dynamic vocabulary. Decoder predicts response based
on the dynamic vocabulary.

ks at the Decoder step. The model follows the method of [4]

to select knowledge from the knowledge list.

At the training step, the target response y is available, so

we compute a conditional probability distribution p(ki |y) over

the knowledge list and use this distribution to get ki , defined

as:

p(ki|y) = exp(ki · y)∑m
j=1 exp(kj · y)

, (2)

where m is the size of the knowledge list. We use dot operation

to calculate the similarity between knowledge ki and target

response y. The highest value means that this knowledge

is more prefer to be chosen. We use Gumbel-Softmax [22]

to extract the knowledge from the knowledge list with the

advantage that it can backpropagation.

At the predicting step, the target response y is not available,

so we use the x to get ki , defined as:

p(ki|x) = exp(ki · x)∑m
j=1 exp(kj · x)

. (3)

We plan to transfer the ability of selecting knowledge through

target response to input sentence, so that the input sentence

can better select relevant knowledge in the testing stage. We

define a KL-Loss to make the knowledge distribution between

the target response y and the input sentence x similarly:

LKL(p(ki|x)||p(ki|y)) = −
∑

i

p(ki|x)lnp(ki|x)
p(ki|y) . (4)

E. Dynamic Vocabulary Construction

In this section, we introduce the reason to build sentence-

level dynamic vocabulary, and how to build dynamic vocabu-

lary.

The motivation of dynamic vocabulary: As shown in

Tab. I, given an input sentence, the conversation model needs

to generate the response based on background knowledge. The

response generated should be more relevant to the knowledge,

so the words in the response should be more relevant to

the knowledge. Investigating the previous models, we find

that the response sometimes contains the wrong words. For

example, with the knowledge, one person was born in “Hong

Kong”, but the response shows the person was born in “United

States”. We analyze the reason and find that it comes from

another knowledge, exactly that another person was born in

the “United States”. Those issues can be solved by reducing

the output vocabulary size, making the output vocabulary

only related to the current input sentence and background

knowledge, so the response may not be related to the useless

words.

In most of the models, the predict vocabulary is always

as large as the size of dataset, and it is regarded as the basic

vocabulary. For each sentence, we reduce the target vocabulary

as much as possible, building dynamic vocabulary for every

input sentence. Dynamic vocabulary between different input

sentences may not be the same because they do not have



the same background knowledge. At the experiment step, we

show the effectiveness of dynamic vocabulary, with the smaller

target vocabulary, the better performance.

How to build sentence-level dynamic vocabulary: We

plan to build the target vocabulary of each input sentence for

generating more meaningful responses. With the background

knowledge, the response words have a higher probability of

being generated by knowledge words, so we collect the words

from the knowledge belong to one input sentence. We define

a dictionary Dki , which represents all words in the knowledge

ki , then all knowledge words are merged:

Vk =
m⋃

i=1

Dki , (5)

where m is the size of the knowledge list. Vk represents all the

knowledge words that belonging to only one input sentence.

Only the knowledge words are not enough. When people are

talking in daily life, the words which guarantee grammatical

correctness and fluent responses are still needed. These words

are called function words. We discover the words, which make

the final response fluently such as preposition, conjunctions,

auxiliary words, have a higher probability ahead of the fre-

quency words. Based on the words of the whole dataset, we get

the top N frequency words. These frequency words are defined

as Vd . Different from the Vk , for all the input sentences, Vd

is the same.

To make the response relevant to the input sentence, We

also collect the words of the input sentence, defined as:

Vm =

n⋃

i=1

{wi}, (6)

where wi represents the ith word in the sentence, and the

length of the sentence is n.

At the training step, the target response is available. To make

the model training more accurate, we collect the words of the

target response, defined as:

Vr =

l⋃

i=1

{ri}, (7)

where ri represents the i-th word in the target response and

the length of response is l.
Training step: We collect the Vk ,Vd ,Vm ,Vr of an input

sentence, defined as:

Vi = Vk ∪ Vd ∪ Vm ∪ Vr, (8)

where Vi is the dynamic vocabulary for only one input

sentence. At the training step, we employ the mini-batch

training strategy, and for simplicity, we use the union of all

Vi in a batch:

Vdy = V1 ∪ V2 ∪ ... ∪ Vb (9)

where b is the batch size. We randomly shuffle the training

sentences before each epoch. With the dynamic Vdy at each

epoch, the model will lead to better coverage of parameters.

Predicting step: Without the target response, we use the

Vdy = Vk ∪ Vd ∪ Vm (10)

as dynamic vocabulary for an input sentence, and we don’t

apply the mini-batch at predicting step.

F. Decoder

We use the selected knowledge ks and the last predicted

output yt−1 as the decoder input, defined as:

st = GRU([yt−1; ks], st−1), (11)

where we concatenate yt−1 and ks as the decoder step t’s
input, then we perform attention between st and the hidden

states of sentence encoder {h1 , h2 ...hn} :

eti = vT tanh(Whhi +Wsst + b), (12)

ati = softmax(eti), (13)

where v ,Wh ,Ws , and b are learned parameters. at
i can be

regraded as the attention on different sentence words. We

perform a weighted sum of the hidden sentence states:

h∗
t =

∑

i

atihi. (14)

The context vector h∗
t is the representation of the sentence at

step t , regraded as what has read with st .

We concatenate the h∗
t and st to predict the output word

wi ∈ Vdy at step t:

P t
wi

=
exp(stwi

)∑
wk∈Vdy

exp(stwk
)
, (15)

where swi
is defined as:

stwi
= Wwi [st, h

∗
t ] + bwi ∀wi ∈ Vdy (16)

where Wwi and bwi are learned parameters. P t
wi

is a proba-

bility distribution over all words in dynamic vocabulary Vdy .

G. Loss Function

Beside the KL-Loss, we use the NLL-loss to learn reduction

of the response predicted by the model with the gold response,

defined as:

LNLL(θ) = −1

l

l∑

t=1

logpθ(yt|y<t, x, ks), (17)

where θ is the model parameters. l is the length of the

response. y<t represents the previous generated words.

So the total loss for the model is defined as:

LLoss(θ) = LKL(θ) + LNLL(θ). (18)



IV. EXPERIMENTS

In this section, we describe our experiments, including

two datasets we used, four baselines for comparison, training

details, automatic evaluation performance, and human evalua-

tion results. We change different N for frequency words and

different combinations on dynamic vocabulary to prove the

validity of dynamic vocabulary, then we show the performance

for all baselines compared with our model, and perform

ablation experiments to verify the effectiveness of each part of

our model. We also apply our dynamic vocabulary method to

Seq2Seq, MemoryNet and the latest existing models to prove

that dynamic vocabulary can improve the performance of other

models.

A. Dataset

We use a multi-turn Chinese dialogue dataset which is

released by Baidu recently, named LIC competition dataset

[8], and it is composed of knowledge grounded conversations

in the movie domain. This dataset consists of thirty thousand

sessions, about 120k dialogue sentences, of which 100k are

training set, 10k are development set and 10k are test set.

The training session includes two parts, which are knowledge

and conversation. A pair of crowd workers generate each

conversation, one of which plays the agent role and the

other plays the user role. Offical has used word segmenter

to segment sentences when releasing the dataset. More details

can be found in [8].

Also, we perform our experiments on the PERSONACHAT

dataset [9], which is collected from a real conversation be-

tween two crowd workers. These crowd workers play the

role by the persona message that they are given, trying to

know each other during the conversation. The training set

contains about ten thousand dialogue turns, 160k sentences. In

our experiments, we use the persona message as knowledge

information.

B. Baselines

We compare our model with the following baselines:

• S2SK: For the knowledge-guided conversation, we use

the Seq2Seq model with attention mechanism [23] as a

baseline. We also add knowledge information into the

input sentence to make the response can generate more

informative responses.

• MemoryNet: The memory network [17], [24] uses sev-

eral embedding metrics to write knowledge into slots, and

reads knowledge by query vectors. In the conversation

system, we use the input sentence as the query vector to

get relevant knowledge, and the hops in this model is set

to 2.

• PointerNet: The above models can only generate words

in a fixed vocabulary, but PointerNet [25] also copies

words from input sentences, which can solve the out of

vocabulary problem effectively.

• PostKS: A model [4] which employs a novel knowledge

selection mechanism where both prior and posterior dis-

tributions over knowledge are used to facilitate knowl-

edge selection.

C. Training Details
For all the baselines and our model, we use the pre-trained

BERT [26] for knowledge words embedding and conversation

words embedding, and the embedding size is 768. The encoder

and decoder have 1-layer of GRU [21] with 800 hidden state

dimensions. The Adam optimizer [27] is used to update the

gradient. Its initial learning rate is set to 0.00005, and gradient

clipping is applied with a clip value of 5. We train the model

in 20 epochs with a mini-batch size of 64. The size of N in

sentence-level vocabulary is uncertain for different datasets.

After a lot of experiments and evaluation on two datasets, we

consider that it better lower than the size which is half of the

different set of the whole corpus and all the knowledge words.

We analysis it in Section IV-E.

D. Evaluation Metrics
we evaluate the performance of different models with the

following metrics:
F1: following [4], we adopt F1 = 2 · Recall·Precision

Recall+Precision [28]

to measure the unigram score between the predicted response

and golden response. Precision is calculated by dividing the

number of the same words in the predicted response and the

gold response by the length of the predicted response. Recall

is calculated through dividing the number of the same words

in the predicted response and the gold response by the length

of the gold response.
BLEU-1/2: following [29], we use BLEU to match the

words between the predicted response and the standard re-

sponse. BLEU-1 judges the matching of unigrams, while

BLEU-2 considers the matching of bigrams. The higher the

BLEU score, the better the prediction. Because there are

many words from the background knowledge in the standard

response, BLEU is useful for matching keywords from the

background knowledge.
Distinct-1/2: following [30], we calculate the ratios of

distinct unigrams and bigrams in generated responses, and

use the metrics to measure how diverse and informative the

responses are.
Human: following [4], we find 5 volunteers (majoring in

dialogue research) and 5 volunteers (other fields of research).

For each response, we randomly select two volunteers from the

two categories respectively to score. Volunteers are required

to score a given response in the range of 0-2. 0 represents the

content of the response is totally irrelevant. 1 represents the

content of the response is relevant, but lack of information.

2 represents the content of the response is relevant and

informative. We randomly extract 1000 predicted responses for

each dataset, resulting in 2000 responses in total for human

annotation. The Fleiss’ kappa [31] coefficients are 0.61 and

0.65 on LIC and PERSONACHAT datasets.

E. Analysis of Different Dynamic Vocabulary Size
Because the number of words in the input sentence and the

number of words in the knowledge are fixed and unchangeable,



TABLE II
PERFORMANCE OF DIFFERENT MODELS ON PERSONACHAT DATASET AND LIC COMPETITION DATASET. HUMAN EVALUATION IS ALSO USED TO

EVALUATE THE PERFORMANCE OF THE MODELS (HUMAN).

Models
PERSONACHAT LIC

F1 BLEU-1/2 Distinct-1/2 Human F1 BLEU-1/2 Distinct-1/2 Human
S2SK 56.6 20.9/12.2 0.003/0.111 1.02 34.0 30.7/18.1 0.041/0.094 0.94

MemoryNet 56.5 22.1/12.8 0.002/0.004 1.12 33.8 32.3/18.7 0.036/0.071 1.10
PointerNet 56.9 20.1/12.0 0.012/0.049 1.20 34.5 18.0/10.9 0.027/0.104 1.22

PostKS (2019) 57.8 22.4/13.0 0.010/0.013 1.38 35.2 33.5/19.4 0.054/0.103 1.26
DVKCM-FIX 57.5 22.6/12.9 0.016/0.078 1.41 37.0 34.8/19.5 0.050/0.154 1.30

DVKCM 58.3 23.7/14.0 0.023/0.098 1.50 39.9 36.8/22.7 0.081/0.212 1.39

Fig. 2. After training different frequency words in LIC dataset, we find that
the performances of both F1 and BLEU-1 by using smaller frequency words
are improved. But the performance is reduced when the size of the frequency
words N reduces from 6000 to 2000.

we experiment with different top N frequency words on LIC

dataset to display performance with changing N . We need to

know in advance that the total vocabulary in the LIC dataset

is 50013, and the total number of knowledge words is 43764.

As Fig. 2 shows, we set N from 2000 to 15000. With F1

measurement, when N is 6000 the model gets the best score

as 40.4, and with a larger or smaller N , the F1 score reduces.

We analyze the responses produced by different N and find

that with a larger N , the response contains some words

that are not relevant to current input sentence or background

knowledge, which makes noise. For a smaller N , the response

losses some function words, so the model can’t generate a

smooth response. It is the same reason for BLEU-1 score. The

experiment certificates, compared with a large vocabulary, the

smaller target vocabulary can improve the performance, but it

can’t be very small.

F. Analysis of Different Combinations of Dynamic Vocabulary

For proving the validity of each part in dynamic vocabulary,

we set frequency words N=6000 and use different combi-

nations of Vk ,Vd ,Vm . At the training step, we default that

Vr is used for each combination. At the predicting step, we

remove Vr from the dynamic vocabulary. As Fig. 3 shows,

when three parts are used as dynamic vocabulary separately,

Fig. 3. For proving the validity of each part in dynamic vocabulary, we
use different combinations of three data sources (Vk ,Vd ,Vm ). For each
combination, we default that using Vr at the training step.

Vd gets the highest score, which proves that most words of

the response are function words. As a disadvantage, there is

no word of knowledge in Vd , which leads to the failure to

generate knowledge-related information. When combining two

vocabulary sources, the response can get a higher score, which

proves not only function words but also knowledge words or

input sentence words are needed when the model generates

the response. The combination of three vocabulary source gets

the highest score, which proves the importance of each part

in dynamic vocabulary.

G. Overall Performance

We compute automatic evaluation metrics and human eval-

uation metrics for the baseline models in two datasets men-

tioned above. The results are shown in Tab. II.

As Tab. II shows, our model (DVKCM) has achieved the

best result in all automatic metrics. For BLEU-1, our method is

1.6% higher than the second best one on the PERSONACHAT

dataset and 4.5% higher on the LIC competition dataset, which

proves the validity of our model. For the S2SK, MemoryNet

and PointerNet models, their responses are generated based

on the whole knowledge of each input sentence, instead of

predicted based on the most related knowledge, and they also



TABLE III
WE PERFORMED ABLATION EXPERIMENTS ON TWO DATASETS, AND DVKCM IS OUR MODEL. WE REMOVE PART OF OUR MODEL AND GET THE

CORRESPONDING PERFORMANCE ON TWO DATASETS TO VERIFY THE VALIDITY OF EACH PART OF THE MODEL.

Models
PERSONACHAT LIC

F1 BLEU-1/2 Distinct-1/2 Human F1 BLEU-1/2 Distinct-1/2 Human
DVKCM 58.3 23.7/14.0 0.023/0.098 1.50 39.9 36.8/22.7 0.081/0.212 1.39
No KS 57.8 23.0/13.4 0.010/0.011 1.39 35.9 32.3/19.4 0.041/0.099 1.32
No DV 57.6 21.0/12.2 0.012/0.012 1.40 34.2 30.5/18.3 0.042/0.110 1.27
No Embedding 57.0 22.8/12.3 0.009/0.014 1.35 36.1 33.4/21.7 0.041/0.109 1.20

TABLE IV
PERFORMANCE DEMONSTRATION OF ADDING DYNAMIC VOCABULARY TO OTHER MODELS. EXPERIMENTS SHOW THAT OTHER MODELS CAN IMPROVE

THEIR PERFORMANCE BY ADDING DYNAMIC VOCABULARY.

Models
PERSONACHAT LIC

F1 BLEU Distinct Human F1 BLEU Distinct Human
S2SK 56.6 20.9/12.2 0.003/0.111 1.02 34.0 30.7/18.1 0.041/0.094 0.94
S2SK+DV 57.8 23.0/13.4 0.003/0.011 1.12 36.0 32.3/19.4 0.041/0.099 1.05
MemoryNet 56.5 22.1/12.8 0.002/0.004 1.12 33.8 32.3/18.7 0.036/0.071 1.10
MemoryNet+DV 58.6 22.3 /12.5 0.001/0.003 1.24 34.3 32.8/18.8 0.038/0.077 1.19
PostKS (2019) 57.8 22.4/13.0 0.010/0.013 1.38 35.2 33.5/19.4 0.054/0.103 1.26
PostKS+DV 58.0 23.4/13.7 0.020/0.088 1.45 39.1 34.3/20.1 0.060/0.140 1.37

don’t reduce the size of the target vocabulary. We think this

is the main reason for their poor performance. For human

evaluation, our model (DVKCM) can also achieve better

performance, which proves the validity of our model.

In section 3.5, when collecting knowledge words, we only

receive all knowledge words belonging to the current input

sentence, which shown as DVKCM in Tab. II. To prove the

effectiveness of this operation, we compare with DVKCM-

FIX, which plus all the tokens in the knowledge base of

the whole corpus. Although DVKCM-FIX collects all the

knowledge words, the vocabulary size of DVKCM-FIX is still

smaller because Vr, Vm and Vd reduce it, which leads to better

performance compared with baselines. Because DVKCM-FIX

collects many knowledge words unrelated to the current input

sentence, the responses will lead to more noise than DVKCM,

so the performance is lower than DVKCM.

H. Ablation Experiment

We perform ablation experiments to verify the effectiveness

of each part of DVKCM model. We remove the following

parts from the model separately:

• No KS: We remove the knowledge selection part from the

model and average all knowledge vectors {k1 , k2 ...km}
as selected knowledge ks.

• No DV: We remove the dynamic vocabulary from the

model and let the prediction of the model based on the

whole corpus of words.

• No Embedding: We remove BERT embedding from the

model and randomly initialize the input sentence and

knowledge words vectors in the model.

The experimental results are shown in Tab. III. From the

experiment, we can observe that:

(1) Without KS, our decoder part considers all knowledge

of current input sentence at the same time, but not all of the

knowledge is beneficial to the current response generation,

so the noise is generated. The performance of the model is

reduced on both datasets.

(2) Without DV, the generation of our responses is based on

the whole corpus, which increases the probability of generating

irrelevant words, such as words that are irrelevant to current

knowledge but have similar features to current knowledge (see

Tab. I). This proves that the prediction of the model doesn’t

need to be based on a large vocabulary. The coverage of

words has increased, however, the number of noise words

has also increased. If the prediction of the model is based

on sentence-level vocabulary, the words in the vocabulary

are more related to the response currently generated, which

improves the performance while reducing the size of the target

vocabulary.

I. Applying Dynamic Vocabulary to Other Models

We also prove that our dynamic vocabulary method can

be applied to other models. We not only add the dynamic

vocabulary method on S2SK and MemoryNet models, but

also add dynamic vocabulary to the latest conversation model

PostKS. For both datasets, at the training step, we use Vb

as dynamic vocabulary and set Vd as 6000. At predicting

step, we use Vp as the target dynamic vocabulary. With the

Tab. IV, the result shows dynamic vocabulary can improve the

performance on both datasets. We analyze the target responses

for both datasets and find the most of the response words are

coming from knowledge and function words. When we reduce

the target vocabulary size and make sentence-level vocabulary

for each input sentence, the responses can contain words that

are related to the input sentences with higher probability.

J. Case Study

Tab. V shows an example on the LIC dataset. We can

discover that S2SK model is unable to make good use of



TABLE V
SAMPLE RESPONSES FOR MODELS ON LIC DATASET. THE SOURCE IS THE

INPUT SENTENCE. WE PRINT THE RESPONSES FOR BASELINES AND THE

PROPOSED MODEL.

Source Do you like watching feature films?

Knowledge

K1. Silent Night is a feature film.
K2. Silent Night is released in 2002 year.

K3. Inception is ascience fiction film.
K4. Inception is released in 2010 year.

K5. I like feature films.
K6. Inception is interesting.

S2SK I like films.
MemoryNet I like Inception.
PointerNet I like the feature films.
PostKS I like watching feature films, like Graden.
DVKCM I like watching feature films, like Silent Night.

knowledge information, resulting in less valuable responses.

The MemoryNet model tries to reason to get the right

knowledge, but apparently, it chooses the wrong knowledge.

Although PointerNet has a mechanism to copy from source,

it also gets boring responses, and does not make more use

of knowledge information. Through the result of PostKS, we

can see that this model well combines the information that

some movies are feature films and wants to generate more

meaningful response, but the result is the movie in other

knowledge lists (Garden is a feature film). The model can’t tell

the difference between Garden and Silent Night. In DVKCM,

by limiting the words to the knowledge belonging to the

current source, other feature films’ names in the vocabulary

will be removed, and the model can output Silent Night very

well. In general, DVKCM can generate more informative and

input-related responses.

V. CONCLUSION

In this paper, we present a novel idea of applying dynamic

vocabulary for the knowledge-guided conversationa model .

Compared with the large vocabulary of the whole corpus, we

employ dynamic vocabulary construction module to extract

the smaller sentence-level vocabulary for each input sentence,

which is related to the current input sentence and background

knowledge, and only use the smaller vocabulary to execute

the decoding part, which can reduce uncorrelated noise and

improve the semantic relevance between the knowledge and

response. Experiments on two datasets demonstrate the effec-

tiveness of our model over all baselines. We also analyze each

part of the dynamic vocabulary and verify the validity of each

part. Dynamic vocabulary can be applied to other models, so

the performance of other models can be better improved. A

case study shows the advantages of the proposed model in

solving some specific problems over all baselines.
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